adventofcode-2020/day13/main.hs

228 lines
9 KiB
Haskell
Raw Normal View History

2020-12-18 13:36:58 +01:00
#! /usr/bin/env -S"GHCRTS=-N4" nix-shell
2020-12-13 17:50:00 +01:00
#! nix-shell -p ghcid
2020-12-21 14:27:51 +01:00
#! nix-shell -p "haskellPackages.ghcWithPackages (p: with p; [pretty-simple attoparsec arithmoi containers parallel semirings])"
2020-12-13 17:50:00 +01:00
#! nix-shell -i "ghcid -c 'ghci' -T main"
{-# OPTIONS_GHC -Wall -Wincomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-unused-top-binds -Wno-unused-imports #-}
2020-12-14 13:53:53 +01:00
{-# OPTIONS_GHC -Wno-unused-matches -Wno-type-defaults #-}
2020-12-15 07:27:32 +01:00
{-# OPTIONS_GHC -Wno-unused-local-binds #-}
2020-12-13 17:50:00 +01:00
{-# LANGUAGE OverloadedStrings #-}
2020-12-17 14:54:32 +01:00
{-# LANGUAGE DataKinds #-}
2020-12-13 17:50:00 +01:00
import Control.Applicative
2020-12-21 14:27:51 +01:00
import Control.Monad
import Control.Parallel.Strategies (parMap, parListChunk, rdeepseq)
2020-12-13 17:50:00 +01:00
import Data.Attoparsec.Text (Parser)
2020-12-21 14:27:51 +01:00
import Data.Euclidean (gcdExt)
2020-12-17 14:54:32 +01:00
import Data.IntSet (IntSet)
import Data.List (find,sortOn,sort)
import Data.Maybe (fromMaybe,catMaybes)
import Data.Monoid
2020-12-13 17:50:00 +01:00
import Data.Text (Text)
2020-12-17 14:54:32 +01:00
import Data.Vector (Vector)
2020-12-21 14:27:51 +01:00
import Debug.Trace (trace,traceShow,traceShowId)
2020-12-17 14:54:32 +01:00
import Math.NumberTheory.ArithmeticFunctions
import Math.NumberTheory.Primes
2020-12-13 17:50:00 +01:00
import Text.Pretty.Simple
import qualified Data.Attoparsec.Text as A
2020-12-17 14:54:32 +01:00
import qualified Data.IntSet as I
2020-12-13 17:50:00 +01:00
import qualified Data.Text as T
2020-12-17 14:54:32 +01:00
import qualified Data.Vector as V
2020-12-13 17:50:00 +01:00
exampleData :: String
exampleData = "939\n7,13,x,x,59,x,31,19"
2020-12-14 13:53:53 +01:00
numOrXParser :: Parser (Maybe Int)
numOrXParser = (Just <$> A.decimal) <|> ("x" *> pure Nothing)
2020-12-13 17:50:00 +01:00
inputParser :: Parser (Int,[Int])
inputParser = do
n <- A.decimal
A.skipSpace
xs <- numOrXParser `A.sepBy` ","
2020-12-14 13:53:53 +01:00
pure (n,catMaybes $ xs)
2020-12-13 17:50:00 +01:00
parseInput :: String -> Either String (Int,[Int])
parseInput = (A.parseOnly inputParser) . T.pack
2020-12-14 13:53:53 +01:00
solvePart1 :: String -> Either String Int
solvePart1 str = do
(n,xs) <- parseInput str
let (bus, time) = head
$ sortOn (snd)
$ map (\x -> (x,fromMaybe (-1) $ find (> n) [0,x..])) xs
pure $ bus * (time - n)
2020-12-15 07:27:32 +01:00
inputParser2 :: Parser (Int,[Maybe Int])
inputParser2 = do
n <- A.decimal
A.skipSpace
xs <- numOrXParser `A.sepBy` ","
pure (n,xs)
parseInput2 :: String -> Either String (Int,[Maybe Int])
parseInput2 = (A.parseOnly inputParser2) . T.pack
2020-12-17 14:54:32 +01:00
gcd' :: [Int] -> Int
gcd' = head
. (\xs -> if length xs > 1 then drop 1 xs else xs)
. I.toDescList
. (\x -> foldl I.intersection (I.unions x) x)
. map divisorsSmall
-- lcm on a list of Ints
lcm' :: [Int] -> Int
lcm' (x:xs) = go x xs
where
go x0 (y:ys) = go (lcm x0 y) (ys)
go x0 [] = x0
lcm' [] = 1
-- lcm on a list of Ints
lcm'' :: [Int] -> Int
lcm'' xs = prodL xs `div` gcd' xs
where
prodL = getProduct . foldMap Product
-- Too slow
modList :: [(Int,Int)] -> [ [Int] ]
modList = fmap f
where
f (n,m) = filter (\x -> (x + n) `mod` m == 0) [1..]
findAllEq :: [[Int]] -> Maybe [Int]
findAllEq = find (\xs -> notElem (head xs) xs)
2020-12-18 13:36:58 +01:00
-- Can you feel how much fun I'm not having anymore?
isT :: Int -> Int -> [(Int,Int)] -> Int
2020-12-17 14:54:32 +01:00
isT tpx x xs = head $ catMaybes $ map go allTs
where
2020-12-21 14:27:51 +01:00
allTs = [tpx,2*tpx..]
2020-12-18 13:36:58 +01:00
go :: Int -> Maybe Int
go tpx0 = case and (parMap rdeepseq (go' tpx0) xs) of
2020-12-18 13:36:58 +01:00
True -> Just (tpx0 - x)
2020-12-17 14:54:32 +01:00
_ -> Nothing
go' tpx0' (shift,fact) =
-- trace ("tpx:"<>show tpx0'<>",shift:"<>show shift<>",x:"<>show x<>",fact:"<>show fact) $
2020-12-18 13:36:58 +01:00
(tpx0' - x + shift) `mod` fact == 0
2020-12-21 14:27:51 +01:00
solvePart2Naive :: String -> Either String Int
solvePart2Naive str = do
2020-12-15 07:27:32 +01:00
(_,xs) <- parseInput2 str
2020-12-21 14:27:51 +01:00
let startAndIds = traceShowId $ catMaybes $ sequence <$> zip [0..] xs
let sortedStartAndIds = reverse $ sortOn snd $ startAndIds
2020-12-17 14:54:32 +01:00
-- pure $ sortedStartAndIds
let (x,t) = head sortedStartAndIds
2020-12-18 13:36:58 +01:00
pure $ isT t x sortedStartAndIds
2020-12-15 07:27:32 +01:00
2020-12-21 14:27:51 +01:00
-- -------------------------------------------------------------------------- --
-- Here I sneak around a bit, and realize the problem is well defined --
-- (and solved!) already: it's called the Chinese Remainder Theorem --
-- https://en.wikipedia.org/wiki/Chinese_remainder_theorem --
-- -------------------------------------------------------------------------- --
-- Apllying the theorem allows to reduce a system of equation on x: --
-- --
-- x ≡ a1 (mod n1) --
-- · --
-- · --
-- · --
-- x ≡ ak (mod nk) --
-- --
-- to a single equation: --
-- --
-- x ≡ as (mod ns) --
-- --
-- It relates to the buses schedules in the following way: t is x, the bus --
-- number is the modulo factor (since a bus comes *every* ni) and subsequent --
-- additions to t (for other buses) is (-ai), so, for a but coming at --
-- t+ai, one would write x ≡ -ai (mod ni) --
-- --
-- I chose to encode ai and ni as a tuple (ai,ni), named startAndIds --
-- --
-- Basically, we're creating a “chinese” function: --
-- --
-- chinese :: (Int,Int) -> (Int,Int) -> (Int,Int) --
-- --
-- Then, given a list [(Int, Int)] we can fold over it to obtain the solution --
-- --
chinese :: (Integer,Integer) -> (Integer,Integer) -> Maybe (Integer,Integer)
chinese (0,n1) (0,n2) = chinese (n1,n1) (n2,n2)
chinese v (0,n2) = chinese v (n2,n2)
chinese (0,n1) v = chinese (n1,n1) v
chinese (a1,n1) (a2,n2) = do
-- Computes a solution such that: n1×c1 + n2×c2 = g, for some c2
-- n1×c1 - g = - n2×c2, for some c2
-- 1/n2 (n1×c1 - g) = - c2, for some c2 (n2 is > 0)
-- - 1/n2 (n1×c1 - g) = c2, for some c2 (n2 is > 0)
-- n1 and n2 must be coprimes for this to work (g must be 1), fail otherwise
(m1,m2) <- case gcdExt n1 n2 of
(1,c1) -> Just ( c1, negate ((n1 * c1) - 1) `div` n2 )
_ -> Nothing
let x = a1 * m2 * n2 + a2 * m1 * n1
let a12 = x `mod` (n1 * n2)
pure $ (a12, n1 * n2)
e2m :: Either e a -> Maybe a
e2m (Right v) = Just v
e2m _ = Nothing
solvePart2Clever :: String -> Maybe (Integer,Integer)
solvePart2Clever str = do
(_,xs) <- e2m $ parseInput2 str
let startAndIds = catMaybes $ sequence <$> zip [0..] (map (fmap fromIntegral) xs)
let chineseEqs = traceShowId $ fmap (\(a,n) -> ((-a) `mod` n, n)) startAndIds
foldM chinese (1,1) chineseEqs
2020-12-13 17:50:00 +01:00
main :: IO ()
main = do
putStrLn ":: Test"
2020-12-14 13:53:53 +01:00
pPrint $ A.parseOnly inputParser $ T.pack exampleData
pPrint $ take 3 ((\n -> [1,n..]) 59)
2020-12-13 17:50:00 +01:00
putStrLn ":: Day 13 - Part 1"
2020-12-14 13:53:53 +01:00
input <- readFile "day13/input"
pPrint $ solvePart1 exampleData
pPrint $ solvePart1 input
2020-12-17 14:54:32 +01:00
putStrLn ":: Test 2"
print $ (43+127) `mod` 8921 == ((43 `mod` 8921) + (127 `mod` 8921)) `mod` 8921
print $ (lcm' [100,23,98],getProduct $ foldMap Product [100,23,98])
print $ lcm' [7,13,59,31,19]
print $ lcm'' [7,13,59,31,19]
putStrLn "The lcm of a list of number is the first number that all of them "
putStrLn "divide ie when are the different “gears” all in sync again, after "
putStrLn "t=0 "
print $ (div (lcm' [7,13,59,31,19])) <$> [7,13,59,31,19]
print $ (div 1068781) <$> [7,13,59,31,19]
print $ (mod (lcm' [7,13,59,31,19])) <$> [7,13,59,31,19]
print $ (mod 1068781) <$> [7,13,59,31,19]
putStrLn "::: 🎶 Musical Interlude 🎶"
print $ (1068781 + 4) `div` 59
print $ (1068781 + 4) `mod` 59
print $ (1068781 + 6) `mod` 31
print $ (1068781 + 7) `mod` 19
print $ (1068781 + 1) `mod` 13
print $ (1068781 + 0) `mod` 7
print $ 100000000000000 `mod` 631
print $ 100000000000000 `div` 631
2020-12-15 07:27:32 +01:00
putStrLn ":: Day 13 - Part 2"
2020-12-21 14:27:51 +01:00
print $ solvePart2Naive exampleData
print $ solvePart2Naive "1\n17,x,13,19"
print $ solvePart2Naive "1\n67,7,59,61"
print $ solvePart2Naive "1\n67,x,7,59,61"
print $ solvePart2Naive "1\n67,7,x,59,61"
print $ solvePart2Naive "1\n1789,37,47,1889"
putStrLn ""
print $ solvePart2Clever exampleData
print $ solvePart2Clever "1\n17,x,13,19"
print $ solvePart2Clever "1\n67,7,59,61"
print $ solvePart2Clever "1\n67,x,7,59,61"
print $ solvePart2Clever "1\n67,7,x,59,61"
print $ solvePart2Clever "1\n1789,37,47,1889"
putStrLn ""
-- Don't, it just takes forever.
-- print $ solvePart2Naive input
print $ solvePart2Clever input