2020-01-01 21:29:24 +01:00
|
|
|
#ifndef ENTITY_H
|
|
|
|
#define ENTITY_H
|
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
#include <SDL.h>
|
2020-07-19 21:43:29 +02:00
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
2020-01-01 21:29:24 +01:00
|
|
|
#include "Maths.h"
|
|
|
|
#include "Ent.h"
|
|
|
|
#include "BlockV.h"
|
2020-07-19 21:05:41 +02:00
|
|
|
#include "Game.h"
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
BLOCK = 0,
|
|
|
|
TRIGGER = 1,
|
|
|
|
DAMAGE = 2,
|
|
|
|
DIRECTIONAL = 3,
|
|
|
|
SAFE = 4,
|
|
|
|
ACTIVITY = 5
|
|
|
|
};
|
|
|
|
|
|
|
|
class entityclass
|
|
|
|
{
|
|
|
|
public:
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void init(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void resetallflags(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void fatal_top(void)
|
2020-01-01 21:29:24 +01:00
|
|
|
{
|
|
|
|
createblock(DAMAGE, -8, -8, 384, 16);
|
|
|
|
}
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void fatal_bottom(void)
|
2020-01-01 21:29:24 +01:00
|
|
|
{
|
|
|
|
createblock(DAMAGE, -8, 224, 384, 16);
|
|
|
|
}
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void fatal_left(void)
|
2020-01-01 21:29:24 +01:00
|
|
|
{
|
|
|
|
createblock(DAMAGE, -8, -8, 16, 260);
|
|
|
|
}
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void fatal_right(void)
|
2020-01-01 21:29:24 +01:00
|
|
|
{
|
|
|
|
createblock(DAMAGE, 312, -8, 16, 260);
|
|
|
|
}
|
|
|
|
|
|
|
|
int swncolour(int t );
|
|
|
|
|
|
|
|
void swnenemiescol(int t);
|
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
void gravcreate(int ypos, int dir, int xoff = 0, int yoff = 0);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
void generateswnwave(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-07-10 08:01:13 +02:00
|
|
|
void createblock(int t, int xp, int yp, int w, int h, int trig = 0, const std::string& script = "");
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Fix entity and block indices after destroying them
This patch restores some 2.2 behavior, fixing a regression caused by the
refactor of properly using std::vectors.
In 2.2, the game allocated 200 items in obj.entities, but used a system
where each entity had an `active` attribute to signify if the entity
actually existed or not. When dealing with entities, you would have to
check this `active` flag, or else you'd be dealing with an entity that
didn't actually exist. (By the way, what I'm saying applies to blocks
and obj.blocks as well, except for some small differing details like the
game allocating 500 block slots versus obj.entities's 200.)
As a consequence, the game had to use a separate tracking variable,
obj.nentity, because obj.entities.size() would just report 200, instead
of the actual amount of entities. Needless to say, having to check for
`active` and use `obj.nentity` is a bit error-prone, and it's messier
than simply using the std::vector the way it was intended. Also, this
resulted in a hard limit of 200 entities, which custom level makers ran
into surprisingly quite often.
2.3 comes along, and removes the whole system. Now, std::vectors are
properly being used, and obj.entities.size() reports the actual number
of entities in the vector; you no longer have to check for `active` when
dealing with entities of any sort.
But there was one previous behavior of 2.2 that this system kind of
forgets about - namely, the ability to have holes in between entities.
You see, when an entity got disabled in 2.2 (which just meant turning
its `active` off), the indices of all other entities stayed the same;
the indice of the entity that got disabled stays there as a hole in the
array. But when an entity gets removed in 2.3 (previous to this patch),
the indices of every entity afterwards in the array get shifted down by
one. std::vector isn't really meant to be able to contain holes.
Do the indices of entities and blocks matter? Yes; they determine the
order in which entities and blocks get evaluated (the highest indice
gets evaluated first), and I had to fix some block evaluation order
stuff in previous PRs.
And in the case of entities, they matter hugely when using the
recently-discovered Arbitrary Entity Manipulation glitch (where crewmate
script commands are used on arbitrary entities by setting the `i`
attribute of `scriptclass` and passing invalid crewmate identifiers to
the commands). If you use Arbitrary Entity Manipulation after destroying
some entities, there is a chance that your script won't work between 2.2
and 2.3.
The indices also still determine the rendering order of entities
(highest indice gets drawn first, which means lowest indice gets drawn
in front of other entities). As an example: let's say we have the player
at 0, a gravity line at 1, and a checkpoint at 2; then we destroy the
gravity line and create a crewmate (let's do Violet).
If we're able to have holes, then after removing the gravity line, none
of the other indices shift. Then Violet will be created at indice 1, and
will be drawn in front of the checkpoint.
But if we can't have holes, then removing the gravity line results in
the indice of the checkpoint shifting down to indice 1. Then Violet is
created at indice 2, and gets drawn behind the checkpoint! This is a
clear illustration of changing the behavior that existed in 2.2.
However, I also don't want to go back to the `active` system of having
to check an attribute before operating on an entity. So... what do we
do to restore the holes?
Well, we don't need to have an `active` attribute, or modify any
existing code that operates on entities. Instead, we can just set the
attributes of the entities so that they naturally get ignored by
everything that comes into contact with it. For entities, we set their
invis to true, and their size, type, and rule to -1 (the game never uses
a size, type, or rule of -1 anywhere); for blocks, we set their type to
-1, and their width and height to 0.
obj.entities.size() will no longer necessarily equal the amount of
entities in the room; rather, it will be the amount of entity SLOTS that
have been allocated. But nothing that uses obj.entities.size() needs to
actually know the amount of entities; it's mostly used for iterating
over every entity in the vector.
Excess entity slots get cleaned up upon every call of
mapclass::gotoroom(), which will now deallocate entity slots starting
from the end until it hits a player, at which point it will switch to
disabling entity slots instead of removing them entirely.
The entclass::clear() and blockclass::clear() functions have been
restored because we need to call their initialization functions when
reusing a block/entity slot; it's possible to create an entity with an
invalid type number (it creates a glitchy Viridian), and without calling
the initialization function again, it would simply not create anything.
After this patch is applied, entity and block indices will be restored
to how they behaved in 2.2.
2020-12-27 07:11:34 +01:00
|
|
|
bool disableentity(int t);
|
2020-04-03 22:03:02 +02:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void removeallblocks(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Fix entity and block indices after destroying them
This patch restores some 2.2 behavior, fixing a regression caused by the
refactor of properly using std::vectors.
In 2.2, the game allocated 200 items in obj.entities, but used a system
where each entity had an `active` attribute to signify if the entity
actually existed or not. When dealing with entities, you would have to
check this `active` flag, or else you'd be dealing with an entity that
didn't actually exist. (By the way, what I'm saying applies to blocks
and obj.blocks as well, except for some small differing details like the
game allocating 500 block slots versus obj.entities's 200.)
As a consequence, the game had to use a separate tracking variable,
obj.nentity, because obj.entities.size() would just report 200, instead
of the actual amount of entities. Needless to say, having to check for
`active` and use `obj.nentity` is a bit error-prone, and it's messier
than simply using the std::vector the way it was intended. Also, this
resulted in a hard limit of 200 entities, which custom level makers ran
into surprisingly quite often.
2.3 comes along, and removes the whole system. Now, std::vectors are
properly being used, and obj.entities.size() reports the actual number
of entities in the vector; you no longer have to check for `active` when
dealing with entities of any sort.
But there was one previous behavior of 2.2 that this system kind of
forgets about - namely, the ability to have holes in between entities.
You see, when an entity got disabled in 2.2 (which just meant turning
its `active` off), the indices of all other entities stayed the same;
the indice of the entity that got disabled stays there as a hole in the
array. But when an entity gets removed in 2.3 (previous to this patch),
the indices of every entity afterwards in the array get shifted down by
one. std::vector isn't really meant to be able to contain holes.
Do the indices of entities and blocks matter? Yes; they determine the
order in which entities and blocks get evaluated (the highest indice
gets evaluated first), and I had to fix some block evaluation order
stuff in previous PRs.
And in the case of entities, they matter hugely when using the
recently-discovered Arbitrary Entity Manipulation glitch (where crewmate
script commands are used on arbitrary entities by setting the `i`
attribute of `scriptclass` and passing invalid crewmate identifiers to
the commands). If you use Arbitrary Entity Manipulation after destroying
some entities, there is a chance that your script won't work between 2.2
and 2.3.
The indices also still determine the rendering order of entities
(highest indice gets drawn first, which means lowest indice gets drawn
in front of other entities). As an example: let's say we have the player
at 0, a gravity line at 1, and a checkpoint at 2; then we destroy the
gravity line and create a crewmate (let's do Violet).
If we're able to have holes, then after removing the gravity line, none
of the other indices shift. Then Violet will be created at indice 1, and
will be drawn in front of the checkpoint.
But if we can't have holes, then removing the gravity line results in
the indice of the checkpoint shifting down to indice 1. Then Violet is
created at indice 2, and gets drawn behind the checkpoint! This is a
clear illustration of changing the behavior that existed in 2.2.
However, I also don't want to go back to the `active` system of having
to check an attribute before operating on an entity. So... what do we
do to restore the holes?
Well, we don't need to have an `active` attribute, or modify any
existing code that operates on entities. Instead, we can just set the
attributes of the entities so that they naturally get ignored by
everything that comes into contact with it. For entities, we set their
invis to true, and their size, type, and rule to -1 (the game never uses
a size, type, or rule of -1 anywhere); for blocks, we set their type to
-1, and their width and height to 0.
obj.entities.size() will no longer necessarily equal the amount of
entities in the room; rather, it will be the amount of entity SLOTS that
have been allocated. But nothing that uses obj.entities.size() needs to
actually know the amount of entities; it's mostly used for iterating
over every entity in the vector.
Excess entity slots get cleaned up upon every call of
mapclass::gotoroom(), which will now deallocate entity slots starting
from the end until it hits a player, at which point it will switch to
disabling entity slots instead of removing them entirely.
The entclass::clear() and blockclass::clear() functions have been
restored because we need to call their initialization functions when
reusing a block/entity slot; it's possible to create an entity with an
invalid type number (it creates a glitchy Viridian), and without calling
the initialization function again, it would simply not create anything.
After this patch is applied, entity and block indices will be restored
to how they behaved in 2.2.
2020-12-27 07:11:34 +01:00
|
|
|
void disableblock(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Fix entity and block indices after destroying them
This patch restores some 2.2 behavior, fixing a regression caused by the
refactor of properly using std::vectors.
In 2.2, the game allocated 200 items in obj.entities, but used a system
where each entity had an `active` attribute to signify if the entity
actually existed or not. When dealing with entities, you would have to
check this `active` flag, or else you'd be dealing with an entity that
didn't actually exist. (By the way, what I'm saying applies to blocks
and obj.blocks as well, except for some small differing details like the
game allocating 500 block slots versus obj.entities's 200.)
As a consequence, the game had to use a separate tracking variable,
obj.nentity, because obj.entities.size() would just report 200, instead
of the actual amount of entities. Needless to say, having to check for
`active` and use `obj.nentity` is a bit error-prone, and it's messier
than simply using the std::vector the way it was intended. Also, this
resulted in a hard limit of 200 entities, which custom level makers ran
into surprisingly quite often.
2.3 comes along, and removes the whole system. Now, std::vectors are
properly being used, and obj.entities.size() reports the actual number
of entities in the vector; you no longer have to check for `active` when
dealing with entities of any sort.
But there was one previous behavior of 2.2 that this system kind of
forgets about - namely, the ability to have holes in between entities.
You see, when an entity got disabled in 2.2 (which just meant turning
its `active` off), the indices of all other entities stayed the same;
the indice of the entity that got disabled stays there as a hole in the
array. But when an entity gets removed in 2.3 (previous to this patch),
the indices of every entity afterwards in the array get shifted down by
one. std::vector isn't really meant to be able to contain holes.
Do the indices of entities and blocks matter? Yes; they determine the
order in which entities and blocks get evaluated (the highest indice
gets evaluated first), and I had to fix some block evaluation order
stuff in previous PRs.
And in the case of entities, they matter hugely when using the
recently-discovered Arbitrary Entity Manipulation glitch (where crewmate
script commands are used on arbitrary entities by setting the `i`
attribute of `scriptclass` and passing invalid crewmate identifiers to
the commands). If you use Arbitrary Entity Manipulation after destroying
some entities, there is a chance that your script won't work between 2.2
and 2.3.
The indices also still determine the rendering order of entities
(highest indice gets drawn first, which means lowest indice gets drawn
in front of other entities). As an example: let's say we have the player
at 0, a gravity line at 1, and a checkpoint at 2; then we destroy the
gravity line and create a crewmate (let's do Violet).
If we're able to have holes, then after removing the gravity line, none
of the other indices shift. Then Violet will be created at indice 1, and
will be drawn in front of the checkpoint.
But if we can't have holes, then removing the gravity line results in
the indice of the checkpoint shifting down to indice 1. Then Violet is
created at indice 2, and gets drawn behind the checkpoint! This is a
clear illustration of changing the behavior that existed in 2.2.
However, I also don't want to go back to the `active` system of having
to check an attribute before operating on an entity. So... what do we
do to restore the holes?
Well, we don't need to have an `active` attribute, or modify any
existing code that operates on entities. Instead, we can just set the
attributes of the entities so that they naturally get ignored by
everything that comes into contact with it. For entities, we set their
invis to true, and their size, type, and rule to -1 (the game never uses
a size, type, or rule of -1 anywhere); for blocks, we set their type to
-1, and their width and height to 0.
obj.entities.size() will no longer necessarily equal the amount of
entities in the room; rather, it will be the amount of entity SLOTS that
have been allocated. But nothing that uses obj.entities.size() needs to
actually know the amount of entities; it's mostly used for iterating
over every entity in the vector.
Excess entity slots get cleaned up upon every call of
mapclass::gotoroom(), which will now deallocate entity slots starting
from the end until it hits a player, at which point it will switch to
disabling entity slots instead of removing them entirely.
The entclass::clear() and blockclass::clear() functions have been
restored because we need to call their initialization functions when
reusing a block/entity slot; it's possible to create an entity with an
invalid type number (it creates a glitchy Viridian), and without calling
the initialization function again, it would simply not create anything.
After this patch is applied, entity and block indices will be restored
to how they behaved in 2.2.
2020-12-27 07:11:34 +01:00
|
|
|
void disableblockat(int x, int y);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-10-10 02:04:03 +02:00
|
|
|
void moveblockto(int x1, int y1, int x2, int y2, int w, int h);
|
|
|
|
|
2020-01-01 21:29:24 +01:00
|
|
|
void removetrigger(int t);
|
|
|
|
|
|
|
|
void copylinecross(int t);
|
|
|
|
|
|
|
|
void revertlinecross(int t, int s);
|
|
|
|
|
|
|
|
bool gridmatch(int p1, int p2, int p3, int p4, int p11, int p21, int p31, int p41);
|
|
|
|
|
|
|
|
int crewcolour(int t);
|
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
void createentity(float xp, float yp, int t, float vx = 0, float vy = 0,
|
2020-01-01 21:29:24 +01:00
|
|
|
int p1 = 0, int p2 = 0, int p3 = 320, int p4 = 240 );
|
|
|
|
|
Prevent updating an entity if updateentities() removed it
Otherwise, this would result in the game updating an entity twice, which
isn't good. This is most noticeable in the Gravitron, where many
Gravitron squares are created and destroyed at a time, and it's
especially noticeable during the part near the end of the Gravitron
where the pattern is two Gravitron squares, one at the top and bottom,
and then two Gravitron squares in the middle afterwards. The timing is
just right such that the top one of the two middle ones would be
misaligned with the bottom one of the two when a Gravitron square gets
outside the screen.
To do this, I changed entityclass::updateentities() into a bool, and
made every single caller check its return value. I only needed to do
this for the ones preceding updateentitylogic() and
entitymapcollision(), but I wanted to play it safe and be defensive, so
I did it for the disappearing platform kludge, as well as the
updateentities() within the updateentities() function.
2020-05-05 22:49:12 +02:00
|
|
|
bool updateentities(int i);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
void animateentities(int i);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
int getcompanion(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
int getplayer(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
int getscm(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
int getlineat(int t);
|
|
|
|
|
|
|
|
int getcrewman(int t);
|
|
|
|
int getcustomcrewman(int t);
|
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
int getteleporter(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
bool entitycollide(int a, int b);
|
|
|
|
|
2020-09-06 02:23:09 +02:00
|
|
|
bool checkdamage(bool scm = false);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-07-10 08:20:03 +02:00
|
|
|
int checktrigger(int* block_idx);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
int checkactivity(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
int getgridpoint(int t);
|
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
bool checkplatform(const SDL_Rect& temprect, int* px, int* py);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
bool checkblocks(const SDL_Rect& temprect, const float dx, const float dy, const float dr, const bool skipdirblocks);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
bool checktowerspikes(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
bool checkwall(const SDL_Rect& temprect, const float dx, const float dy, const float dr, const bool skipblocks, const bool skipdirblocks);
|
|
|
|
bool checkwall(const SDL_Rect& temprect);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
float hplatformat(const int px, const int py);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
int yline(int a, int b);
|
|
|
|
|
|
|
|
bool entityhlinecollide(int t, int l);
|
|
|
|
|
|
|
|
bool entityvlinecollide(int t, int l);
|
2020-04-02 21:41:33 +02:00
|
|
|
|
2020-04-02 22:42:50 +02:00
|
|
|
bool entitywarphlinecollide(int t, int l);
|
|
|
|
bool entitywarpvlinecollide(int t, int l);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-04-02 22:42:50 +02:00
|
|
|
void customwarplinecheck(int i);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
float entitycollideplatformroof(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
float entitycollideplatformfloor(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
bool entitycollidefloor(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
bool entitycollideroof(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
bool testwallsx(int t, int tx, int ty, const bool skipdirblocks);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-04-02 22:42:50 +02:00
|
|
|
bool testwallsy(int t, float tx, float ty);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
void applyfriction(int t, float xrate, float yrate);
|
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
void updateentitylogic(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
|
2020-03-31 02:46:36 +02:00
|
|
|
void entitymapcollision(int t);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-09-06 02:25:49 +02:00
|
|
|
void movingplatformfix(int t, int j);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
Explicitly declare void for all void parameter functions (#628)
Apparently in C, if you have `void test();`, it's completely okay to do
`test(2);`. The function will take in the argument, but just discard it
and throw it away. It's like a trash can, and a rude one at that. If you
declare it like `void test(void);`, this is prevented.
This is not a problem in C++ - doing `void test();` and `test(2);` is
guaranteed to result in a compile error (this also means that right now,
at least in all `.cpp` files, nobody is ever calling a void parameter
function with arguments and having their arguments be thrown away).
However, we may not be using C++ in the future, so I just want to lay
down the precedent that if a function takes in no arguments, you must
explicitly declare it as such.
I would've added `-Wstrict-prototypes`, but it produces an annoying
warning message saying it doesn't work in C++ mode if you're compiling
in C++ mode. So it can be added later.
2021-02-25 23:23:59 +01:00
|
|
|
void entitycollisioncheck(void);
|
2020-01-01 21:29:24 +01:00
|
|
|
|
2020-09-06 02:35:44 +02:00
|
|
|
void collisioncheck(int i, int j, bool scm = false);
|
|
|
|
|
2020-09-06 02:38:38 +02:00
|
|
|
void stuckprevention(int t);
|
|
|
|
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
std::vector<entclass> entities;
|
|
|
|
|
|
|
|
std::vector<entclass> linecrosskludge;
|
|
|
|
|
Move all temporary variables off of entityclass
This is a refactor that simply moves all temporary variables off of
entityclass, and makes it so they are no longer global variables. This
makes the resulting code easier to understand as it is less entangled
with global state.
These attributes were:
- colpoint1
- colpoint2
- tempx
- tempy
- tempw
- temph
- temp
- temp2
- tpx1
- tpy1
- tpx2
- tpy2
- temprect
- temprect2
- x (actually unused)
- dx
- dy
- dr
- px
- py
- linetemp
- activetrigger
- skipblocks
- skipdirblocks
Most of these attributes were assigned before any of the times they were
used, so it's easy to prove that ungloballing them won't change any
behaviors. However, dx, dy, dr, and skipblocks are a bit more tricky to
analyze. They relate to blocks, with dx, dy, and dr more specifically
relating to one-way tiles. So after some testing with the quirks of
one-way tiles, it seems that the jankiness of one-way tiles haven't
changed at all, either.
Unfortunately, the attribute k is clearly used without being assigned
beforehand, so I can't move it off of entityclass. It's the same story
with the attribute k that Graphics has, too.
2020-09-26 21:38:57 +02:00
|
|
|
int k;
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
|
|
|
|
std::vector<blockclass> blocks;
|
2020-07-03 03:22:19 +02:00
|
|
|
bool flags[100];
|
2020-07-03 04:17:32 +02:00
|
|
|
bool collect[100];
|
|
|
|
bool customcollect[100];
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
int platformtile;
|
|
|
|
bool vertplatforms, horplatforms;
|
|
|
|
|
|
|
|
// :(
|
|
|
|
bool nearelephant, upsetmode;
|
|
|
|
int upset;
|
|
|
|
|
|
|
|
//Trophy Text
|
|
|
|
int trophytext, trophytype;
|
2020-04-30 01:54:36 +02:00
|
|
|
int oldtrophytext;
|
2020-01-01 21:29:24 +01:00
|
|
|
|
|
|
|
//Secret lab scripts
|
|
|
|
int altstates;
|
|
|
|
|
|
|
|
//Custom stuff
|
|
|
|
int customenemy;
|
|
|
|
int customplatformtile;
|
|
|
|
bool customwarpmode, customwarpmodevon, customwarpmodehon;
|
|
|
|
std::string customscript;
|
2020-07-03 03:10:52 +02:00
|
|
|
bool customcrewmoods[Game::numcrew];
|
2020-01-01 21:29:24 +01:00
|
|
|
};
|
|
|
|
|
2020-09-28 04:15:06 +02:00
|
|
|
#ifndef OBJ_DEFINITION
|
2020-02-01 00:53:29 +01:00
|
|
|
extern entityclass obj;
|
2020-09-28 04:15:06 +02:00
|
|
|
#endif
|
2020-02-01 00:53:29 +01:00
|
|
|
|
2020-01-01 21:29:24 +01:00
|
|
|
#endif /* ENTITY_H */
|