2017-01-17 05:44:45 +01:00
|
|
|
-- | Simple linear regression example for the README.
|
|
|
|
|
2017-05-26 04:19:22 +02:00
|
|
|
import Control.Monad (replicateM, replicateM_)
|
2017-01-17 05:44:45 +01:00
|
|
|
import System.Random (randomIO)
|
|
|
|
import Test.HUnit (assertBool)
|
|
|
|
|
|
|
|
import qualified TensorFlow.Core as TF
|
|
|
|
import qualified TensorFlow.GenOps.Core as TF
|
2017-05-26 04:19:22 +02:00
|
|
|
import qualified TensorFlow.Minimize as TF
|
|
|
|
import qualified TensorFlow.Ops as TF hiding (initializedVariable)
|
|
|
|
import qualified TensorFlow.Variable as TF
|
2017-01-17 05:44:45 +01:00
|
|
|
|
|
|
|
main :: IO ()
|
|
|
|
main = do
|
|
|
|
-- Generate data where `y = x*3 + 8`.
|
|
|
|
xData <- replicateM 100 randomIO
|
|
|
|
let yData = [x*3 + 8 | x <- xData]
|
|
|
|
-- Fit linear regression model.
|
|
|
|
(w, b) <- fit xData yData
|
|
|
|
assertBool "w == 3" (abs (3 - w) < 0.001)
|
|
|
|
assertBool "b == 8" (abs (8 - b) < 0.001)
|
|
|
|
|
|
|
|
fit :: [Float] -> [Float] -> IO (Float, Float)
|
|
|
|
fit xData yData = TF.runSession $ do
|
|
|
|
-- Create tensorflow constants for x and y.
|
|
|
|
let x = TF.vector xData
|
|
|
|
y = TF.vector yData
|
|
|
|
-- Create scalar variables for slope and intercept.
|
2017-03-18 20:08:53 +01:00
|
|
|
w <- TF.initializedVariable 0
|
|
|
|
b <- TF.initializedVariable 0
|
2017-01-17 05:44:45 +01:00
|
|
|
-- Define the loss function.
|
2017-05-26 04:19:22 +02:00
|
|
|
let yHat = (x `TF.mul` TF.readValue w) `TF.add` TF.readValue b
|
2017-01-17 05:44:45 +01:00
|
|
|
loss = TF.square (yHat `TF.sub` y)
|
|
|
|
-- Optimize with gradient descent.
|
2017-05-26 04:19:22 +02:00
|
|
|
trainStep <- TF.minimizeWith (TF.gradientDescent 0.001) loss [w, b]
|
2017-01-17 05:44:45 +01:00
|
|
|
replicateM_ 1000 (TF.run trainStep)
|
|
|
|
-- Return the learned parameters.
|
2017-05-26 04:19:22 +02:00
|
|
|
(TF.Scalar w', TF.Scalar b') <- TF.run (TF.readValue w, TF.readValue b)
|
2017-01-17 05:44:45 +01:00
|
|
|
return (w', b')
|