mirror of
https://github.com/tensorflow/haskell.git
synced 2024-12-12 12:49:48 +01:00
194 lines
7.3 KiB
Haskell
194 lines
7.3 KiB
Haskell
-- | An implementation of ResourceHandle-based variables.
|
|
--
|
|
-- The main difference between this and 'Ref'-based variables is
|
|
-- that reads are explicit, via the 'readValue' op.
|
|
--
|
|
-- TODO: given that distinction, figure out a good story around
|
|
-- gradients and save/restore. Then, merge this module into
|
|
-- TensorFlow.Ops.
|
|
{-# LANGUAGE DataKinds #-}
|
|
{-# LANGUAGE FlexibleContexts #-}
|
|
{-# LANGUAGE RecursiveDo #-}
|
|
{-# LANGUAGE ScopedTypeVariables #-}
|
|
{-# LANGUAGE OverloadedStrings #-}
|
|
module TensorFlow.Variable
|
|
( Variable
|
|
, variable
|
|
, variable'
|
|
, readValue
|
|
, initializedValue
|
|
, initializedVariable
|
|
, initializedVariable'
|
|
, zeroInitializedVariable
|
|
, zeroInitializedVariable'
|
|
, assign
|
|
, assign'
|
|
, assignAdd
|
|
, assignAdd'
|
|
, resourceApplyAdam
|
|
, resourceApplyAdam'
|
|
) where
|
|
|
|
import qualified Data.Complex
|
|
import qualified Data.Int
|
|
import qualified Data.Word
|
|
import Data.Text.Encoding (encodeUtf8)
|
|
import Lens.Family2 ((.~), (&))
|
|
import TensorFlow.Core
|
|
import TensorFlow.Build (opDef)
|
|
import TensorFlow.BuildOp (buildInputs, pureOp, OpParams)
|
|
import TensorFlow.Output (opInputs, unNodeName)
|
|
import TensorFlow.Tensor (Rendered(..), ToTensor(..), renderValue, tensorNodeName)
|
|
import TensorFlow.Types (tensorType)
|
|
import qualified TensorFlow.GenOps.Core as CoreOps
|
|
import TensorFlow.Ops (zeros)
|
|
|
|
data Variable a = Variable
|
|
{ variableHandle :: Tensor Value ResourceHandle
|
|
, initializedValue :: Maybe (Tensor Value a)
|
|
-- ^ The initial value of a 'Variable' created with 'initializedVariable'.
|
|
}
|
|
|
|
instance Rendered Variable where
|
|
renderedOutput = renderedOutput . variableHandle
|
|
|
|
instance ToTensor Variable where
|
|
toTensor = readValue
|
|
|
|
-- | Creates a new, uninitialized variable.
|
|
variable :: (MonadBuild m, TensorType a) => Shape -> m (Variable a)
|
|
variable = variable' id
|
|
|
|
variable' :: forall m a . (MonadBuild m, TensorType a)
|
|
=> OpParams -> Shape -> m (Variable a)
|
|
variable' params s = build $ do
|
|
-- Each variable needs a unique "shared_name". Use MonadFix to
|
|
-- set the attribute to the same name as the variable itself, without
|
|
-- exposing more internals of the Build module.
|
|
rec t <- CoreOps.varHandleOp' (params . (opAttr "shared_name" .~ n))
|
|
(tensorType (undefined :: a)) s
|
|
let n = encodeUtf8 $ unNodeName $ tensorNodeName t
|
|
return $ Variable t Nothing
|
|
|
|
-- | Creates a variable initialized to the given value.
|
|
-- Initialization happens next time session runs.
|
|
initializedVariable :: (MonadBuild m, TensorType a)
|
|
=> Tensor v a -> m (Variable a)
|
|
initializedVariable = initializedVariable' id
|
|
|
|
initializedVariable' :: forall a m v . (MonadBuild m, TensorType a)
|
|
=> OpParams -> Tensor v a -> m (Variable a)
|
|
initializedVariable' params initializer = do
|
|
-- The shape is not known initially.
|
|
(Variable h Nothing :: Variable a) <- variable' params (Shape [])
|
|
initializer' <- renderValue initializer
|
|
i <- CoreOps.assignVariableOp h initializer'
|
|
addInitializer =<< group i
|
|
return (Variable h (Just initializer'))
|
|
|
|
-- | Creates a zero-initialized variable with the given shape.
|
|
zeroInitializedVariable
|
|
:: (MonadBuild m, TensorType a, Num a) => Shape -> m (Variable a)
|
|
zeroInitializedVariable = zeroInitializedVariable' id
|
|
|
|
zeroInitializedVariable'
|
|
:: (MonadBuild m, TensorType a, Num a) => OpParams -> Shape -> m (Variable a)
|
|
zeroInitializedVariable' params = initializedVariable' params . zeros
|
|
|
|
-- | Gets the value stored in a variable.
|
|
--
|
|
-- Note that this op is stateful since it depends on the value of the variable;
|
|
-- however, it may be CSE'd with other reads in the same context. The context can
|
|
-- be fixed by using 'render' along with (for example) 'withControlDependencies'.
|
|
-- For example:
|
|
--
|
|
-- > runSession $ do
|
|
-- > v <- variable []
|
|
-- > a <- assign v 24
|
|
-- > r <- withControlDependencies a $ render $ readValue v + 18
|
|
-- > result <- run r
|
|
-- > liftIO $ (42 :: Float) @=? unScalar result
|
|
--
|
|
--
|
|
readValue :: TensorType a => Variable a -> Tensor Build a
|
|
readValue = readValue' id
|
|
|
|
readValue' :: forall a . TensorType a
|
|
=> OpParams -> Variable a -> Tensor Build a
|
|
readValue' params (Variable h _)
|
|
= pureOp [] $ do
|
|
os <- buildInputs h
|
|
pure $ opDef "ReadVariableOp"
|
|
& (params
|
|
. (opAttr "dtype" .~ tensorType (undefined :: a))
|
|
. (opInputs .~ os))
|
|
|
|
-- | Sets the value of a variable.
|
|
assign :: (MonadBuild m, TensorType a)
|
|
=> Variable a -> Tensor v a -> m ControlNode
|
|
assign = assign' id
|
|
|
|
assign' :: (MonadBuild m, TensorType a)
|
|
=> OpParams -> Variable a -> Tensor v a -> m ControlNode
|
|
assign' params (Variable h _) v = CoreOps.assignVariableOp' params h v
|
|
|
|
-- | Increments the value of a variable.
|
|
assignAdd :: (MonadBuild m, TensorType a)
|
|
=> Variable a -> Tensor v a -> m ControlNode
|
|
assignAdd = assignAdd' id
|
|
|
|
assignAdd' :: (MonadBuild m, TensorType a)
|
|
=> OpParams -> Variable a -> Tensor v a -> m ControlNode
|
|
assignAdd' params (Variable h _) v = CoreOps.assignAddVariableOp' params h v
|
|
|
|
-- | Update '*var' according to the Adam algorithm.
|
|
--
|
|
-- lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)
|
|
-- m_t <- beta1 * m_{t-1} + (1 - beta1) * g_t
|
|
-- v_t <- beta2 * v_{t-1} + (1 - beta2) * g_t * g_t
|
|
-- variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)
|
|
resourceApplyAdam ::
|
|
(MonadBuild m,
|
|
OneOf '[(Data.Complex.Complex Double),
|
|
(Data.Complex.Complex Float),
|
|
Data.Int.Int16,
|
|
Data.Int.Int32,
|
|
Data.Int.Int64, Data.Int.Int8,
|
|
Data.Word.Word16,
|
|
Data.Word.Word8, Double,
|
|
Float] t)
|
|
=> Variable t -- ^ __var__: Should be from a Variable().
|
|
-> Variable t -- ^ __m__: Should be from a Variable().
|
|
-> Variable t -- ^ __v__: Should be from a Variable().
|
|
-> Tensor v1 t -- ^ __beta1_power__: Must be a scalar.
|
|
-> Tensor v2 t -- ^ __beta2_power__: Must be a scalar.
|
|
-> Tensor v3 t -- ^ __lr__: Scaling factor. Must be a scalar.
|
|
-> Tensor v4 t -- ^ __beta1__: Momentum factor. Must be a scalar.
|
|
-> Tensor v5 t -- ^ __beta2__: Momentum factor. Must be a scalar.
|
|
-> Tensor v6 t -- ^ __epsilon__: Ridge term. Must be a scalar.
|
|
-> Tensor v7 t -- ^ __grad__: The gradient.
|
|
-> m (ControlNode)
|
|
resourceApplyAdam = resourceApplyAdam' id
|
|
|
|
resourceApplyAdam' ::
|
|
(MonadBuild m,
|
|
OneOf '[(Data.Complex.Complex Double),
|
|
(Data.Complex.Complex Float),
|
|
Data.Int.Int16, Data.Int.Int32,
|
|
Data.Int.Int64, Data.Int.Int8,
|
|
Data.Word.Word16, Data.Word.Word8, Double,
|
|
Float] t)
|
|
=> OpParams
|
|
-> Variable t -- ^ __var__: Should be from a Variable().
|
|
-> Variable t -- ^ __m__: Should be from a Variable().
|
|
-> Variable t -- ^ __v__: Should be from a Variable().
|
|
-> Tensor v1 t -- ^ __beta1_power__: Must be a scalar.
|
|
-> Tensor v2 t -- ^ __beta2_power__: Must be a scalar.
|
|
-> Tensor v3 t -- ^ __lr__: Scaling factor. Must be a scalar.
|
|
-> Tensor v4 t -- ^ __beta1__: Momentum factor. Must be a scalar.
|
|
-> Tensor v5 t -- ^ __beta2__: Momentum factor. Must be a scalar.
|
|
-> Tensor v6 t -- ^ __epsilon__: Ridge term. Must be a scalar.
|
|
-> Tensor v7 t -- ^ __grad__: The gradient.
|
|
-> m (ControlNode)
|
|
resourceApplyAdam' params (Variable var _) (Variable m _) (Variable v _) =
|
|
CoreOps.resourceApplyAdam' params var m v
|