adventofcode-2020/day13/main.hs
2020-12-21 15:27:51 +02:00

227 lines
9 KiB
Haskell
Executable file
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#! /usr/bin/env -S"GHCRTS=-N4" nix-shell
#! nix-shell -p ghcid
#! nix-shell -p "haskellPackages.ghcWithPackages (p: with p; [pretty-simple attoparsec arithmoi containers parallel semirings])"
#! nix-shell -i "ghcid -c 'ghci' -T main"
{-# OPTIONS_GHC -Wall -Wincomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-unused-top-binds -Wno-unused-imports #-}
{-# OPTIONS_GHC -Wno-unused-matches -Wno-type-defaults #-}
{-# OPTIONS_GHC -Wno-unused-local-binds #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DataKinds #-}
import Control.Applicative
import Control.Monad
import Control.Parallel.Strategies (parMap, parListChunk, rdeepseq)
import Data.Attoparsec.Text (Parser)
import Data.Euclidean (gcdExt)
import Data.IntSet (IntSet)
import Data.List (find,sortOn,sort)
import Data.Maybe (fromMaybe,catMaybes)
import Data.Monoid
import Data.Text (Text)
import Data.Vector (Vector)
import Debug.Trace (trace,traceShow,traceShowId)
import Math.NumberTheory.ArithmeticFunctions
import Math.NumberTheory.Primes
import Text.Pretty.Simple
import qualified Data.Attoparsec.Text as A
import qualified Data.IntSet as I
import qualified Data.Text as T
import qualified Data.Vector as V
exampleData :: String
exampleData = "939\n7,13,x,x,59,x,31,19"
numOrXParser :: Parser (Maybe Int)
numOrXParser = (Just <$> A.decimal) <|> ("x" *> pure Nothing)
inputParser :: Parser (Int,[Int])
inputParser = do
n <- A.decimal
A.skipSpace
xs <- numOrXParser `A.sepBy` ","
pure (n,catMaybes $ xs)
parseInput :: String -> Either String (Int,[Int])
parseInput = (A.parseOnly inputParser) . T.pack
solvePart1 :: String -> Either String Int
solvePart1 str = do
(n,xs) <- parseInput str
let (bus, time) = head
$ sortOn (snd)
$ map (\x -> (x,fromMaybe (-1) $ find (> n) [0,x..])) xs
pure $ bus * (time - n)
inputParser2 :: Parser (Int,[Maybe Int])
inputParser2 = do
n <- A.decimal
A.skipSpace
xs <- numOrXParser `A.sepBy` ","
pure (n,xs)
parseInput2 :: String -> Either String (Int,[Maybe Int])
parseInput2 = (A.parseOnly inputParser2) . T.pack
gcd' :: [Int] -> Int
gcd' = head
. (\xs -> if length xs > 1 then drop 1 xs else xs)
. I.toDescList
. (\x -> foldl I.intersection (I.unions x) x)
. map divisorsSmall
-- lcm on a list of Ints
lcm' :: [Int] -> Int
lcm' (x:xs) = go x xs
where
go x0 (y:ys) = go (lcm x0 y) (ys)
go x0 [] = x0
lcm' [] = 1
-- lcm on a list of Ints
lcm'' :: [Int] -> Int
lcm'' xs = prodL xs `div` gcd' xs
where
prodL = getProduct . foldMap Product
-- Too slow
modList :: [(Int,Int)] -> [ [Int] ]
modList = fmap f
where
f (n,m) = filter (\x -> (x + n) `mod` m == 0) [1..]
findAllEq :: [[Int]] -> Maybe [Int]
findAllEq = find (\xs -> notElem (head xs) xs)
-- Can you feel how much fun I'm not having anymore?
isT :: Int -> Int -> [(Int,Int)] -> Int
isT tpx x xs = head $ catMaybes $ map go allTs
where
allTs = [tpx,2*tpx..]
go :: Int -> Maybe Int
go tpx0 = case and (parMap rdeepseq (go' tpx0) xs) of
True -> Just (tpx0 - x)
_ -> Nothing
go' tpx0' (shift,fact) =
-- trace ("tpx:"<>show tpx0'<>",shift:"<>show shift<>",x:"<>show x<>",fact:"<>show fact) $
(tpx0' - x + shift) `mod` fact == 0
solvePart2Naive :: String -> Either String Int
solvePart2Naive str = do
(_,xs) <- parseInput2 str
let startAndIds = traceShowId $ catMaybes $ sequence <$> zip [0..] xs
let sortedStartAndIds = reverse $ sortOn snd $ startAndIds
-- pure $ sortedStartAndIds
let (x,t) = head sortedStartAndIds
pure $ isT t x sortedStartAndIds
-- -------------------------------------------------------------------------- --
-- Here I sneak around a bit, and realize the problem is well defined --
-- (and solved!) already: it's called the Chinese Remainder Theorem --
-- https://en.wikipedia.org/wiki/Chinese_remainder_theorem --
-- -------------------------------------------------------------------------- --
-- Apllying the theorem allows to reduce a system of equation on x: --
-- --
-- x ≡ a1 (mod n1) --
-- · --
-- · --
-- · --
-- x ≡ ak (mod nk) --
-- --
-- to a single equation: --
-- --
-- x ≡ as (mod ns) --
-- --
-- It relates to the buses schedules in the following way: t is x, the bus --
-- number is the modulo factor (since a bus comes *every* ni) and subsequent --
-- additions to t (for other buses) is (-ai), so, for a but coming at --
-- t+ai, one would write x ≡ -ai (mod ni) --
-- --
-- I chose to encode ai and ni as a tuple (ai,ni), named startAndIds --
-- --
-- Basically, we're creating a “chinese” function: --
-- --
-- chinese :: (Int,Int) -> (Int,Int) -> (Int,Int) --
-- --
-- Then, given a list [(Int, Int)] we can fold over it to obtain the solution --
-- --
chinese :: (Integer,Integer) -> (Integer,Integer) -> Maybe (Integer,Integer)
chinese (0,n1) (0,n2) = chinese (n1,n1) (n2,n2)
chinese v (0,n2) = chinese v (n2,n2)
chinese (0,n1) v = chinese (n1,n1) v
chinese (a1,n1) (a2,n2) = do
-- Computes a solution such that: n1×c1 + n2×c2 = g, for some c2
-- n1×c1 - g = - n2×c2, for some c2
-- 1/n2 (n1×c1 - g) = - c2, for some c2 (n2 is > 0)
-- - 1/n2 (n1×c1 - g) = c2, for some c2 (n2 is > 0)
-- n1 and n2 must be coprimes for this to work (g must be 1), fail otherwise
(m1,m2) <- case gcdExt n1 n2 of
(1,c1) -> Just ( c1, negate ((n1 * c1) - 1) `div` n2 )
_ -> Nothing
let x = a1 * m2 * n2 + a2 * m1 * n1
let a12 = x `mod` (n1 * n2)
pure $ (a12, n1 * n2)
e2m :: Either e a -> Maybe a
e2m (Right v) = Just v
e2m _ = Nothing
solvePart2Clever :: String -> Maybe (Integer,Integer)
solvePart2Clever str = do
(_,xs) <- e2m $ parseInput2 str
let startAndIds = catMaybes $ sequence <$> zip [0..] (map (fmap fromIntegral) xs)
let chineseEqs = traceShowId $ fmap (\(a,n) -> ((-a) `mod` n, n)) startAndIds
foldM chinese (1,1) chineseEqs
main :: IO ()
main = do
putStrLn ":: Test"
pPrint $ A.parseOnly inputParser $ T.pack exampleData
pPrint $ take 3 ((\n -> [1,n..]) 59)
putStrLn ":: Day 13 - Part 1"
input <- readFile "day13/input"
pPrint $ solvePart1 exampleData
pPrint $ solvePart1 input
putStrLn ":: Test 2"
print $ (43+127) `mod` 8921 == ((43 `mod` 8921) + (127 `mod` 8921)) `mod` 8921
print $ (lcm' [100,23,98],getProduct $ foldMap Product [100,23,98])
print $ lcm' [7,13,59,31,19]
print $ lcm'' [7,13,59,31,19]
putStrLn "The lcm of a list of number is the first number that all of them "
putStrLn "divide ie when are the different “gears” all in sync again, after "
putStrLn "t=0 "
print $ (div (lcm' [7,13,59,31,19])) <$> [7,13,59,31,19]
print $ (div 1068781) <$> [7,13,59,31,19]
print $ (mod (lcm' [7,13,59,31,19])) <$> [7,13,59,31,19]
print $ (mod 1068781) <$> [7,13,59,31,19]
putStrLn "::: 🎶 Musical Interlude 🎶"
print $ (1068781 + 4) `div` 59
print $ (1068781 + 4) `mod` 59
print $ (1068781 + 6) `mod` 31
print $ (1068781 + 7) `mod` 19
print $ (1068781 + 1) `mod` 13
print $ (1068781 + 0) `mod` 7
print $ 100000000000000 `mod` 631
print $ 100000000000000 `div` 631
putStrLn ":: Day 13 - Part 2"
print $ solvePart2Naive exampleData
print $ solvePart2Naive "1\n17,x,13,19"
print $ solvePart2Naive "1\n67,7,59,61"
print $ solvePart2Naive "1\n67,x,7,59,61"
print $ solvePart2Naive "1\n67,7,x,59,61"
print $ solvePart2Naive "1\n1789,37,47,1889"
putStrLn ""
print $ solvePart2Clever exampleData
print $ solvePart2Clever "1\n17,x,13,19"
print $ solvePart2Clever "1\n67,7,59,61"
print $ solvePart2Clever "1\n67,x,7,59,61"
print $ solvePart2Clever "1\n67,7,x,59,61"
print $ solvePart2Clever "1\n1789,37,47,1889"
putStrLn ""
-- Don't, it just takes forever.
-- print $ solvePart2Naive input
print $ solvePart2Clever input