Haskell bindings for TensorFlow
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Johannes Maier bfd8de5582 Fix lens errors 3 months ago
ci_build Update Dockerfiles to 2.10.1 4 months ago
docker Update Dockerfiles to 2.10.1 4 months ago
docs/haddock Update to haddock files for tensorflow-0.3 package (TensorFlow 2.3.0). (#269) 3 years ago
tensorflow Add support for loading a Session from a SavedModel 4 months ago
tensorflow-core-ops Fix min version guard for Cabal 3 months ago
tensorflow-logging Set cabal-version to 2.0 everywhere 4 months ago
tensorflow-mnist Set cabal-version to 2.0 everywhere 4 months ago
tensorflow-mnist-input-data Set cabal-version to 2.0 everywhere 4 months ago
tensorflow-opgen Set cabal-version to 2.0 everywhere 4 months ago
tensorflow-ops Fix lens errors 3 months ago
tensorflow-proto Update list of protobuf files 4 months ago
tensorflow-records Set cabal-version to 2.0 everywhere 4 months ago
tensorflow-records-conduit Set cabal-version to 2.0 everywhere 4 months ago
tensorflow-test Set cabal-version to 2.0 everywhere 4 months ago
third_party Update tensorflow submodule to 2.10.1 4 months ago
tools Upgrade to tensorflow 1.14.0 (#244) 4 years ago
.gitignore Tensorflow 2.3.0 Support (#267) 3 years ago
.gitmodules Initial commit 7 years ago
CONTRIBUTING.md Initial commit 7 years ago
ChangeLog.md Switch to LTS 14 and bump versions to (#248) 4 years ago
LICENSE Initial commit 7 years ago
README.md Fix broken URL to `TensorFlow.Core` docs. 4 months ago
stack.yaml Update nixpkgs snapshot to one with libtensorflow 2.10.1 4 months ago


Build Status

The tensorflow-haskell package provides Haskell bindings to TensorFlow.

This is not an official Google product.



TensorFlow.Core is a good place to start.


Neural network model for the MNIST dataset: code

Toy example of a linear regression model (full code):

import Control.Monad (replicateM, replicateM_)
import System.Random (randomIO)
import Test.HUnit (assertBool)

import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Minimize as TF
import qualified TensorFlow.Ops as TF hiding (initializedVariable)
import qualified TensorFlow.Variable as TF

main :: IO ()
main = do
    -- Generate data where `y = x*3 + 8`.
    xData <- replicateM 100 randomIO
    let yData = [x*3 + 8 | x <- xData]
    -- Fit linear regression model.
    (w, b) <- fit xData yData
    assertBool "w == 3" (abs (3 - w) < 0.001)
    assertBool "b == 8" (abs (8 - b) < 0.001)

fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
    -- Create tensorflow constants for x and y.
    let x = TF.vector xData
        y = TF.vector yData
    -- Create scalar variables for slope and intercept.
    w <- TF.initializedVariable 0
    b <- TF.initializedVariable 0
    -- Define the loss function.
    let yHat = (x `TF.mul` TF.readValue w) `TF.add` TF.readValue b
        loss = TF.square (yHat `TF.sub` y)
    -- Optimize with gradient descent.
    trainStep <- TF.minimizeWith (TF.gradientDescent 0.001) loss [w, b]
    replicateM_ 1000 (TF.run trainStep)
    -- Return the learned parameters.
    (TF.Scalar w', TF.Scalar b') <- TF.run (TF.readValue w, TF.readValue b)
    return (w', b')

Installation Instructions

Note: building this repository with stack requires version 2.3.1 or newer. Check your stack version with stack --version in a terminal.

Build with Docker on Linux

As an expedient we use docker for building. Once you have docker working, the following commands will compile and run the tests.

git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
docker build -t tensorflow/haskell:2.10.1 docker
# TODO: move the setup step to the docker script.
stack --docker setup
stack --docker test

There is also a demo application:

cd tensorflow-mnist
stack --docker build --exec Main

Stack + Docker + GPU

If you want to use GPU you can do:

docker build -t $IMAGE_NAME docker/gpu
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test

Using nvidia-docker version 2

See Nvidia docker 2 install instructions

stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-run-args "--runtime=nvidia" --docker-image=$IMAGE_NAME test

Using nvidia-docker classic

Stack needs to use nvidia-docker instead of the normal docker for GPU support. We must wrap 'docker' with a script. This script will shadow the normal docker command.

ln -s `pwd`/tools/nvidia-docker-wrapper.sh <somewhere in your path>/docker
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test

Build on macOS

Run the install_macos_dependencies.sh script in the tools/ directory. The script installs dependencies via Homebrew and then downloads and installs the TensorFlow library on your machine under /usr/local.

After running the script to install system dependencies, build the project with stack:

stack test

Build on NixOS

The stack.yaml file describes a NixOS environment containing the necessary dependencies. To build, run:

$ stack --nix build

Installation on CentOS

Xiaokui Shu (@subbyte) maintains separate instructions for installation on CentOS.

Related Projects

Statically validated tensor shapes

https://github.com/helq/tensorflow-haskell-deptyped is experimenting with using dependent types to statically validate tensor shapes. May be merged with this repository in the future.


{-# LANGUAGE DataKinds, ScopedTypeVariables #-}

import Data.Maybe (fromJust)
import Data.Vector.Sized (Vector, fromList)
import TensorFlow.DepTyped

test :: IO (Vector 8 Float)
test = runSession $ do
  (x :: Placeholder "x" '[4,3] Float) <- placeholder

  let elems1 = fromJust $ fromList [1,2,3,4,1,2]
      elems2 = fromJust $ fromList [5,6,7,8]
      (w :: Tensor '[3,2] '[] Build Float) = constant elems1
      (b :: Tensor '[4,1] '[] Build Float) = constant elems2
      y = (x `matMul` w) `add` b -- y shape: [4,2] (b shape is [4.1] but `add` broadcasts it to [4,2])

  let (inputX :: TensorData "x" [4,3] Float) =
          encodeTensorData . fromJust $ fromList [1,2,3,4,1,0,7,9,5,3,5,4]

  runWithFeeds (feed x inputX :~~ NilFeedList) y

main :: IO ()
main = test >>= print


This project is licensed under the terms of the Apache 2.0 license.