1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-24 17:55:02 +01:00
Haskell bindings for TensorFlow
Find a file
2017-01-16 20:44:45 -08:00
ci_build Updated TensorFlow. (#58) 2017-01-01 09:53:00 -08:00
docker Resolve #30 by using nightly. (#32) 2016-11-15 16:42:52 -08:00
docs/haddock Update haddocks. (#46) 2016-11-23 10:55:35 -08:00
google-shim Initial commit 2016-10-24 19:26:42 +00:00
tensorflow Support fetching storable vectors + use them in benchmark (#50) 2016-12-14 18:53:06 -08:00
tensorflow-core-ops Blacklist some more ops. (#62) 2017-01-15 11:21:09 -08:00
tensorflow-mnist Support fetching storable vectors + use them in benchmark (#50) 2016-12-14 18:53:06 -08:00
tensorflow-mnist-input-data Initial commit 2016-10-24 19:26:42 +00:00
tensorflow-nn Update type constraints to work around a ghc-8 bug. (#47) 2016-11-28 21:15:09 -08:00
tensorflow-opgen Support type attributes that aren't used by an input/output. (#51) 2016-12-15 11:52:48 -08:00
tensorflow-ops Add example to README + make haddock link more prominent (#60) 2017-01-16 20:44:45 -08:00
tensorflow-proto Updated TensorFlow. (#58) 2017-01-01 09:53:00 -08:00
tensorflow-queue Support fetching storable vectors + use them in benchmark (#50) 2016-12-14 18:53:06 -08:00
tensorflow-test Make code --pedantic (#35) 2016-11-18 10:42:02 -08:00
third_party Blacklist some more ops. (#62) 2017-01-15 11:21:09 -08:00
tools Haddock (#3) 2016-10-25 12:43:06 -07:00
.gitignore Optimize fetching (#27) 2016-11-17 10:41:49 -08:00
.gitmodules Initial commit 2016-10-24 19:26:42 +00:00
CONTRIBUTING.md Initial commit 2016-10-24 19:26:42 +00:00
LICENSE Initial commit 2016-10-24 19:26:42 +00:00
README.md Add example to README + make haddock link more prominent (#60) 2017-01-16 20:44:45 -08:00
stack.yaml test case to show can't calculate grad for embedding (and associated fix) (#23) 2016-11-17 13:54:36 -08:00

Build Status

The tensorflow-haskell package provides Haskell bindings to TensorFlow.

This is not an official Google product.

Documentation

https://tensorflow.github.io/haskell/haddock/

TensorFlow.Core is a good place to start.

Examples

Neural network model for the MNIST dataset: code

Toy example of a linear regression model (full code):

import Control.Monad (replicateM, replicateM_, zipWithM)
import System.Random (randomIO)
import Test.HUnit (assertBool)

import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF

main :: IO ()
main = do
    -- Generate data where `y = x*3 + 8`.
    xData <- replicateM 100 randomIO
    let yData = [x*3 + 8 | x <- xData]
    -- Fit linear regression model.
    (w, b) <- fit xData yData
    assertBool "w == 3" (abs (3 - w) < 0.001)
    assertBool "b == 8" (abs (8 - b) < 0.001)

fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
    -- Create tensorflow constants for x and y.
    let x = TF.vector xData
        y = TF.vector yData
    -- Create scalar variables for slope and intercept.
    w <- TF.build (TF.initializedVariable 0)
    b <- TF.build (TF.initializedVariable 0)
    -- Define the loss function.
    let yHat = (x `TF.mul` w) `TF.add` b
        loss = TF.square (yHat `TF.sub` y)
    -- Optimize with gradient descent.
    trainStep <- TF.build (gradientDescent 0.001 loss [w, b])
    replicateM_ 1000 (TF.run trainStep)
    -- Return the learned parameters.
    (TF.Scalar w', TF.Scalar b') <- TF.run (w, b)
    return (w', b')

gradientDescent :: Float
                -> TF.Tensor TF.Value Float
                -> [TF.Tensor TF.Ref Float]
                -> TF.Build TF.ControlNode
gradientDescent alpha loss params = do
    let applyGrad param grad =
            TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad))
    TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params

Installation Instructions

Build with Docker on Linux

As an expedient we use docker for building. Once you have docker working, the following commands will compile and run the tests.

git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
IMAGE_NAME=tensorflow/haskell:v0
docker build -t $IMAGE_NAME docker
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test

There is also a demo application:

cd tensorflow-mnist
stack --docker --docker-image=$IMAGE_NAME build --exec Main

Build on Mac OS X

The following instructions were verified with Mac OS X El Capitan.

  • Install dependencies via Homebrew:

      brew install swig
      brew install bazel
    
  • Build the TensorFlow library and install it on your machine:

      cd third_party/tensorflow
      ./configure  # Choose the defaults when prompted
      bazel build -c opt tensorflow:libtensorflow_c.so
      install bazel-bin/tensorflow/libtensorflow_c.so /usr/local/lib/libtensorflow_c.dylib
      install_name_tool -id libtensorflow_c.dylib /usr/local/lib/libtensorflow_c.dylib
      cd ../..
    
  • Run stack:

      stack test
    

Note: you may need to upgrade your version of Clang if you get an error like the following:

tensorflow/core/ops/ctc_ops.cc:60:7: error: return type 'tensorflow::Status' must match previous return type 'const ::tensorflow::Status' when lambda expression has unspecified explicit return type
    return Status::OK();

In that case you can just upgrade XCode and then run gcc --version to get the new version of the compiler.