Ever since VVVVVV was initially ported to C++ in 2.0, it has used surfaces from SDL. The downside is, that's all software rendering. This commit moves most things off of surfaces, and all into GPU, by using textures and SDL_Renderer.
Pixel-perfect collision has been kept by keeping a copy of sprites as surfaces. There's plans for pixel-perfect collision to use masks instead of reading pixel data directly, but that's out of scope for this commit.
- `graphics.reloadresources()` is now called later in `main`, because textures cannot be created without a renderer.
- This commit also removes a bunch of surface functions which are no longer needed.
- This also recaches target textures in certain places for d3d9.
- graphics.images was converted to a fixed-size array.
- fillbox and fillboxabs use SDL_RenderDrawRect instead of drawing an outline using four filled rectangles
- Update my name in the credits
This makes it so temporary variables have their scopes reduced (if
possible). I also didn't hesitate to fix style issues, such as their
names ("temp" is such a bad name), making them const if possible, and
any code it touched too.
This involves loc::gettext_roomname and loc::gettext_roomname_special.
This commit is part of rewritten history of the localization branch.
The original (unsquashed) commit history can be found here:
https://github.com/Dav999-v/VVVVVV/tree/localization-orig
This just adds booleans roomname_special to the level classes in
preparation for the localization system to use them.
This commit is part of rewritten history of the localization branch.
The original (unsquashed) commit history can be found here:
https://github.com/Dav999-v/VVVVVV/tree/localization-orig
This makes it so room names are no longer pointers to someone else's
memory, and instead to set them you use `mapclass::setroomname`. If the
string is short enough to fit in a static, no-alloc buffer, then it gets
copied there. Otherwise, a new heap allocation is made that duplicates
the string, and the new pointer is used instead.
This makes it possible for room names to contain arbitrary data whose
origin is temporary (e.g. from a script command that could be added in
the future).
Trinket and teleporter legends would be drawn even if they were out of
bounds. Trinket legends in particular were easy to do because you can
just place a trinket in a custom level and resize the map to not include
the room of the trinket.
Now, there are checks added so they won't be added if they are out of
bounds. This is in line with the fact that, since 2.3, if a trinket
exists outside of the map in custom levels, it won't count towards the
number of trinkets.
It's becoming pretty clear that the size of the map is important enough
to be queried a lot, but each time it's something like `map.custommode ?
map.customwidth : 20` and `map.custommode ? map.customheight : 20` which
is not ideal because of copy-pasting.
Furthermore, even `map.customwidth` and `map.customheight` are just
duplicates of `cl.mapwidth` and `cl.mapheight`, which are only set in
`customlevelclass::generatecustomminimap`. This is a bit annoying if you
want to, say, add checks that depend on the width and height of the
custom map in `mapclass::initcustommapdata`, but `map.customwidth` and
`map.customheight` are out of date because `generatecustomminimap`
hasn't been called yet. And doing the ternary there requires a `#ifndef
NO_CUSTOM_LEVELS` to reference `cl.mapwidth` and `cl.mapheight` which is
just awful.
So I'm axing `map.customwidth` and `map.customheight`, and I'm axing all
the ternaries that are duplicating the source of truth in
`MapRenderData`. Instead, there will just be one function to call for
the width and height, `mapclass::getwidth` and `mapclass::getheight`,
and everyone can simply call those without needing to do ternaries or
duplication.
There's always been a bit of an inconsistency in the game where enabling
invincibility would make spikes so solid that enemies and moving
platforms would treat spikes as solid and bounces off of them.
This fixes that by adding an `invincible` parameter to collision
functions, so the functions will only treat spikes as solid if that
parameter is true, and the parameter passed will only be true if it's
called for an entity that is a humanoid and invincibility mode is
enabled.
Also, for clarity, `spikecollide` is renamed to `towerspikecollide`
because it's only used for tower spikes. And as a small optimization,
`checktowerspikes` returns early if invincibility mode is enabled.
This broke when I was refactoring things earlier, because we no longer
have a direct reference to the contents array, instead using a copied
int. But we have a settile() function anyway, so why not use it?
There's really no need to put the y-multiplication in a lookup table.
The compiler will optimize the multiplication better than putting it in
a lookup table will.
To improve readability and to hardcode things less, the new
SCREEN_WIDTH_TILES and SCREEN_HEIGHT_TILES constant names are used, as
well as adding a new TILE_IDX macro to calculate the index of a tile in
a concatenated-rows (row-major in formal parlance) array. Also, tile
numbers are stored in a temporary variable to improve readability as
well (no more copy-pasting `contents[i + vmult[j]]` over and over
again).
Since those are all downstream recipients of either static storage or
memory that doesn't move for the duration of the custom level, it's okay
to make these be `const char*`s without having to redo any of the RAII
memory management.
mapclass::currentarea() is included in this as well. I also cleaned up
Tower.cpp's headers to fix some transitive includes because I was
removing UtilityClass.h includes from all other level files too.
The "Untitled room" names no longer show any coordinates, because doing
so would require complicated memory management that's completely
unneeded. No one will ever see them, and if they do they already know
they have a problem anyway. The only time they might be able to see them
is if they corrupted the areamap, but this was only possible in 2.2 and
previous by dying outside the room deaths array in Outside Dimension
VVVVVV, which has since been patched out. Besides, sometimes the
"Untitled room" gets overwritten by something else anyway (especially in
Finalclass.cpp), so it really, really doesn't matter.
Companions would not spawn if you didn't load the current room via a
room transition. This meant that companions wouldn't spawn if you loaded
a save file with a companion, at least not until you moved to a
different room and triggered a screen transition. But most importantly,
it meant that the Intermission 1 supercrewmate would never spawn,
because going to Intermission 1 does a straight gotoroom, and does not
do a room transition.
Turns out the roomchange refactor broke things, because of course it
did. The companion logic was implicitly relying on that bool to be set,
because...? Either way, it doesn't make sense. Using roomchange implied
that the code wanted to be ran only when doing a room transition, which
is clearly not the case here. The best thing to do here is to just move
it to a separate function that gets called at the end of
mapclass::gotoroom().
So, I ended up breaking supercrewmate spawning with that roomchange
refactor. However, upon investigating how to fix it, I was running into
a weird interpolation issue due to scmmoveme, as well as the companion
spawning in the ground in "Very Good". And I was wondering why I or no
one else ended up running into them.
Well, as it turns out, scmmoveme ends up doing absolutely nothing. There
are only two instances where scmmoveme is used. The first is if you
respawn in "Very Good", and somehow have your scmprogress set to that
room. But that's impossible, because whenever you respawn, your
scmprogress is always set to the one after the room you respawn in. Even
if you respawned in the room previous to "Very Good" (which is "Don't
Get Ahead of Yourself!"), it still wouldn't work, since the logic always
kicks in when a gotoroom happens, and not only when a supercrewmate is
actually spawned. Since the scmprogress doesn't match, that case never
gets triggered, and we get to the second time scmmoveme is used, which
is in the catch-all case that always executes.
This second instance... also does nothing, because since we just
respawned, and our scmprogress got set to the room ahead of us, there is
no supercrewmate on screen. Then getscm() returns 0, and the player is
always indice 0, so the only thing we end up doing is setting the
player's x-position to their own x-position. Brilliant.
Anyway, this code results in interpolation issues and the supercrewmate
spawning in the ground on "Very Good" if you die, when my fix is
applied, because my fix moves this logic around to a different frame
order, and that actually ends up making scmmoveme no longer dead code.
So to recap: we have dead code, which looks like it does something, but
doesn't. But if you move it around in a certain way, it ends up having
harmful effects. One of the joys of working on this game...
It's also hilarious that it gets saved to the save file. Why? The only
time this variable is true, it is for literally less than a frame,
because it always gets set to false, because you always respawn using a
gotoroom whenever the supercrewmate dies, because you never respawn in
the same room as a supercrewmate, because Intermission 1 was
deliberately designed that way (else you'd keep continually dying since
the supercrewmate wouldn't move out of the way).
In the main game, if you press R during the trinket collection prompt
after collecting a trinket, AND you have never entered Comms Relay, and
you respawn in a different room, the trinket collection gamestate will
be interrupted, but you will still be left with the advance text prompt,
cutscene bars, and muted music.
The previous workaround to fix the music would be to mute and then
unmute the game, but due to the new music changes, this workaround
(which in and of itself is a bug) no longer works. Instead, the music
would have to be restarted by going into another zone on the map.
Having an advance text prompt outside of a cutscene results in the
player being unable to flip, but they can still move around left and
right.
Speedrunners previously used the no-Comms-Relay interrupting behavior to
skip certain trinket collection prompts entirely with a frame-perfect R
press, so I can't patch that out. Having an advance text prompt outside
of a cutscene is (ab)used in custom levels to intentionally prevent the
player from flipping, and furthermore, it's also used in credits warp
runs of the main game to increment the gamestate; so I cannot patch that
out. The ability to press R everywhere even during cutscenes was added
for good reason - to make it less likely that a softlock can happen - so
I don't want to revert it.
But I still think this is worth fixing because previously, the
punishment for missing the frame-perfect window late was simply not
skipping the trinket prompt (since the R-press would be ignored), but
now the punishment is basically having to reset because of the advance
text prompt.
I would usually handle this in gamestate 0, but awful custom levels
might want to intentionally interrupt the gamestate to do, I don't know,
something. No level does that so far, but I'd like to do the least
invasive thing.
So what I've done is made it so the effects of interruption are undone
if you press R and the gamestate is interrupted. This is handled in
mapclass::resetplayer().
This fixes the fact that the name of the singular type is plural, but
the name of the plural array is singular. Which has always annoyed me,
too. Also this makes it more clear that custom entities don't have much
to do with the editor.
That's what it is - it's an entity in a custom level. Not something to
do with the editor, necessarily. Like before, the name of the XML
element will remain the same.
That's what edlevelclass is... so that's what it should be named. (Also
removes that "ed", too, making this less coupled to the in-game editor.)
Unfortunately, for compatibility reasons, the name of the XML element
will still remain the same.
This is a pretty hefty commit! But essentially, I made a new editorclass
object, and moved all functions and variables that only get used in the
in-game level editor to that class. This cleanly demarcates which things
are in the editor and which things are just general custom level stuff.
Then I fixed up all the callers. I also fixed up some NO_CUSTOM_LEVELS
and NO_EDITOR ifdefs, too, in several places.
This accompanies the editor.cpp -> CustomLevels.cpp change; I'll be
splitting out the editor functions in the next commit. The name of the
include guard has been changed as well, but not anything else.
Originally this started as a "deduplicate a bunch of duplicated code in script commands" PR,
but as I was working on that, I discovered there's a lot more that needs to be done than
just deduplication.
Anything which needs a crewmate entity now calls `getcrewmanfromname(name)`, and anything which
just needs the crewmate's color calls `getcolorfromname(name)`. This was done to make sure that
everything works consistently and no copy/pasting is required. Next is the fallback; instead of
giving up and doing various things when it can't find a specific color, it now attempts to treat
the color name as an ID, and if it can't then it returns -1, where each individual command handles
that return value. This means we can keep around AEM -- a bug used in custom levels -- by not
doing anything with the return value if it's -1.
Also, for some reason, there were two `crewcolour` functions, so I stripped out the one in
entityclass and left (and modified) the one in the graphics class, since the graphics class also
has the `crewcolourreal` function.
The purpose of this variable was to keep track of if gamelogic() called
map.gotoroom() at any point during its execution. So map.gotoroom()
always unconditionally set it to true, and then gamelogic() would check
it later.
Well, there's no need to put that in a global variable and do it like
that! It makes it less clear when you do that.
So what I've done instead is made a temporary macro wrapper around
map.gotoroom() that also sets roomchange to true. I've also made it so
any attempt to use map.gotoroom() directly results in failure (and since
then using map.gotoroom() in the wrapper macro would also fail, I've had
to make a gotoroom wrapper function around map.gotoroom() so the wrapper
macro itself doesn't fail).
This is a temporary vector that only gets used in mapclass::gotoroom().
It's always guaranteed to be cleared, so it's safe to move it off.
I'm fine with using references here because, like, it's a C++ STL vector
anyway - when we switch away from the STL (which is a precondition for
moving to C), we'll be passing around raw pointers here instead, and
won't be using references here anyway.
This is a temporary variable that doesn't need to be on Game. It is
guaranteed to be initialized every time mapclass::gotoroom() gets
called, so it's safe to move it off.
Ever since tilesheets got expanded, custom levels could use as many
tiles as they wanted, as long as it fit under the 32-bit signed integer
limit.
Until 6c85fae339 happened and they were
reduced to 32,767 tiles.
So I'm being generous again and changing the type of the contents array
(in mapclass and editorclass) back to int. This won't affect the
existing tilemaps of the main game, they'll still stay short arrays. But
it means level makers can use 2 billion tiles once again.
The main game used a set of copy-pasted code to set the music of each
area. There WAS some redundancy built-in, but only three rooms in each
direction from the entrance of a zone.
Given this, it's completely possible for players to mismatch the music
of the area and level. In fact, it's easy to do it even on accident,
especially since 2.3 now lets you quicksave and quit during cutscenes.
Just play a cutscene that has Pause music, then quicksave, quit, and
reload. Also some other accidental ways that I've forgotten about.
To fix this, I've done what mapclass has and made an areamap. Except for
music. This map is the map of the track number of every single room,
except for three special cases: -1 for do nothing and don't change music
(usually because multiple different tracks can be played in this room),
-2 for Tower music (needs to be track 2 or 9 depending on Flip Mode),
and -3 for the start of Space Station 2 (track 1 in time trials, track 4
otherwise).
I've thoroughly tested this areamap by playing through the game and
entering every single room. Additionally I've also thoroughly tested all
special cases (entering the Ship through the teleporter or main
entrance, using the Ship's jukebox, the Tower in Flip Mode and regular
mode, and the start of Space Station 2 in time trial and in regular
mode).
Closes#449.
Similar to disabling the elephant flashiness, at least one
photosensitive person has told me the flashy color animation makes their
eyes kind of hurt a little bit. Also it screws up the compression really
badly when they record (especially the green noisy tiles!).
The colors will still cycle, but the individual animations within each
color will be completely static.
This can happen if you select an option in a menu that (A) returns to
the previous menu and (B) saves settings. If the settings save fails,
this will create another menu on the same frame that cycles the tower BG
after it's already been cycled for that frame. Examples are the slowdown
and glitchrunner menus.
I could fix this by creating a new function that copy-pastes all of
Game::savestatsandsettings_menu() except for the map.nexttowercolour()
at the end. But that's copy-pasting code.
Instead what I've done is added a variable to signal if the color has
already been cycled this frame, so we don't cycle it again. This also
covers cases of possible double-cycling in the future as well.
Previously, turning glitchrunner mode on essentially locked you to
emulating 2.0, and turning it off just meant normal 2.3 behavior. But
what if you wanted 2.2 behavior instead? Well, that's what I had to ask
when a TAS of mine would desync in 2.3 because of the two-frame delay
fix (glitchrunner off), but would also desync because of 2.0 warp lines
(glitchrunner on).
What I've done is made it so there are three states to glitchrunner mode
now: 2.0 (previously just the "on" state), 2.2 (previously a state you
couldn't use), and "off". Furthermore, I made it an enum, so in case
future versions of the game patch out more glitches, we can add them to
the enum (and the only other thing we have to update is a lookup table
in GlitchrunnerMode.c). Also, 2.2 glitches exist in 2.0, so you'll want
to use GlitchrunnerMode_less_than_or_equal() to check glitchrunner
version.
There's a bit of inconsistency with how long each color lasts for during
final stretch. Initially, each color lasts for 40 frames, but when you
enter either of the minitowers, the color switches to lasting for 15
frames only. This is because a final_colorframe of 1 makes it go for 40
frames, but a final_colorframe of 2 makes it go for 15 frames - and
final_colorframe gets set to 2 whenever you enter a minitower.
This seems like an oversight because (1) final_colorframe doesn't affect
anything inside the minitower, (2) final_colorframe doesn't get saved to
the save file and always gets set to 1 if your save file has
finalstretch set to true, so saving and reloading will set the colors
back to 40 frames each, and (3) final_colorframe doesn't get set back to
1 when leaving the minitowers.
Tower backgrounds have a bypos and bscroll. bypos is just the y-position
of the background, and bscroll is the amount of pixels to scroll the
background by on each frame, which is used to scroll it (if it's not
being redrawn) and for linear interpolation.
For the tower background (and not the title background), bypos is
map.ypos / 2, and bscroll is (map.ypos - map.oldypos) / 2. However,
usually bscroll gets assigned at the same time bypos is incremented or
decremented, so you never see that calculation explicitly - except in
the previous commit, where I worked out the calculation because the
change in y-position isn't a known constant.
Having to do all these calculations every time introduces the
possibility of errors where you forget to do it, or you do it wrongly.
But that's not even the worst; you could cause a linear interpolation
glitch if you decide to overwrite bscroll without taking into account
map.oldypos and map.ypos.
So that's why I'm adding a function that automatically updates the tower
background, using the values of map.oldypos and map.ypos, that is used
every time map.ypos is assigned. That way, we have to write less code,
you can be sure that there's no place where we forget to do the
calculations (or at least it will be glaringly obvious) or we do it
wrongly, and it plays nicely with linear interpolation. This also
replaces every instance where the manual calculations are done with the
new function.
This makes it easier to add bounds checks to all accesses of
map.explored. Also, all manually-written existing bounds checks have
been removed, because they're going to go into the new getters and
setters.
The getter is mapclass::isexplored() and the setter is
mapclass::setexplored().
This replaces all raw ed.level accesses with new setter and getter
funcs, which makes it easier to add bounds checks later. And I've also
removed all the manually-written bounds checks, since they will go into
the new getter and setter.
To get the room properties of a specific room, you use
editorclass::getroomprop(), which returns a pointer to the room
properties - then you just read off of that pointer. To set a room
property, you use editorclass::setroom<PROP>(), where <PROP> is the name
of the property. These are maintained using X macros to avoid
copy-pasting. editorclass::getroompropidx() is a helper function and
shouldn't be used directly.
Previously, with the wrong loop order, this kludge needed to exist so
entities in finalmode didn't have wrong colors for 1 frame when entering
a room. But now the loop order has been fixed, and so this kludge is no
longer needed.
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
This patch restores some 2.2 behavior, fixing a regression caused by the
refactor of properly using std::vectors.
In 2.2, the game allocated 200 items in obj.entities, but used a system
where each entity had an `active` attribute to signify if the entity
actually existed or not. When dealing with entities, you would have to
check this `active` flag, or else you'd be dealing with an entity that
didn't actually exist. (By the way, what I'm saying applies to blocks
and obj.blocks as well, except for some small differing details like the
game allocating 500 block slots versus obj.entities's 200.)
As a consequence, the game had to use a separate tracking variable,
obj.nentity, because obj.entities.size() would just report 200, instead
of the actual amount of entities. Needless to say, having to check for
`active` and use `obj.nentity` is a bit error-prone, and it's messier
than simply using the std::vector the way it was intended. Also, this
resulted in a hard limit of 200 entities, which custom level makers ran
into surprisingly quite often.
2.3 comes along, and removes the whole system. Now, std::vectors are
properly being used, and obj.entities.size() reports the actual number
of entities in the vector; you no longer have to check for `active` when
dealing with entities of any sort.
But there was one previous behavior of 2.2 that this system kind of
forgets about - namely, the ability to have holes in between entities.
You see, when an entity got disabled in 2.2 (which just meant turning
its `active` off), the indices of all other entities stayed the same;
the indice of the entity that got disabled stays there as a hole in the
array. But when an entity gets removed in 2.3 (previous to this patch),
the indices of every entity afterwards in the array get shifted down by
one. std::vector isn't really meant to be able to contain holes.
Do the indices of entities and blocks matter? Yes; they determine the
order in which entities and blocks get evaluated (the highest indice
gets evaluated first), and I had to fix some block evaluation order
stuff in previous PRs.
And in the case of entities, they matter hugely when using the
recently-discovered Arbitrary Entity Manipulation glitch (where crewmate
script commands are used on arbitrary entities by setting the `i`
attribute of `scriptclass` and passing invalid crewmate identifiers to
the commands). If you use Arbitrary Entity Manipulation after destroying
some entities, there is a chance that your script won't work between 2.2
and 2.3.
The indices also still determine the rendering order of entities
(highest indice gets drawn first, which means lowest indice gets drawn
in front of other entities). As an example: let's say we have the player
at 0, a gravity line at 1, and a checkpoint at 2; then we destroy the
gravity line and create a crewmate (let's do Violet).
If we're able to have holes, then after removing the gravity line, none
of the other indices shift. Then Violet will be created at indice 1, and
will be drawn in front of the checkpoint.
But if we can't have holes, then removing the gravity line results in
the indice of the checkpoint shifting down to indice 1. Then Violet is
created at indice 2, and gets drawn behind the checkpoint! This is a
clear illustration of changing the behavior that existed in 2.2.
However, I also don't want to go back to the `active` system of having
to check an attribute before operating on an entity. So... what do we
do to restore the holes?
Well, we don't need to have an `active` attribute, or modify any
existing code that operates on entities. Instead, we can just set the
attributes of the entities so that they naturally get ignored by
everything that comes into contact with it. For entities, we set their
invis to true, and their size, type, and rule to -1 (the game never uses
a size, type, or rule of -1 anywhere); for blocks, we set their type to
-1, and their width and height to 0.
obj.entities.size() will no longer necessarily equal the amount of
entities in the room; rather, it will be the amount of entity SLOTS that
have been allocated. But nothing that uses obj.entities.size() needs to
actually know the amount of entities; it's mostly used for iterating
over every entity in the vector.
Excess entity slots get cleaned up upon every call of
mapclass::gotoroom(), which will now deallocate entity slots starting
from the end until it hits a player, at which point it will switch to
disabling entity slots instead of removing them entirely.
The entclass::clear() and blockclass::clear() functions have been
restored because we need to call their initialization functions when
reusing a block/entity slot; it's possible to create an entity with an
invalid type number (it creates a glitchy Viridian), and without calling
the initialization function again, it would simply not create anything.
After this patch is applied, entity and block indices will be restored
to how they behaved in 2.2.
MSVC complains about these, doesn't seem like GCC does. These can be
safely removed because they're unreachable, and they always follow a
case-switch or similar that has a default case which this code is a
duplicate of anyway. (Unless it isn't, in which case all the better to
remove it, becausee otherwise it looks misleading or confusing to casual
glances at the code.)
This is a re-do of 942217f871 (#509), but
with a more conservative fix that only resets the player's newxp and
newyp when they respawn from a checkpoint or spawn in to the map.
Unlike the previous patch, if the player were to suddenly collide with a
conveyor or horizontally-moving platform during gameplay, their
y-position would revert back to the intended next y-position of the
previous frame. But this is the same behavior as before, I haven't ever
seen such a contrived situation come up, and this behavior is probably
more preferable for gameplay than actually going to the conveyor, so
it's fine.
I also decided to reset newxp here, and not just newyp, because while
resetting newyp seems to be enough, it's safer to also reset newxp (and
so future readers won't question why only newyp is reset but not newxp).
I tested this and it once again fixes the death loop issue from earlier,
while also still allowing for that Trench Warfare trick to be possible
(I tested it with the libTAS movie I mentioned in #606; it syncs fine).
There are no other known regressions resulting from this fix
(hopefully).
During 2.3 development, there's been a gradual shift to using SDL stdlib
functions instead of libc functions, but there are still some libc
functions (or the same libc function but from the STL) in the code.
Well, this patch replaces all the rest of them in one fell swoop.
SDL's stdlib can replace most of these, but its SDL_min() and SDL_max()
are inadequate - they aren't really functions, they're more like macros
with a nasty penchant for double-evaluation. So I just made my own
VVV_min() and VVV_max() functions and placed them in Maths.h instead,
then replaced all the previous usages of min(), max(), std::min(),
std::max(), SDL_min(), and SDL_max() with VVV_min() and VVV_max().
Additionally, there's no SDL_isxdigit(), so I just implemented my own
VVV_isxdigit().
SDL has SDL_malloc() and SDL_free(), but they have some refcounting
built in to them, so in order to use them with LodePNG, I have to
replace the malloc() and free() that LodePNG uses. Which isn't too hard,
I did it in a new file called ThirdPartyDeps.c, and LodePNG is now
compiled with the LODEPNG_NO_COMPILE_ALLOCATORS definition.
Lastly, I also refactored the awful strcpy() and strcat() usages in
PLATFORM_migrateSaveData() to use SDL_snprintf() instead. I know save
migration is getting axed in 2.4, but it still bothers me to have
something like that in the codebase otherwise.
Without further ado, here is the full list of functions that the
codebase now uses:
- SDL_strlcpy() instead of strcpy()
- SDL_strlcat() instead of strcat()
- SDL_snprintf() instead of sprintf(), strcpy(), or strcat() (see above)
- VVV_min() instead of min(), std::min(), or SDL_min()
- VVV_max() instead of max(), std::max(), or SDL_max()
- VVV_isxdigit() instead of isxdigit()
- SDL_strcmp() instead of strcmp()
- SDL_strcasecmp() instead of strcasecmp() or Win32 strcmpi()
- SDL_strstr() instead of strstr()
- SDL_strlen() instead of strlen()
- SDL_sscanf() instead of sscanf()
- SDL_getenv() instead of getenv()
- SDL_malloc() instead of malloc() (replacing in LodePNG as well)
- SDL_free() instead of free() (replacing in LodePNG as well)
These variables basically serve no purpose. map.customx and map.customy
are clearly never used. map.finalx and map.finaly, on the other hand,
are basically always game.roomx and game.roomy respectively if
map.finalmode is on, and if it's off, then they don't matter.
Also, there are some weird and redundant variable assignments going on
with these; most notably in map.gotoroom(), where rx/ry (local
variables) get assigned to finalx/finaly, then finalx/finaly get
assigned to game.roomx/game.roomy, then finalx/finaly get assigned to
rx/ry. If finalx/finaly made a difference, then there'd be no need to
assign finalx/finaly back to rx/ry. So it makes the code clearer to
remove these weird bits of code.
This fixes a bug where if you entered a tower before watching the
credits sequence, the credits sequence would have mismatched text and
background colors.
This bug happened because entering a tower modified the r/g/b attributes
of mapclass, and updated graphics.towerbg, without updating
graphics.titlebg too. Then gamecompleterender() uses the r/g/b
attributes of mapclass.
The solution is to put the r/g/b attributes on TowerBG instead. That
way, entering a tower will only modify the r/g/b attributes used to
render towers, and won't affect the r/g/b attributes used to render the
credits sequence.
Additionally, I also de-duplicated the case-switch that updated the
r/g/b attributes based off of the current colstate, because it got
copy-pasted twice, leading to three instances of one piece of code.