Move the third figure in the research project nearer to the place where it is references.

This commit is contained in:
Sergiu Ivanov 2015-12-10 11:07:09 +01:00
parent 306d9c644f
commit a608cf8212

View file

@ -903,7 +903,20 @@ basiques. (La monographie~\cite{Adamek04} peut servir de référence.)
En plus d'être très générale, la terminologie de la théorie des
catégories admet des intuitions graphiques naturelles.
\begin{figure}[b]
Malgré sa généralité, le langage des catégories permet de construire
certains objets non-triviaux. Par exemple, la figure~\ref{fig:prod}
défini l'objet produit $X_1\times X_2$ pour des objets $X_1$ et $X_2$
d'une catégorie quelconque. Dans la catégorie des ensembles, le
produit correspond au produit cartésien, dans la catégorie des groupes
le produit correspond au produit direct, etc. La figure~\ref{fig:prod}
définit le produit $X_1\times X_2$ comme un objet avec deux flèches
$\pi_1$ et $\pi_2$ qui vont vers $X_1$ et $X_2$ respectivement, tel
que si l'on prend n'importe quel autre objet $Y$ avec deux flèches $f_1$
et $f_2$ vers $X_1$ et $X_2$, il existe une seule flèche de $Y$ vers
$X_1\times X_2$ telle que $\pi_1\circ f = f_1$ et $\pi_2 \circ f =
f_2$ (le diagramme est dit commutatif dans ce cas).
\begin{figure}[h]
\centering
\begin{tikzpicture}[node distance=9mm]
\node (y) {$Y$};
@ -921,19 +934,6 @@ catégories admet des intuitions graphiques naturelles.
\label{fig:prod}
\end{figure}
Malgré sa généralité, le langage des catégories permet de construire
certains objets non-triviaux. Par exemple, la figure~\ref{fig:prod}
défini l'objet produit $X_1\times X_2$ pour des objets $X_1$ et $X_2$
d'une catégorie quelconque. Dans la catégorie des ensembles, le
produit correspond au produit cartésien, dans la catégorie des groupes
le produit correspond au produit direct, etc. La figure~\ref{fig:prod}
définit le produit $X_1\times X_2$ comme un objet avec deux flèches
$\pi_1$ et $\pi_2$ qui vont vers $X_1$ et $X_2$ respectivement, tel
que si l'on prend n'importe quel autre objet $Y$ avec deux flèches $f_1$
et $f_2$ vers $X_1$ et $X_2$, il existe une seule flèche de $Y$ vers
$X_1\times X_2$ telle que $\pi_1\circ f = f_1$ et $\pi_2 \circ f =
f_2$ (le diagramme est dit commutatif dans ce cas).
Il existe d'autres façons de construire des objets composés qui, grâce
à la généralité des catégories, pourraient être appliquées à des
modèles très différents. L'avantage de l'approche catégorielle par