These were bfont_rect, bg_rect, foot_rect, and images_rect.
bg_rect was only used once to draw the ghost buffer in the editor, but
that was only because Ally didn't know you could just pass NULL in, cuz
the ghost buffer is the same size as the backbuffer.
RGBflip() does the exact same thing as getRGB(), now that all the
surface masks have been fixed. This axes RGBflip() and changes all
callers to use getRGB() instead. It is more readable that way.
By doing this, there is less copy-pasting. Additionally, it is now
easier to search for RGBf() - which is an ENTIRELY different function
than RGBflip() - now that the name of RGBf is no longer the first four
characters of some different, unrelated function. Previously I would've
had to do `rg 'RGBf[^\w]'` which was stupid and awful and I hated it.
Turns out, the r, g, and b arguments don't actually do anything!
There was a call to RGBf() in the function. RGBf() is just getRGB() but
first adds 128 and then divides by 3 to each of the color channels
beforehand. Unfortunately, RGBf() does not have any side effects, and
the function threw away the return value. Bravo.
This also reveals that the website images drawn in the credits in the
main menu are only recolored because of a stale `ct` set by the previous
graphics.bigprint(), and not because any color values were passed in to
drawimagecol()... What fun surprises the game has in store for me every
day.
getBGR, when used in FillRect, was actually passing colors in RGB order.
But now the masks are fixed, so remove it, and fix up all existing
getBGR colors to use getRGB instead.
Due to the mask inconsistencies, getRGB calls that were passed to
FillRect ended up actually being passed in BGR order. But now that the
masks are fixed, all these BGR colors look wrong. So, fix up all of them
(...that's a _lot_ of copy-pasted code...) to be passed in RGB order.
This fixes the color ordering of every SDL_Surface in the game.
Basically, images need to be loaded in ABGR format (except if they don't
have alpha, then you use RGB? I'm not sure what's going on here), and
then they will be converted to RGB/RGBA afterwards.
Due to the surfaces actually being BGR/BGRA, the game used to use
getRGBA/getRGB to swap the colors back around to BGRA/BGR, but I've
fixed those too.
If it's at all possible to use `const std::string&` when passing
`std::string`s around, then we use it. This is to limit the amount of
memory usage as a result of the frequent use of `std::string`s, so the
game no longer unnecessarily copies strings when it doesn't need to.
I've made a new function, Graphics::do_print(), that does the actual
text printing itself. All the interfaces of the other functions have
been left alone, but now just call do_print() instead.
I also removed PrintOffAlpha() and just calculated the center x-position
in bprintalpha() itself (like bigbprint() does) to make it easier to
de-duplicate code.
Text boxes have `r`, `g`, and `b`, and `tr`, `tg`, and `tb`. `tr`, `tg`,
and `tb` are the real colors of the text box, and `r`, `g`, and `b` are
merely the colors of the text box as the text box's alpha value is
applied to them.
Compare this with, say, activity zones (which are drawn like text boxes
but aren't text boxes): There is `activity_r`, `activity_g`, and
`activity_b`, and when they're drawn they're all multiplied by
`act_alpha`.
So just do the same thing here. Ditch the `tr`, `tg`, and `tb`
variables, and make `r`, `g`, and `b` the new `tr`, `tg`, and `tb`
variables. That way, there's simply less state to have to update
separately. So we can get rid of `textboxclass::setcol()` as well.
All parameters are now made const, to aid in the reader in knowing that
they aren't ever changed.
Useless comments have been removed and been replaced with helpful
comments.
Useless parentheses have been removed.
Spacing has been made consistent.
Declarations and code are no longer mixed.
I'm honestly not too sure why drawcustompixeltextbox ever existed? All
it seemed to do was draw even more horizontal/vertical tiles to finish
any gaps in the tiling... which was all completely unnecessary and
wasteful, because even the previous drawpixeltextbox implementation
covered all gaps in all custom level map sizes that I tried.
Anyway, that at least gets rid of one copy-pasted function.
This draws the remaining horizontal/vertical tile just beside the final
corner if the width/height is not a multiple of 8. (It'd be wasteful to
draw it if the width/height was a perfect multiple of 8, and result in
double-drawing translucent pixels if there were any.)
This has an advantage over the previous system of shifting the
horizontal/vertical tiling, in that custom corner textures don't look
weird due to overlapping like this. Now, custom horizontal/vertical
tiles _can_ look weird if they don't completely tile correctly (or if
they have translucent pixels), but that's better than mucking up the
corners.
`w` and `h` are provided alongside `w2` and `h2`. `w2` and `h2` are in
blocks of 8, while `w` and `h` are in pixels. Therefore, `w2` and `h2`
can just be figured out by diving `w` and `h` by 8.
Also, `xo` and `yo` were used to slide the horizontal/vertical tiling of
the text box a bit into one set of corners, so the horizontal/vertical
tiling wouldn't visibly overlap with the other corners, if using default
textures. This requires hardcoding it for each width/height of text box,
which isn't something that's generalizable. Also, it results in corners
that look weird if the corners have custom textures that don't adhere to
the same shape as default textures.
In the next commit I'll fix the non-multiple-of-8 text box dimensions
differently. Can't do it in this commit or the diff looks weird (at
least with my diff algorithm).
That's what edlevelclass is... so that's what it should be named. (Also
removes that "ed", too, making this less coupled to the in-game editor.)
Unfortunately, for compatibility reasons, the name of the XML element
will still remain the same.
This is a pretty hefty commit! But essentially, I made a new editorclass
object, and moved all functions and variables that only get used in the
in-game level editor to that class. This cleanly demarcates which things
are in the editor and which things are just general custom level stuff.
Then I fixed up all the callers. I also fixed up some NO_CUSTOM_LEVELS
and NO_EDITOR ifdefs, too, in several places.
This accompanies the editor.cpp -> CustomLevels.cpp change; I'll be
splitting out the editor functions in the next commit. The name of the
include guard has been changed as well, but not anything else.
Previously, Flip Mode rendering had to be complicated and allocate
another buffer to call FlipSurfaceVerticle, and it was just a mess.
Instead, why not just do SDL_RenderCopyEx, and let SDL flip the screen
for us? This ends up pretty massively simplifying the rendering code.
Originally this started as a "deduplicate a bunch of duplicated code in script commands" PR,
but as I was working on that, I discovered there's a lot more that needs to be done than
just deduplication.
Anything which needs a crewmate entity now calls `getcrewmanfromname(name)`, and anything which
just needs the crewmate's color calls `getcolorfromname(name)`. This was done to make sure that
everything works consistently and no copy/pasting is required. Next is the fallback; instead of
giving up and doing various things when it can't find a specific color, it now attempts to treat
the color name as an ID, and if it can't then it returns -1, where each individual command handles
that return value. This means we can keep around AEM -- a bug used in custom levels -- by not
doing anything with the return value if it's -1.
Also, for some reason, there were two `crewcolour` functions, so I stripped out the one in
entityclass and left (and modified) the one in the graphics class, since the graphics class also
has the `crewcolourreal` function.
This will wrap text on-the-fly, since I will be introducing text that
needs to be wrapped whose length we can't know in advance. (Or we can,
but, that'd be stupid.)
I took the algorithm from Dav999's localization branch, but it's not
like it's a complicated algorithm in the first place. Plus I think it
actually handles words that get too long to fit on a single line better
than his localization branch. The only difference is that I removed all
the STL, and made it more memory efficient (unlike his localization
branch, it does not copy the entire string to make a version with
newline separator characters).
It's quite rude to close the game. Especially if the user does not use
the console. They won't know why the game closed.
Instead, just return -1. All usages of font_idx() should be and are
bounds checked anyways. This will result in missing characters, but,
it's not like the characters had a font image in the first place,
otherwise we wouldn't be here. And if the user sees a bunch of
characters missing in their font, they'll probably work out what the
problem is even without having a console. And it's still far better than
abruptly closing the game.
And use WHINE_ONCE to prevent spamming the console.
Since colors going into FillRect() need to be in BGR format, we need to
use getBGR instead. (Well, actually, it gets passed in RGB, but then at
some point the order gets switched around, and, really, this game's
masks are all over the place, I'm going to fix that in 2.4.)
There's nothing to interpolate. It moves at one pixel per frame. And
interpolating sometimes results in the box being short by 1 pixel to
cover the whole screen on deltaframes, so if you stand on the right edge
of the screen and have a translucent sprite, it will quickly draw over
itself many times, and it looks glitchy. This commit fixes that bug.
This is more future-proofing than anything else. The position of the
indicators is just the x-position of the gravitron square divided by 10,
but the gravitron squares will always only ever move at 7 pixels per
frame - so the distance an indicator travels on each frame will only
ever be at most 1 pixel. But just in case in the future gravitron
squares become faster than 10 pixels per frame, their indicators will be
interpolated as well.
Colors in over-30-FPS mode shouldn't be updating every deltaframe;
mostly to ensure determinism between switching 30-mode and over-30 mode.
I'm going to overhaul RNG in 2.4 anyway, but right now I'm going to fix
this because I missed it.
The RNG of each special text box is stored in a temporary variable on
the text box itself, and only updated if the color uses it (hence the
big if-statement). Lots of code duplication, but this is acceptable for
now.
This is a simple change - we draw minimap.png, instead of the generated
custom map, if it is a per-level mounted custom asset.
Custom levels have already been able to utilize minimap.png, but it was
limited - they could do gamemode(teleporter) in a script, and that would
show their customized minimap.png, but it's not like the player could
look at it during gameplay.
I would have done this earlier if I had figured out how to check if a
specific asset was mounted or not.
So, the codebase was kind of undecided about who is responsible for
initializing the parameters passed to FILESYSTEM_loadFileToMemory() - is
it the caller? Is it FILESYSTEM_loadFileToMemory()? Sometimes callers
would initialize one variable but not the other, and it was always a
toss-up whether or not FILESYSTEM_loadFileToMemory() would end up
initializing everything in the end.
All of this is to say that the game dereferences an uninitialized
pointer if it can't load a sound effect. Which is bad. Now, I could
either fix that single case, or fix every case. Judging by the title of
this commit, you can infer that I decided to fix every case - fixing
every case means not just all cases that currently exist (which, as far
as I know, is only the sound effect one), but all cases that could exist
in the future.
So, FILESYSTEM_loadFileToMemory() is now guaranteed to initialize its
parameters even if the file fails to be loaded. This is better than
passing the responsibility to the caller anyway, because if the caller
initialized it, then that would be wasted work if the file succeeds
anyway because FILESYSTEM_loadFileToMemory() will overwrite it, and if
the file fails to load, well that's when the variables get initialized
anyway.
These casts are sprinkled all throughout the graphics code when creating
and initializing an SDL_Rect on the same line. Unfortunately, most of
these are unnecessary, and at worst are wasteful because they result in
narrowing a 4-byte integer into a 2-byte one when they don't need to
(SDL_Rects are made up of 4-byte integers).
Now, removing them reveals why they were placed there in the first place
- a warning is raised (-Wnarrowing) that implicit narrowing conversions
are prohibited in initializer lists in C++11. (Notably, if the
conversion wasn't narrowing, or implicit, or done in an initializer
list, it would be fine. This is a really specific prohibition that
doesn't apply if any of its sub-cases are true.)
We don't use C++11, but this warning can be easily vanquished by a
simple explicit cast to int (similar to the error of implicitly
converting void* to any other pointer in C++, which works just fine in
C), and we only need to do it when the warning is raised (not every
single time we make an SDL_Rect), so there we go.
The config option has been removed. I'm going to implement something
that automatically shows and hides the mouse cursor whenever
appropriate, which is better than a config option.
In a vertically-warping room, the 'height' of the room becomes 232
pixels, regardless of if you have a room name or not. So the remaining 8
rows of pixels at the bottom of the screen corresponds with the first 8
rows of pixels at the top of the screen, and entities in the bottom 8
rows of pixels get teleported to the top of the screen.
The screen wrapping drawing code doesn't draw entities in the top 8 rows
of pixels at the bottom, leading to a discontinuous effect where it
looks like vertically-warping entities don't neatly change from the
bottom to the top or vice versa - this is especially noticeable with
enemies. To fix this, just increase the threshold for drawing top
entities at the bottom of the screen by 8 pixels.
When an entity vertically warps, it teleports upwards or downwards by
232 pixels. However, the graphics code draws them with an offset of 230
pixels. This is off by 2 pixels, but it's enough to make a
downwards-moving enemy look like it suddenly collides with the bottom of
the screen (in a room without a room name) before it warps, especially
if you go frame-by-frame.
This adds music and volume sliders to the audio options. To use the
sliders, you navigate to the given option, then press ACTION, and your
selection will be transferred to the slider. Pressing left or right will
move the slider accordingly. Then you can press ACTION to confirm the
volume is what you want and deselect it, or you can press Esc to cancel
the volume change, and it will revert to the previous volume; both
actions will write your settings to disk.
Most of this commit is just adding infrastructure to support having
sliders in menus (without copy-pasting code), which is a totally
completely new user interface that has never been used before in this
game. If we're going to be adding something new, I want to make sure
that it at least is done the RIGHT way.
Closes#706.
Default function arguments are the devil, and it's better to be more
explicit about what you're passing into the function. Also because we
might become C-only in the future and to help faciliate that, we should
get rid of C++-isms like default function arguments now.
It's just like bigprint() except it duplicates some of the calculations
because I didn't want to make a bigprintoff() function which would
duplicate even more code. I'm beginning to think these text printing
functions are completely horrible to work with...
In case they get drawn against a non-contrasting background, it's still
useful to keep them readable by outlining them. This could happen if
someone were to use the Game Complete gamestate sequence in a custom
level (or presses R during Game Complete).
While I've decoupled fademode from gamemode starting, being faded out on
the title screen results in a black screen and you being unable to make
any input. So we'll need to store the current fademode in a temporary
variable when going to in-game options, then put it back when we return
to the pause menu. Yes, you can turn on glitchrunner mode during the
in-game options, and then immediately return to the pause menu to
instantly go back to the title screen; this is intended.
Due to frame ordering, putting the fademode back needs to be deferred to
the end of the frame to prevent a 1-frame flicker.
It's actually sufficient enough to do this temporary fademode storage to
fix the whole thing, but I also decided to decouple fademode and
gamemode starting just to be sure.
This replaces all raw ed.level accesses with new setter and getter
funcs, which makes it easier to add bounds checks later. And I've also
removed all the manually-written bounds checks, since they will go into
the new getter and setter.
To get the room properties of a specific room, you use
editorclass::getroomprop(), which returns a pointer to the room
properties - then you just read off of that pointer. To set a room
property, you use editorclass::setroom<PROP>(), where <PROP> is the name
of the property. These are maintained using X macros to avoid
copy-pasting. editorclass::getroompropidx() is a helper function and
shouldn't be used directly.
The existing bounds checks were correct sometimes but other times were
not.
The bounds check for 2x2 and 2x1 sprites only covered the top-left
sprite drawn; the other sprites could still be out of bounds. But if the
top-left sprite was out of bounds, then none of the other sprites
wouldn't be drawn - although it ought to be that the other sprites still
get attempted to be drawn. So I've updated the bounds checks
accordingly, and now an out of bounds top-left sprite won't prevent the
drawing of the rest of the sprites.
Similarly, if the sprite of a Gravitron square was out of bounds, that
would prevent its indicators from being drawn. But the indicators
weren't being bounds-checked either (2.3 lets you have less than 1200
tiles in a given tilesheet). So the bounds check has been moved to only
cover the drawframe and the indicator indexes accordingly, and an out of
bounds sprite won't prevent attempting to draw the indicators.
So #434 didn't end up solving the deltaframe flashing fully, only
reduced the chances that it could happen.
I've had the Level Complete image flash a few times when the Game Saved
text box pops up. This seems to be because the Level Complete image is
based off of the text box being at y-position 12, and the Game Saved
text box is also at y-position 12. Level Complete only gets drawn if the
text box additionally has a red channel value of 165, and the Game Saved
text box has a red channel value of 174. However, there is a check that
the text box be fully opaque first before drawing special images. So
what went wrong?
Well, after thinking about it for a while, I realized that even though
there is indeed an opaqueness check, the alpha of the text box updates
BEFORE it gets drawn. And during the deltaframes immediately after it
gets updated, the text box is considered fully opaque. It's completely
possible for the linear interpolation to end up with a red channel value
of 165 during these deltaframes, while the text box is opaque as well.
As always, it helps if you have a high refresh rate, and run the game
under 40% slowdown.
Anyways, so what's the final fix for this issue? Well, use the text box
'target' RGB values instead - its tr/tg/tb attributes instead of its
r/g/b attributes. They are not subject to interpolation and so are
completely reliable. The opaqueness check should still be kept, though,
because the target values don't account for opaqueness. And this way, we
get no more deltaframe flashes during text box fades.
An even better fix would be to not use magic RGB values to draw special
images... but that'd be something to do later.
In 2.2, at render time, the game rendered screenshakes and flashes if
their timers were above 0, and then decremented them afterwards. The
game would also update the analogue filter right before rendering it,
too.
In 2.3, this was changed so the flash and screenshake timers were
unified, and also done at the end of the frame - right before rendering
happened. This resulted in 1-frame flashes and screenshakes not
rendering at all. The other changes in this patchset don't fix this
either. The analogue filter was also in the wrong order, but that is
less of an issue than flashes and screenshakes.
So, what I've done is made the flash and screenshake timers update right
before the loop switches over to rendering, and only decrements them
when we switch back to fixed functions (after rendering). The analogue
filter is also updated right before rendering as well. This restores
1-frame flashes and screenshakes, as well as restores the correct order
of analogue filter updates.
Y-position 180 would be the position of the Level Complete and Game
Complete special text boxes in Flip Mode. However, since the y-position
of flipme text boxes actually no longer change (because we have to
accomodate changing Flip Mode on-the-fly), these text boxes will never
actually be y-position 180 - so we should remove these checks for
clarity.
createtextboxreal() is the same as createtextbox(), but with a flipme
parameter added to create text boxes that have their flipme attribute
set to true. createtextbox() just calls createtextboxreal() with flipme
set to false, and createtextboxflipme() just calls createtextboxreal()
with flipme set to true; this is because I do not want to use C++
function overloading.
Instead of calculating the y-position of the text box when it's created,
we will store a flag that says whether or not the text box should be
flipped in Flip Mode (and thus stay right-side-up), and when it comes
time to draw the text box, we will check Flip Mode and calculate the
position then.
Instead of duplicating the same variables over and over again,
Graphics::drawgui() can just make its own SDL_Rect. It's not that hard.
As far as I can tell, textrect was always being properly kept up to date
by the time Graphics::drawgui() got around to rendering
(textboxclass::resize() keeps being called a LOT), so this shouldn't be
a noticeable change from the user perspective.
These default arguments are never used anywhere. And if they were used
anywhere, it'd be better to explicitly say 255,255,255 than make readers
have to look at the header file to see what these default to. Also, this
creates four different overloads of createtextbox(), instead of only
two - but we ought to not be using function overloading anyway.
The only difference between Flip Mode and normal mode is the y-position
and sprite used to draw the crewmates. Everything else is the same, so
I've removed the copy-pasted portion.
The diff might look a bit ugly due to the unindentation.
Since the only difference in Flip Mode is the positiveness/negativeness
of the iterator variable, plus the starting y-offset, I've removed the
copy-pasted code and did this instead.
The diff might look a bit ugly due to the unindentation.
Like cutscene bars, I've added Graphics::setfade(), to ensure that no
deltaframe rendering glitches happen due to oldfadeamount not being
updated properly.
And indeed, this fixes a deltaframe rendering glitch that happens if you
return to the editor from playtesting on a faded-out screen, then fade
out again (by either re-entering playtesting and then cause a fadeout to
happen again, or by quitting from the editor afterwards). The same
glitch also happens outside of in-editor playtesting if you exit to the
menu while the screen is faded out.
To do this, I've added Graphics::setbars(), to make sure
oldcutscenebarspos always gets assigned when cutscenebarspos is. This
fixes potential deltaframe rendering issues if these two mismatch.
While working on #535, I noticed that editormenuactionpress() still
didn't do the explicit void declaration. Then I ran `rg 'void.*\(\)'`
and found three other functions that I somehow missed in #628. Whoops.
Well, now they no longer are missed.
So, 2.3 added recoloring one-way tiles to no longer make them be always
yellow. However, custom levels that retexture the one-way tiles might
not want them to be recolored. So, if there are ANY custom assets
mounted, then the one-ways will not be recolored. However, if the XML
has a <onewaycol_override>1</onewaycol_override> tag, then the one-way
will be recolored again anyways.
When I added one-way recoloring, I didn't intend for any custom asset to
disable the recoloring; I only did it because I couldn't find a way to
check if a specific file was customized by the custom level or not.
However, I have figured out how to do so, and so now tiles.png one-way
recolors will only be disabled if there's a custom tiles.png, and
tiles2.png one-way recolors will only be disabled if there's a custom
tiles2.png.
In order to make sure we're not calling PhysFS functions on every single
deltaframe, I've added caching variables, tiles1_mounted and
tiles2_mounted, to Graphics; these get assigned every time
reloadresources() is called.
Now you only have to call one function (and pass it a tile number) to
figure out if you should recolor a one-way tile or not, and you don't
have to copy-paste.
In normal mode, the room name is at the bottom of the screen. When you
bring up the map screen, it appears as if the room name is moving up
from the bottom of the screen, and the map screen is "pushing" it up.
The effect is pretty seamless, and when I first played the game (back in
2014), I thought it was pretty cool.
However, in Flip Mode, the room name is at the top of the screen. So one
would expect the menu animation to come from above the screen. Well, no,
it still goes from the bottom of screen; ruining the effect because it
seems like there are two room names on the screen, when there ought to
be only one.
To be fair, I only noticed this while fixing another bug now, but it's
one of those things you can't unsee (I have cursed you with knowledge!);
not to mention that I probably only didn't notice this because I don't
play in Flip Mode that often (and I'd wager almost no one does; Flip
Mode previous to 2.3 seems to have been really untested, like I said
in #165). It feels like a bit of an oversight that the direction of the
animation is the same direction as in unflipped mode. So I'm fixing
this.
ClearSurface() is less verbose than doing it the old way, and also
conveys intent clearer. Plus, some of these FillRect()s had hardcoded
width and height values, whereas ClearSurface() doesn't - meaning this
change also has better future-proofing, in case the widths and heights
of the surfaces involved change in the future.
This is pretty old commented-out code from earlier versions of the game;
they are no longer useful, and are just distracting. If we need them, we
can always refer back to this commit (but I sincerely doubt that we'll
need them).
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
Wow, there are a lot of these. All of these exit paths now use
VVV_exit() instead, which attempts to save unlock.vvv and settings.vvv,
and also frees all resources so Valgrind is happy. This is a good thing,
because previously unlock.vvv/settings.vvv wouldn't be written to if we
decided to bail for a given reason.
This isn't a memory leak (not even Valgrind complains), because it gets
properly cleaned up in GraphicsResources::destroy(). Still, it's memory
that is just laying around not being used, and in the name of
deallocating things as soon as you no longer need them, we should
deallocate the base tilesheet images after we split all of them into
tiles.
This reduces the memory cost of all tilesheet images by half, since we
were essentially keeping around duplicates for nothing; this doesn't
really have much of an impact with conventional tilesheet sizes, since
they're usually small enough, but since 2.3 allowed for tilesheet images
of any size, this is a pretty big deal for really big tilesheet images.
It's okay to do this, even though they also get freed in
GraphicsResources::destroy(), because SDL_FreeSurface() does a NULL
check on the pointer passed to it, and we set the pointer to NULL after
freeing the surfaces.
This removes the music cleanup code from musicclass::init(), and
requires that we also call destroy() in Graphics::reloadresources().
This is because we'll need to re-use the musicclass cleanup code
elsewhere, and we don't want to copy-paste the cleanup code. Or at
least, I don't (but I'm not a game dev, game devs copy-paste all the
friggin' time).
It doesn't feel quite write leaving all the buffer creation code in
main(), even though it's perfectly okay to do so and it doesn't result
in any memory mismanagement that Valgrind can report; so I'm factoring
all of it out to a separate function, Graphics::create_buffers().
As a bonus, we no longer have to keep qualifying with `graphics.` in the
buffer creation code, which is nice.
These destroy all the buffers that are created on the Graphics class.
Since these buffers can't be created at the same time as the rest of
Graphics is (due to the fact that they require knowing the pixel format
of the game screen), they can't be destroyed at the same as the rest of
Graphics is, either.
This is a very complicated way of zeroing out grphx (instead of using
SDL_zero()), which itself is completely unnecessary because grphx.init()
gets called immediately afterwards anyway.
It should be next-line brace, not same-line brace. Even in a codebase
that uses same-line braces everywhere, I still prefer having next-line
braces inside functions (because they're at the top level, and you can't
next them). But regardless, this should still be next-line brace like
(most of) the rest of the codebase.
While compiling in release mode, GCC warns about these two potentially
being used uninitialized further down. The only way this could happen is
if the case-switches below didn't match up with a case, which would
require the game to be in an invalid state (and have invalid values for
rcol and spcol), but it's better to be safe than sorry.
During 2.3 development, there's been a gradual shift to using SDL stdlib
functions instead of libc functions, but there are still some libc
functions (or the same libc function but from the STL) in the code.
Well, this patch replaces all the rest of them in one fell swoop.
SDL's stdlib can replace most of these, but its SDL_min() and SDL_max()
are inadequate - they aren't really functions, they're more like macros
with a nasty penchant for double-evaluation. So I just made my own
VVV_min() and VVV_max() functions and placed them in Maths.h instead,
then replaced all the previous usages of min(), max(), std::min(),
std::max(), SDL_min(), and SDL_max() with VVV_min() and VVV_max().
Additionally, there's no SDL_isxdigit(), so I just implemented my own
VVV_isxdigit().
SDL has SDL_malloc() and SDL_free(), but they have some refcounting
built in to them, so in order to use them with LodePNG, I have to
replace the malloc() and free() that LodePNG uses. Which isn't too hard,
I did it in a new file called ThirdPartyDeps.c, and LodePNG is now
compiled with the LODEPNG_NO_COMPILE_ALLOCATORS definition.
Lastly, I also refactored the awful strcpy() and strcat() usages in
PLATFORM_migrateSaveData() to use SDL_snprintf() instead. I know save
migration is getting axed in 2.4, but it still bothers me to have
something like that in the codebase otherwise.
Without further ado, here is the full list of functions that the
codebase now uses:
- SDL_strlcpy() instead of strcpy()
- SDL_strlcat() instead of strcat()
- SDL_snprintf() instead of sprintf(), strcpy(), or strcat() (see above)
- VVV_min() instead of min(), std::min(), or SDL_min()
- VVV_max() instead of max(), std::max(), or SDL_max()
- VVV_isxdigit() instead of isxdigit()
- SDL_strcmp() instead of strcmp()
- SDL_strcasecmp() instead of strcasecmp() or Win32 strcmpi()
- SDL_strstr() instead of strstr()
- SDL_strlen() instead of strlen()
- SDL_sscanf() instead of sscanf()
- SDL_getenv() instead of getenv()
- SDL_malloc() instead of malloc() (replacing in LodePNG as well)
- SDL_free() instead of free() (replacing in LodePNG as well)
Ever since 2.0, the colors of some of the Time Trial trophies in the
Secret Lab don't correspond to the crewmate of the given level. The
trophy for the Tower uses Victoria's color, and the Lab trophy uses
Vermilion's color. The Space Station 2 trophy uses Viridian's color, and
the Final Level trophy uses Vitellary's color.
This doesn't appear to be intentional, and it would be odd if it was,
since this game matches the colors everywhere else (each zone on the map
is colored with their respective crewmate in mind, for instance). Also,
the Lab trophy has the sad expression, which is Victoria's trait - it
would be weird if this was intended for Vermilion instead.
But the biggest piece of evidence that this was unintentional is the
corresponding comment for each color in Graphics::setcol(). It mislabels
yellow as cyan, cyan as yellow, blue as red, and red as blue.
To fix this, I simply have to set the correct color for each trophy in
case 25 of entityclass::createentity(). I could fix it in
Graphics::setcol() itself, but custom levels might depend on those
certain colors being the way they are, so it's a safer bet to just fix
it in the trophy creation case itself.
The diff of this might look weird. Even though all I'm doing is changing
some value assignments around, it looks like the "patience" algorithm
thinks I'm moving a whole case of the trophy switch-case around.
In C++, when you have two variables in different scopes with the same
name, the inner scope wins. Except you have to be really careful because
sometimes they're not (#507). So it's better to just always have unique
variable names and make sure to never clash a name with a variable in an
outer scope - after all, the C++ compiler and standard might be fine
with it, but that doesn't mean humans can't make mistakes reading or
writing it.
Usually I just renamed the inner variables, but for tx/ty in editor.cpp,
I just got rid of the ridiculous overcomplicated modulo calculations and
replaced them with actual simple modulo calculations, because the
existing ones were just ridiculous. Actually, somebody ought to find
every instance of the overcomplicated modulos and replace them with the
actual good ones, because it's really stupid, quite frankly...
This commit fixes a bug that also sometimes occurred in 2.2, where the
teleporter sprite would randomly turn into a solid color and just be a
solid circle with no detail.
Why did this happen? The short answer is an incorrect lower bound when
clamping the teleporter sprite index in `Graphics::drawtele()`. The long
answer is bad RNG with the teleporter animation code. This commit fixes
the short answer, because I do not want to mess with the long answer.
So, here is what would happen: the teleporter's `tile` would be 6. The
teleporter code decrements its `framedelay` each frame. Then when it
reached a `framedelay` of 0, it would call `fRandom()` and essentially
ask for a random number between 0 and 6. If the RNG ended up being
greater than or equal to 4, then it would set its `walkingframe` to -5.
At the end of the routine, the teleporter's `drawframe` ends up being
its `tile` plus its `walkingframe`. So having a `walkingframe` of -5
here is fine, because its `tile` is 6.
Until it isn't. When its `tile` becomes 2, it still keeps its
`walkingframe` around. The code that runs when its `tile` is 2 does have
the possibility of completely resetting its `walkingframe` to be in
bounds (in bounds after its `tile` is added), but that only runs when
its `framedelay` is 0, and in the meantime it'll just use the previous
`walkingframe`.
So you could have a `walkingframe` of -5, plus a `tile` of 2, which
produces a `drawframe` of -3. Then `Graphics::drawtele()` will clamp
that to 0, which just means it'll draw the teleporter backing, and the
teleporter backing is a simple solid color, so the teleporter will end
up being completely and fully solid.
To fix this, I just made `Graphics::drawtele()` clamp to 1 on the lower
bound, instead of 0. So if it ever gets passed a negative teleporter
index, it'll just draw the normal teleporter sprite instead, which is
better.
This fixes the draw order by drawing all other entities first, before
then drawing all humanoids[1] after, including the player afterwards.
This is actually a regression fix from #191. When I was testing this, I
was thinking about where get a crewmate in front of another entity in
the main game, other than the checkpoints in Intermission 1. And then I
thought about the teleporters, because I remember the pre-Deep Space
cutscene in Dimension Open looking funny because Vita ended up being
behind the teleporter. (Actually, a lot of the cutscenes of Dimension
Open look funny because of crewmates standing behind terminals.)
So then I tried to get crewmates in front of teleporters. It actually
turns out that you can't do it for most of them... except for Verdigris.
And then that's what I realized why there was an oddity in WarpClass.cpp
when I was removing the `active` system from the game - for some reason,
the game put a hole in `obj.entities` between the teleporter and the
player when loading the room Murdering Twinmaker. In a violation of
Chesterton's Fence (the principle that you should understand something
before removing it), I shrugged it off and decided "there's no way to
support having holes with my new system, and having holes is probably
bad anyway, so I'm going to remove this and move on". The fact that
there wasn't any comments clarifying the mysterious code didn't help
(but, this *was* 2.2 code after all; have you *seen* 2.2 code?!).
And it turns out that this maneuver was done so Verdigris would fill
that hole when he got created, and Verdigris being first before the
teleporter would mean he would be drawn in front of the teleporter,
instead of being behind it. So ever since
b1b1474b7b got merged, there has actually
been a regression from 2.2 where Verdigris got drawn behind the
teleporter in Murdering Twinmaker, instead of properly being in front of
it like in 2.2 and previous.
This patch fixes that regression, but it actually properly fixes it
instead of hacking around with the `active` system.
Closes#426.
[1]: I'm going to go on a rant here, so hear me out. It's not explicitly
stated that the characters in VVVVVV are human. So, given this
information, what do we call them? Well, the VVVVVV community (at least
the custom levels one, I don't think the speedrunning community does
this or is preoccupied with lore in the first place) decided to call
them "villis", because of the roomname "The Villi People" - which is
only one blunder in a series of awful headcanons based off of the
assumption that the intent of Bennett Foddy (who named the roomnames)
was to decree some sort of lore to the game. Another one being
"Verdigris can't flip" because of "Green Dudes Can't Flip". Then an OC
(original character) got named based off of "The Voon Show" too. And so
on and so forth.