1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-11 11:29:47 +01:00

Add example to README + make haddock link more prominent (#60)

This commit is contained in:
fkm3 2017-01-16 20:44:45 -08:00 committed by Judah Jacobson
parent 1ffc5c4383
commit 4fb68f3aa3
3 changed files with 122 additions and 1 deletions

View file

@ -5,7 +5,69 @@ The tensorflow-haskell package provides Haskell bindings to
This is not an official Google product.
# Instructions
# Documentation
https://tensorflow.github.io/haskell/haddock/
[TensorFlow.Core](https://tensorflow.github.io/haskell/haddock/tensorflow-0.1.0.0/TensorFlow-Core.html)
is a good place to start.
# Examples
Neural network model for the MNIST dataset: [code](tensorflow-mnist/app/Main.hs)
Toy example of a linear regression model
([full code](tensorflow-ops/tests/RegressionTest.hs)):
```haskell
import Control.Monad (replicateM, replicateM_, zipWithM)
import System.Random (randomIO)
import Test.HUnit (assertBool)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF
main :: IO ()
main = do
-- Generate data where `y = x*3 + 8`.
xData <- replicateM 100 randomIO
let yData = [x*3 + 8 | x <- xData]
-- Fit linear regression model.
(w, b) <- fit xData yData
assertBool "w == 3" (abs (3 - w) < 0.001)
assertBool "b == 8" (abs (8 - b) < 0.001)
fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
-- Create tensorflow constants for x and y.
let x = TF.vector xData
y = TF.vector yData
-- Create scalar variables for slope and intercept.
w <- TF.build (TF.initializedVariable 0)
b <- TF.build (TF.initializedVariable 0)
-- Define the loss function.
let yHat = (x `TF.mul` w) `TF.add` b
loss = TF.square (yHat `TF.sub` y)
-- Optimize with gradient descent.
trainStep <- TF.build (gradientDescent 0.001 loss [w, b])
replicateM_ 1000 (TF.run trainStep)
-- Return the learned parameters.
(TF.Scalar w', TF.Scalar b') <- TF.run (w, b)
return (w', b')
gradientDescent :: Float
-> TF.Tensor TF.Value Float
-> [TF.Tensor TF.Ref Float]
-> TF.Build TF.ControlNode
gradientDescent alpha loss params = do
let applyGrad param grad =
TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad))
TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params
```
# Installation Instructions
## Build with Docker on Linux

View file

@ -30,6 +30,18 @@ library
, text
default-language: Haskell2010
Test-Suite RegressionTest
default-language: Haskell2010
type: exitcode-stdio-1.0
main-is: RegressionTest.hs
hs-source-dirs: tests
build-depends: base
, HUnit
, random
, tensorflow
, tensorflow-core-ops
, tensorflow-ops
Test-Suite BuildTest
default-language: Haskell2010
type: exitcode-stdio-1.0

View file

@ -0,0 +1,47 @@
-- | Simple linear regression example for the README.
import Control.Monad (replicateM, replicateM_, zipWithM)
import System.Random (randomIO)
import Test.HUnit (assertBool)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF
main :: IO ()
main = do
-- Generate data where `y = x*3 + 8`.
xData <- replicateM 100 randomIO
let yData = [x*3 + 8 | x <- xData]
-- Fit linear regression model.
(w, b) <- fit xData yData
assertBool "w == 3" (abs (3 - w) < 0.001)
assertBool "b == 8" (abs (8 - b) < 0.001)
fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
-- Create tensorflow constants for x and y.
let x = TF.vector xData
y = TF.vector yData
-- Create scalar variables for slope and intercept.
w <- TF.build (TF.initializedVariable 0)
b <- TF.build (TF.initializedVariable 0)
-- Define the loss function.
let yHat = (x `TF.mul` w) `TF.add` b
loss = TF.square (yHat `TF.sub` y)
-- Optimize with gradient descent.
trainStep <- TF.build (gradientDescent 0.001 loss [w, b])
replicateM_ 1000 (TF.run trainStep)
-- Return the learned parameters.
(TF.Scalar w', TF.Scalar b') <- TF.run (w, b)
return (w', b')
gradientDescent :: Float
-> TF.Tensor TF.Value Float
-> [TF.Tensor TF.Ref Float]
-> TF.Build TF.ControlNode
gradientDescent alpha loss params = do
let applyGrad param grad =
TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad))
TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params