mirror of
https://github.com/tensorflow/haskell.git
synced 2025-01-26 02:35:03 +01:00
f170df9d13
In addition, you can now fetch TensorData directly. This might be useful in scenarios where you feed the result of a computation back in, like RNN. Before: benchmarking feedFetch/4 byte time 83.31 μs (81.88 μs .. 84.75 μs) 0.997 R² (0.994 R² .. 0.998 R²) mean 87.32 μs (86.06 μs .. 88.83 μs) std dev 4.580 μs (3.698 μs .. 5.567 μs) variance introduced by outliers: 55% (severely inflated) benchmarking feedFetch/4 KiB time 114.9 μs (111.5 μs .. 118.2 μs) 0.996 R² (0.994 R² .. 0.998 R²) mean 117.3 μs (116.2 μs .. 118.6 μs) std dev 3.877 μs (3.058 μs .. 5.565 μs) variance introduced by outliers: 31% (moderately inflated) benchmarking feedFetch/4 MiB time 109.0 ms (107.9 ms .. 110.7 ms) 1.000 R² (0.999 R² .. 1.000 R²) mean 108.6 ms (108.2 ms .. 109.2 ms) std dev 740.2 μs (353.2 μs .. 1.186 ms) After: benchmarking feedFetch/4 byte time 82.92 μs (80.55 μs .. 85.24 μs) 0.996 R² (0.993 R² .. 0.998 R²) mean 83.58 μs (82.34 μs .. 84.89 μs) std dev 4.327 μs (3.664 μs .. 5.375 μs) variance introduced by outliers: 54% (severely inflated) benchmarking feedFetch/4 KiB time 85.69 μs (83.81 μs .. 87.30 μs) 0.997 R² (0.996 R² .. 0.999 R²) mean 86.99 μs (86.11 μs .. 88.15 μs) std dev 3.608 μs (2.854 μs .. 5.273 μs) variance introduced by outliers: 43% (moderately inflated) benchmarking feedFetch/4 MiB time 1.582 ms (1.509 ms .. 1.677 ms) 0.970 R² (0.936 R² .. 0.993 R²) mean 1.645 ms (1.554 ms .. 1.981 ms) std dev 490.6 μs (138.9 μs .. 1.067 ms) variance introduced by outliers: 97% (severely inflated)
188 lines
7.4 KiB
Haskell
188 lines
7.4 KiB
Haskell
-- Copyright 2016 TensorFlow authors.
|
|
--
|
|
-- Licensed under the Apache License, Version 2.0 (the "License");
|
|
-- you may not use this file except in compliance with the License.
|
|
-- You may obtain a copy of the License at
|
|
--
|
|
-- http://www.apache.org/licenses/LICENSE-2.0
|
|
--
|
|
-- Unless required by applicable law or agreed to in writing, software
|
|
-- distributed under the License is distributed on an "AS IS" BASIS,
|
|
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
-- See the License for the specific language governing permissions and
|
|
-- limitations under the License.
|
|
|
|
{-# LANGUAGE FlexibleContexts #-}
|
|
{-# LANGUAGE RankNTypes #-}
|
|
{-# LANGUAGE ScopedTypeVariables #-}
|
|
|
|
-- | Tests for EmbeddingOps.
|
|
module Main where
|
|
|
|
import Data.Int (Int32, Int64)
|
|
import Data.List (genericLength)
|
|
import Google.Test (googleTest)
|
|
import TensorFlow.EmbeddingOps (embeddingLookup)
|
|
import Test.Framework (Test)
|
|
import Test.Framework.Providers.QuickCheck2 (testProperty)
|
|
import Test.HUnit ((@=?))
|
|
import Test.Framework.Providers.HUnit (testCase)
|
|
import Test.QuickCheck (Arbitrary(..), Property, choose, vectorOf)
|
|
import Test.QuickCheck.Monadic (monadicIO, run)
|
|
import TensorFlow.Test (assertAllClose)
|
|
|
|
import qualified Data.Vector as V
|
|
import qualified TensorFlow.GenOps.Core as CoreOps
|
|
import qualified TensorFlow.Ops as TF
|
|
import qualified TensorFlow.Session as TF
|
|
import qualified TensorFlow.Tensor as TF
|
|
import qualified TensorFlow.Types as TF
|
|
import qualified TensorFlow.Gradient as TF
|
|
import qualified TensorFlow.Build as TF
|
|
import qualified TensorFlow.Nodes as TF
|
|
|
|
|
|
buildAndRun :: TF.Fetchable t a => TF.Build t -> IO a
|
|
buildAndRun = TF.runSession . TF.buildAnd TF.run
|
|
|
|
|
|
-- | Tries to perform a simple embedding lookup, with two partitions.
|
|
testEmbeddingLookupHasRightShapeWithPartition :: Test
|
|
testEmbeddingLookupHasRightShapeWithPartition =
|
|
testCase "testEmbeddingLookupHasRightShapeWithPartition" $ do
|
|
let embShape = TF.Shape [1, 3] -- Consider a 3-dim embedding of two items.
|
|
let embedding1 = [1, 1, 1 :: Int32]
|
|
let embedding2 = [0, 0, 0 :: Int32]
|
|
let embedding = [ TF.constant embShape embedding1
|
|
, TF.constant embShape embedding2
|
|
]
|
|
|
|
let idValues = [0, 1 :: Int32]
|
|
let ids = TF.constant (TF.Shape [1, 2]) idValues
|
|
let op = embeddingLookup embedding ids
|
|
|
|
(values, shape) <- buildAndRun $ do
|
|
vs <- op
|
|
return (vs, TF.shape vs)
|
|
|
|
-- This is the shape that is returned in the equiv. Python.
|
|
shape @=? V.fromList [1, 2, 3]
|
|
|
|
-- "[0, 1]" should pull out the resulting vector.
|
|
values @=? V.fromList [1, 1, 1, 0, 0, 0]
|
|
|
|
|
|
-- | Tries to perform a simple embedding lookup, with only a single partition.
|
|
testEmbeddingLookupHasRightShape :: Test
|
|
testEmbeddingLookupHasRightShape =
|
|
testCase "testEmbeddingLookupHasRightShape" $ do
|
|
-- Consider a 3-dim embedding of two items
|
|
let embShape = TF.Shape [2, 3]
|
|
let embeddingInit = [ 1, 1, 1
|
|
, 0, 0, 0 :: Int32
|
|
]
|
|
|
|
let embedding = TF.constant embShape embeddingInit
|
|
let idValues = [0, 1 :: Int32]
|
|
let ids = TF.constant (TF.Shape [1, 2]) idValues
|
|
let op = embeddingLookup [embedding] ids
|
|
|
|
(values, shape) <- buildAndRun $ do
|
|
vs <- op
|
|
return (vs, TF.shape vs)
|
|
|
|
-- This is the shape that is returned in the equiv. Python.
|
|
shape @=? V.fromList [1, 2, 3]
|
|
|
|
-- "[0, 1]" should pull out the resulting vector.
|
|
values @=? V.fromList [1, 1, 1, 0, 0, 0]
|
|
|
|
|
|
-- | Check that we can calculate gradients w.r.t embeddings.
|
|
testEmbeddingLookupGradients :: Test
|
|
testEmbeddingLookupGradients = testCase "testEmbeddingLookupGradients" $ do
|
|
-- Agrees with "embedding", so gradient should be zero.
|
|
let xVals = V.fromList ([20, 20 :: Float])
|
|
let shape = TF.Shape [2]
|
|
|
|
gs <- TF.runSession $ do
|
|
grads <- TF.build $ do
|
|
let embShape = TF.Shape [2, 1]
|
|
let embeddingInit = [1, 20 ::Float]
|
|
let idValues = [1, 1 :: Int32]
|
|
let ids = TF.constant (TF.Shape [1, 2]) idValues
|
|
|
|
x <- TF.placeholder (TF.Shape [2])
|
|
embedding <- TF.initializedVariable
|
|
=<< TF.render (TF.constant embShape embeddingInit)
|
|
|
|
op <- embeddingLookup [embedding] ids
|
|
let twoNorm = CoreOps.square $ TF.abs (op - x)
|
|
loss = TF.mean twoNorm (TF.scalar (0 :: Int32))
|
|
|
|
grad <- fmap head (TF.gradients loss [embedding])
|
|
return $ \xs -> TF.runWithFeeds [TF.feed x xs] grad
|
|
|
|
grads (TF.encodeTensorData shape xVals :: TF.TensorData Float)
|
|
-- Gradients should be zero (or close)
|
|
assertAllClose gs (V.fromList ([0, 0 :: Float]))
|
|
|
|
|
|
-- Verifies that direct gather is the same as dynamic split into
|
|
-- partitions, followed by embedding lookup.
|
|
testEmbeddingLookupUndoesSplit ::
|
|
forall a. (TF.TensorDataType V.Vector a, Show a, Eq a)
|
|
=> LookupExample a -> Property
|
|
testEmbeddingLookupUndoesSplit
|
|
(LookupExample numParts
|
|
shape@(TF.Shape (firstDim : restDims))
|
|
values
|
|
indices) =
|
|
let modShardedValues :: [TF.Tensor TF.Value a] =
|
|
CoreOps.dynamicPartition numParts shapedValues cyclicCounter
|
|
cyclicCounter :: TF.Tensor TF.Value Int32 =
|
|
TF.vector [0..fromIntegral firstDim-1]
|
|
`CoreOps.mod` fromIntegral numParts
|
|
indicesVector = TF.vector indices
|
|
directs = CoreOps.gather shapedValues indicesVector
|
|
shapedValues = TF.constant shape values
|
|
in monadicIO $ run $ do
|
|
(shapeOut, got, want :: V.Vector a) <-
|
|
TF.runSession $ TF.buildAnd TF.run $ do
|
|
embeddings <- embeddingLookup modShardedValues indicesVector
|
|
return (TF.cast (TF.shape embeddings), embeddings, directs)
|
|
-- Checks the explicitly documented invariant of embeddingLookup.
|
|
shapeOut @=? V.fromList (genericLength indices : restDims)
|
|
got @=? want
|
|
testEmbeddingLookupUndoesSplit _ = error "Bug in Arbitrary (LookupExample)"
|
|
|
|
-- | Consistent set of parameters for EmbeddingLookupUndoesSplit.
|
|
data LookupExample a = LookupExample
|
|
Int64 -- ^ number of ways to split.
|
|
TF.Shape -- ^ shape of the generated tensor
|
|
[a] -- ^ data for the tensor
|
|
[Int32] -- ^ indices to split the tensor by
|
|
deriving Show
|
|
|
|
instance Arbitrary a => Arbitrary (LookupExample a) where
|
|
arbitrary = do
|
|
rank <- choose (1, 4)
|
|
-- Takes rank-th root of 100 to cap the tensor size.
|
|
let maxDim = fromIntegral (ceiling doubleMaxDim :: Int64)
|
|
doubleMaxDim :: Double
|
|
doubleMaxDim = 100 ** (1 / fromIntegral rank)
|
|
shape@(firstDim : _) <- vectorOf rank (choose (1, maxDim))
|
|
values <- vectorOf (fromIntegral $ product shape) arbitrary
|
|
numParts <- choose (2, 15)
|
|
indSize <- choose (0, fromIntegral $ firstDim - 1)
|
|
indices <- vectorOf indSize (choose (0, fromIntegral firstDim - 1))
|
|
return $ LookupExample numParts (TF.Shape shape) values indices
|
|
|
|
main :: IO ()
|
|
main = googleTest
|
|
[ testProperty "EmbeddingLookupUndoesSplit"
|
|
(testEmbeddingLookupUndoesSplit :: LookupExample Double -> Property)
|
|
, testEmbeddingLookupHasRightShape
|
|
, testEmbeddingLookupHasRightShapeWithPartition
|
|
, testEmbeddingLookupGradients
|
|
]
|