This boolean is assigned, and it is checked... but it's never assigned
to true, thus making it useless. I also checked 2.2 source and the same
thing happens there; to prevent any confusion, I'm removing this.
The config option has been removed. I'm going to implement something
that automatically shows and hides the mouse cursor whenever
appropriate, which is better than a config option.
This fixes a bug where quitting to the menu from command-line
playtesting with -playassets specified would always use those assets
when loading back in to any custom level. This also fixes loading in to
a custom level quicksave always using the command-line playtesting
arguments instead of using the actual quicksave.
It seems like for whatever reason that the frames portion of save files
is never read from, and always zeroed. Well, technically they get parsed
but the result is immediately discarded afterwards.
I see no reason to do this, so I'm removing these zeroes.
In 2.2 and previous, the game would call resetgameclock() every frame
for the last 30 frames of the time trial countdown in order to make sure
it gets reset. This was in a render function, and didn't get brought out
in 2.3, so 2.3 resets the game clock *while rendering*, which is kinda
bad and is an oversight on my part for not noticing.
Instead of doing that, just add a conditional to the timer so that it
won't tick during the time trial countdown. This fixes#699 even further
by making it so the time trial par can't even be lost during the
countdown, because the timer won't tick up - so you can never get a sad
squeak to play by pausing the game or unfocus-pausing it during the
countdown.
For some reason, resetgameclock() is only ever used in gamerender(), and
everywhere else just zeroes the clock manually. This is weird to me, so
I've made it so everywhere that zeroes the clock uses the
resetgameclock() function to do so.
This adds music and volume sliders to the audio options. To use the
sliders, you navigate to the given option, then press ACTION, and your
selection will be transferred to the slider. Pressing left or right will
move the slider accordingly. Then you can press ACTION to confirm the
volume is what you want and deselect it, or you can press Esc to cancel
the volume change, and it will revert to the previous volume; both
actions will write your settings to disk.
Most of this commit is just adding infrastructure to support having
sliders in menus (without copy-pasting code), which is a totally
completely new user interface that has never been used before in this
game. If we're going to be adding something new, I want to make sure
that it at least is done the RIGHT way.
Closes#706.
This adds <musicvolume> and <soundvolume> tags to unlock.vvv and
settings.vvv, so users' volume preferences will be persistent across
game sessions. This does not add the user interface to change them from
in-game; the next commit will do that.
When a text box in the script system (not the gamestate system) is
displayed onscreen and "- Press ACTION to advance text -" is up, the
game sets pausescript to true, so the script system won't blare past the
text box and keep executing. Then it also sets advancetext to true.
Crucially, these two variables are different, so if you have pausescript
true but advancetext false, then what happens?
Well, you get softlocked. There's no way to continue the script.
How is this possible? Well, you can teleport to the (0,0) teleporter
(the teleporter in the very top-left of the map) and regain control
during the teleporter animation. To do that, in 2.2 and below, you have
to press R at the same time you press Enter on the teleporter, or in 2.3
you can simply press R during the cutscene. Then once you teleport to
the room, it's really precise and a bit difficult (especially if
Viridian is invisible), but you can quickly walk over to the terminal in
that room and press Enter on it.
Then what will happen is the terminal script will run, but the
teleporter gamestate sequence will finish and turn advancetext off in
the middle of it. And then you're softlocked.
To fix this, just add a check so if we're in gamestate 0 and there's a
script running, but we have pausescript on and advancetext off, just
turn pausescript off so the game automatically advances the script.
This softlock was reported by Tzann on the VVVVVV speedrunning Discord.
You can skip the "You have found a shiny trinket!" cutscene. The
conditions are that this can only be done in the main game, in the main
dimension (no Polar Dimension), the checkpoint that you last touched
must not be in the same room as the trinket, and you have to have
skipped the Comms Relay cutscene. To do the skip, you press R on the
exact frame (or previous frame, if input delay is enabled) that Viridian
touches the trinket. Then, the gamestate will be immediately set to 0
(because of the gotoroom) and the cutscene will be skipped.
Speedrunners of the main game, well, run the main game already, the
only trinket in the Polar Dimension is not one you want to do a death
warp at, and they have a habit of automatically skipping over the Comms
Relay cutscene because they press R at the beginning of the run when
Viridian teleports to Welcome Aboard, to warp back to the Ship and so
they can leave rescuing Violet for later.
So someone reported softlocking themselves by doing the trinket text
skip in 2.3. The softlock is because they're stuck in a state where
completestop is true but can't advance to a state that turns it off. How
does this happen? It's because they pressed R too late and interrupted
the gamestate sequence. In 2.2 and previous, if you're in the gamestate
sequence then you can't press R at all, but 2.3 removes this restriction
(on account of aiming to prevent softlocks). So only on the very first
frame can you death warp and interrupt the gamestate sequence before it
happens at all.
Anyways to fix this, just turn completestop off automatically if we're
in gamestate 0 and there's no script running.
This softlock was reported by Euni on the VVVVVV speedrunning Discord.
So some people reported the levels list crashing when they loaded it.
But this wasn't reproducible every time. They didn't provide any
debugging information, so I had to use my backup plan: doing a full
audit of the code path taken for loading the levels list.
And then I found this. It turns out this was because I used a
LOAD_ARRAY_RENAME() macro on an std::vector. You can't do that because
you need to use push_back() to resize a vector, so the macro will end up
indexing into nothing, causing a segfault. However, this code path would
only be taken if you have an old levelstats.vvv, from 2.2 and previous -
which explains why it wasn't 100% reproducible. But now that I know you
need an old levelstats.vvv, this bug happens 100% of the time.
Anyways, to fix this, just ditch the macro and expand it manually, while
replacing the indexing with a proper usage of push_back().
This is an option for speedrunners whose muscle memory is precisely
trained and used to the 1-frame input delay that existed in 2.2 and
below. It is located in Game Options -> Advanced Options, and is off by
default.
To re-add the 1-frame input delay, we simply move the key.Poll() to the
start of the frame, instead of before an input function gets ran -
undoing what #535 did.
There is a frame ordering-sensitive issue here, where toggling
game.inputdelay at the wrong time could cause double-polling. However,
we only toggle it in an input function, which regardless is always
guaranteed to be ran after key.Poll() (it either happened at the start
of the frame or just before the input function got ran), so this is not
an issue. But, in case we ever need to toggle this variable in the
future, we can just use the defer callbacks system to defer the toggle
to the end of the frame - also added by #535.
Added at the request of Habeechee on the VVVVVV speedrunning Discord
server.
While I've decoupled fademode from gamemode starting, being faded out on
the title screen results in a black screen and you being unable to make
any input. So we'll need to store the current fademode in a temporary
variable when going to in-game options, then put it back when we return
to the pause menu. Yes, you can turn on glitchrunner mode during the
in-game options, and then immediately return to the pause menu to
instantly go back to the title screen; this is intended.
Due to frame ordering, putting the fademode back needs to be deferred to
the end of the frame to prevent a 1-frame flicker.
It's actually sufficient enough to do this temporary fademode storage to
fix the whole thing, but I also decided to decouple fademode and
gamemode starting just to be sure.
If an XML tag doesn't contain anything inside, pText will be NULL. If
that happens without being checked, then NULL will be passed to
SDL_strcmp(). SDL_strcmp() will either call libc strcmp() or use its own
implementation; both implementations will still dereference the NULL
without checking it.
This is undefined behavior, so I'm fixing it. The solution is to do what
is done with all other XML parsing functions, and to make sure pText
gets set to a safe empty string (which is just a pointer to a null
terminator) if it happens to be NULL.
PR #279 added game.gametimer solely for the editor ghosts feature. It
seems that whoever originally wrote it (Leo for the now-dead VVVVVV:
Community Edition, I believe) forgot that the game already had its own
timer, that they could use.
The game timer does increment on unfocus pause (whereas this doesn't),
but that's a separate issue, and it ought to not do that.
The background would change for 1 frame before sending you back to the
pause menu or editor settings. The map.nexttowercolour() call needs to
be deferred until the end of the frame.
The new loop order introduces a glitch where the menu would display
whichever menu was saved to kludge_ingametemp for 1 frame right as the
user returned to the pause menu. This happened because the
game.returntomenu() happens in titleinput(), which comes before
titlerender(). To fix this, we just need to defer it to the end of the
frame.
game.shouldreturntoeditor was added to fix a frame ordering issue that
was causing a bug where if you started playtesting in a room with a
horizontal/vertical warp background, and exited playtesting in a
different room that also had a horizontal/vertical warp background and
which was different, then the background of the room you exited in would
slowly scroll offscreen, when you re-entered the editor, instead of the
background consisting entirely of the actual background of the room.
Namely, the issue was that the game would render one more frame of
GAMEMODE after graphics.backgrounddrawn got set to false, and re-set it
to true, thus negating the background redraw, so the editor background
would be incorrect.
With defer callbacks, we can now just use a couple lines of code,
instead of having to add an extra kludge variable and putting handling
for it all over the code.
This ensures that if the player decides to toggle Flip Mode while one of
these text boxes is up, they won't be oriented improperly. Additionally,
it also de-duplicates a bunch of Flip Mode check code, which is also a
win.
The "Game Saved" text box, along with its associated telesave() call,
exists in both Game.cpp and Script.cpp, so one of them is the copy-paste
of the other. Unfortunately this copy-paste resulted in an inconsistency
where both of them don't check for the same things when deciding whether
or not the telesave should actually happen (this is why you don't
copy-paste, kids... it's scary!).
Either way, de-duplicating this now is less work for me later.
Every Level Complete sequence is the same copy-pasted thing, but with
minor changes. To make my work easier, I'm de-duplicating them so I have
less text boxes to change later, and less grind to grind.
These commented-out code blocks just get in the way of clarity when I'm
refactoring flipped textboxes created in the gamestate system. So I'm
getting rid of them. If we need them back, we always have Git history.
To do this, I've added Graphics::setbars(), to make sure
oldcutscenebarspos always gets assigned when cutscenebarspos is. This
fixes potential deltaframe rendering issues if these two mismatch.
While working on #535, I noticed that editormenuactionpress() still
didn't do the explicit void declaration. Then I ran `rg 'void.*\(\)'`
and found three other functions that I somehow missed in #628. Whoops.
Well, now they no longer are missed.
This is a small quality-of-life tweak that makes it so if you're in the
middle of editing a level, you don't have to save the level, exit to the
menu, change whatever setting you wanted, re-enter the editor, and type
in the level name, just to change one setting. This is the same as
adding Graphic Options and Game Options to the in-game pause menu,
except for the editor, too.
To do this, I'm reusing Game::returntopausemenu() (because all of its
callers are the same callers for returning to editor settings) and
renamed it to returntoingame(), then added a variable named
ingame_editormode to Game. When we're in the options menus but still in
the editor, BOTH ingame_titlemode and ingame_editormode will be true.
Since it only ever gets assigned from FILESYSTEM_getUserSaveDirectory(),
and that function returns a C string, and the variable is only ever read
from again, this doesn't need to be an std::string.
There's no need to create an std::string for every single element just
to see if it's a key name.
At least in libstdc++, there's an optimization where std::strings that
are 16 characters or less don't allocate on the heap, and instead use
the internal 16-char buffer directly in the control structure of the
std::string. However, it's not guaranteed that all the element names
we'll get will always be 16 chars or less, and in case the std::string
does end up allocating on the heap, we have no reason for it to allocate
on the heap; so we should just convert these string comparisons to C
strings instead.
Now that recreating the same menu keeps currentmenuoption, we can remove
all these superfluous assignments. This means repeating ourselves less;
in case the option numbers change in the future, we won't have to
remember to update these reassignments, too.
When recreating the same menu, there's basically no reason to reset the
currently-selected menu option. (Also, no need to worry about indexing
out of bounds or anything - the number gets checked while iterating over
all menu options; it's never used to actually index anything. At worst
there might be a 1-frame flicker as the bounds code in gameinput() kicks
in, but that shouldn't happen anyways.)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
This patch restores some 2.2 behavior, fixing a regression caused by the
refactor of properly using std::vectors.
In 2.2, the game allocated 200 items in obj.entities, but used a system
where each entity had an `active` attribute to signify if the entity
actually existed or not. When dealing with entities, you would have to
check this `active` flag, or else you'd be dealing with an entity that
didn't actually exist. (By the way, what I'm saying applies to blocks
and obj.blocks as well, except for some small differing details like the
game allocating 500 block slots versus obj.entities's 200.)
As a consequence, the game had to use a separate tracking variable,
obj.nentity, because obj.entities.size() would just report 200, instead
of the actual amount of entities. Needless to say, having to check for
`active` and use `obj.nentity` is a bit error-prone, and it's messier
than simply using the std::vector the way it was intended. Also, this
resulted in a hard limit of 200 entities, which custom level makers ran
into surprisingly quite often.
2.3 comes along, and removes the whole system. Now, std::vectors are
properly being used, and obj.entities.size() reports the actual number
of entities in the vector; you no longer have to check for `active` when
dealing with entities of any sort.
But there was one previous behavior of 2.2 that this system kind of
forgets about - namely, the ability to have holes in between entities.
You see, when an entity got disabled in 2.2 (which just meant turning
its `active` off), the indices of all other entities stayed the same;
the indice of the entity that got disabled stays there as a hole in the
array. But when an entity gets removed in 2.3 (previous to this patch),
the indices of every entity afterwards in the array get shifted down by
one. std::vector isn't really meant to be able to contain holes.
Do the indices of entities and blocks matter? Yes; they determine the
order in which entities and blocks get evaluated (the highest indice
gets evaluated first), and I had to fix some block evaluation order
stuff in previous PRs.
And in the case of entities, they matter hugely when using the
recently-discovered Arbitrary Entity Manipulation glitch (where crewmate
script commands are used on arbitrary entities by setting the `i`
attribute of `scriptclass` and passing invalid crewmate identifiers to
the commands). If you use Arbitrary Entity Manipulation after destroying
some entities, there is a chance that your script won't work between 2.2
and 2.3.
The indices also still determine the rendering order of entities
(highest indice gets drawn first, which means lowest indice gets drawn
in front of other entities). As an example: let's say we have the player
at 0, a gravity line at 1, and a checkpoint at 2; then we destroy the
gravity line and create a crewmate (let's do Violet).
If we're able to have holes, then after removing the gravity line, none
of the other indices shift. Then Violet will be created at indice 1, and
will be drawn in front of the checkpoint.
But if we can't have holes, then removing the gravity line results in
the indice of the checkpoint shifting down to indice 1. Then Violet is
created at indice 2, and gets drawn behind the checkpoint! This is a
clear illustration of changing the behavior that existed in 2.2.
However, I also don't want to go back to the `active` system of having
to check an attribute before operating on an entity. So... what do we
do to restore the holes?
Well, we don't need to have an `active` attribute, or modify any
existing code that operates on entities. Instead, we can just set the
attributes of the entities so that they naturally get ignored by
everything that comes into contact with it. For entities, we set their
invis to true, and their size, type, and rule to -1 (the game never uses
a size, type, or rule of -1 anywhere); for blocks, we set their type to
-1, and their width and height to 0.
obj.entities.size() will no longer necessarily equal the amount of
entities in the room; rather, it will be the amount of entity SLOTS that
have been allocated. But nothing that uses obj.entities.size() needs to
actually know the amount of entities; it's mostly used for iterating
over every entity in the vector.
Excess entity slots get cleaned up upon every call of
mapclass::gotoroom(), which will now deallocate entity slots starting
from the end until it hits a player, at which point it will switch to
disabling entity slots instead of removing them entirely.
The entclass::clear() and blockclass::clear() functions have been
restored because we need to call their initialization functions when
reusing a block/entity slot; it's possible to create an entity with an
invalid type number (it creates a glitchy Viridian), and without calling
the initialization function again, it would simply not create anything.
After this patch is applied, entity and block indices will be restored
to how they behaved in 2.2.
The current way "arrays" from XML files are loaded (before this commit
is applied) goes something like this:
1. Read the buffer of the contents of the tag using TinyXML-2.
2. Allocate a buffer on the heap of the same size, and copy the
existing buffer to it. (This is what the statement `std::string
TextString = pText;` does.)
3. For each delimiter in the heap-allocated buffer...
a. Allocate another buffer on the heap, and copy the characters from
the previous delimiter to the delimiter you just hit.
b. Then allocate the buffer AGAIN, to copy it into an std::vector.
4. Then re-allocate every single buffer YET AGAIN, because you need to
make a copy of the std::vector in split() to return it to the caller.
As you can see, the existing way uses a lot of memory allocations and
data marshalling, just to split some text.
The problem here is mostly making a temporary std::vector of split text,
before doing any actual useful work (most likely, putting it into an
array or ANOTHER std::vector - if the latter, then that's yet another
memory allocation on top of the memory allocation you already did; this
memory allocation is unavoidable, unlike the ones mentioned earlier,
which should be removed).
So I noticed that since we're iterating over the entire string once
(just to shove its contents into a temporary std::vector), and then
basically iterating over it again - why can't the whole thing just be
more immediate, and just be iterated over once?
So that's what I've done here. I've axed the split() function (both of
them, actually), and made next_split() and next_split_s().
next_split() will take an existing string and a starting index, and it
will find the next occurrence of the given delimiter in the string. Once
it does so, it will return the length from the previous starting index,
and modify your starting index as well. The price for immediateness is
that you're supposed to handle keeping the index of the previous
starting index around in order to be able to use the function; updating
it after each iteration is also your responsibility.
(By the way, next_split() doesn't use SDL_strchr(), because we can't get
the length of the substring for the last substring. We could handle this
special case specifically, but it'd be uglier; it also introduces
iterating over the last substring twice, when we only need to do it
once.)
next_split_s() does the same thing as next_split(), except it will copy
the resulting substring into a buffer that you provide (along with its
size). Useful if you don't particularly care about the length of the
substring.
All callers have been updated accordingly. This new system does not make
ANY heap allocations at all; at worst, it allocates a temporary buffer
on the stack, but that's only if you use next_split_s(); plus, it'd be a
fixed-size buffer, and stack allocations are negligible anyway.
This improves performance when loading any sort of XML file, especially
loading custom levels - which, on my system at least, I can noticeably
tell (there's less of a freeze when I load in to a custom level with
lots of scripts). It also decreases memory usage, because the heap isn't
being used just to iterate over some delimiters when XML files are
loaded.
Instead of checking the length() of an std::string, just check if
pText[0] is equal to '\0'.
This will have to be done anyway, because I'm going to get rid of the
std::string allocation here, and I noticed this inefficiency in the
indentation, so I'm going to remove it.
The actual unindent will be done in the next commit.
This now means every XML array loading is done with common,
re-duplicated code. The only exceptions to this are special cases other
than the the majority of cases; the majority being a simple matter of
reading an array of integers and putting it into another array.
Seems like the only reason I hadn't caught the <customlevelscore> tag
until now was because I was focused on de-duplicating all the array
loads in Game::loadstats() and below, forgetting about
Game::loadcustomlevelstats().
In order to be able to use the LOAD_ARRAY() and LOAD_ARRAY_RENAME()
macros in Game::loadcustomlevelstats(), they have to be moved to earlier
in the file.
Valgrind reported this.
The error here is that the buffer here is only guaranteed to be
initialized up until (and including) the null-terminator, by
SDL_snprintf(). Iterating over the entire allocated buffer is bad and I
should feel bad as the girl who wrote this code; doing that reads
uninitialized memory and passes it to SDL_tolower().
As a bonus, the iterator increment is now a preincrement instead of a
postincrement.
This does the same thing as the last commit, but for No Death Mode
instead of Time Trials. Whenever you die in No Death Mode, or complete
it, all the relevant variables get copied to variables prefixed with
'ndmresult' that never get reset by script.hardreset(), and these
variables are what titlerender() use, instead of the "live" ones.
This makes it so when a Time Trial gets completed, all the relevant
variables get copied onto variables prefixed with 'timetrialresult',
which never get reset by script.hardreset(). Then titlerender() will use
those variables accordingly.