1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-13 04:19:48 +01:00
tensorflow-haskell/tensorflow-ops/tests/RegressionTest.hs
Judah Jacobson 2c5c879037 Introduce a MonadBuild class, and remove buildAnd. (#83)
This change adds a class that both `Build` and `Session` are instances of:

    class MonadBuild m where
        build :: Build a -> m a

All stateful ops (generated and manually written) now have a signature that returns
an instance of `MonadBuild` (rather than just `Build`).  For example:

    assign_ :: (MonadBuild m, TensorType t)
            => Tensor Ref t -> Tensor v t -> m (Tensor Ref t)

This lets us remove a bunch of spurious calls to `build` in user code.  It also
lets us replace the pattern `buildAnd run foo` with the simpler pattern `foo >>= run`
(or `run =<< foo`, which is sometimes nicer when foo is a complicated expression).

I went ahead and deleted `buildAnd` altogether since it seems to lead to
confusion; in particular a few tests had `buildAnd run . pure` which is
actually equivalent to just `run`.
2017-03-18 12:08:53 -07:00

47 lines
1.6 KiB
Haskell

-- | Simple linear regression example for the README.
import Control.Monad (replicateM, replicateM_, zipWithM)
import System.Random (randomIO)
import Test.HUnit (assertBool)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF
main :: IO ()
main = do
-- Generate data where `y = x*3 + 8`.
xData <- replicateM 100 randomIO
let yData = [x*3 + 8 | x <- xData]
-- Fit linear regression model.
(w, b) <- fit xData yData
assertBool "w == 3" (abs (3 - w) < 0.001)
assertBool "b == 8" (abs (8 - b) < 0.001)
fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
-- Create tensorflow constants for x and y.
let x = TF.vector xData
y = TF.vector yData
-- Create scalar variables for slope and intercept.
w <- TF.initializedVariable 0
b <- TF.initializedVariable 0
-- Define the loss function.
let yHat = (x `TF.mul` w) `TF.add` b
loss = TF.square (yHat `TF.sub` y)
-- Optimize with gradient descent.
trainStep <- gradientDescent 0.001 loss [w, b]
replicateM_ 1000 (TF.run trainStep)
-- Return the learned parameters.
(TF.Scalar w', TF.Scalar b') <- TF.run (w, b)
return (w', b')
gradientDescent :: Float
-> TF.Tensor TF.Value Float
-> [TF.Tensor TF.Ref Float]
-> TF.Session TF.ControlNode
gradientDescent alpha loss params = do
let applyGrad param grad =
TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad))
TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params