1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-12-26 11:39:46 +01:00
tensorflow-haskell/tensorflow-ops/tests/FeedFetchBench.hs
fkm3 f170df9d13 Support fetching storable vectors + use them in benchmark (#50)
In addition, you can now fetch TensorData directly. This might be useful in
scenarios where you feed the result of a computation back in, like RNN.

Before:

benchmarking feedFetch/4 byte
time                 83.31 μs   (81.88 μs .. 84.75 μs)
                     0.997 R²   (0.994 R² .. 0.998 R²)
mean                 87.32 μs   (86.06 μs .. 88.83 μs)
std dev              4.580 μs   (3.698 μs .. 5.567 μs)
variance introduced by outliers: 55% (severely inflated)

benchmarking feedFetch/4 KiB
time                 114.9 μs   (111.5 μs .. 118.2 μs)
                     0.996 R²   (0.994 R² .. 0.998 R²)
mean                 117.3 μs   (116.2 μs .. 118.6 μs)
std dev              3.877 μs   (3.058 μs .. 5.565 μs)
variance introduced by outliers: 31% (moderately inflated)

benchmarking feedFetch/4 MiB
time                 109.0 ms   (107.9 ms .. 110.7 ms)
                     1.000 R²   (0.999 R² .. 1.000 R²)
mean                 108.6 ms   (108.2 ms .. 109.2 ms)
std dev              740.2 μs   (353.2 μs .. 1.186 ms)

After:

benchmarking feedFetch/4 byte
time                 82.92 μs   (80.55 μs .. 85.24 μs)
                     0.996 R²   (0.993 R² .. 0.998 R²)
mean                 83.58 μs   (82.34 μs .. 84.89 μs)
std dev              4.327 μs   (3.664 μs .. 5.375 μs)
variance introduced by outliers: 54% (severely inflated)

benchmarking feedFetch/4 KiB
time                 85.69 μs   (83.81 μs .. 87.30 μs)
                     0.997 R²   (0.996 R² .. 0.999 R²)
mean                 86.99 μs   (86.11 μs .. 88.15 μs)
std dev              3.608 μs   (2.854 μs .. 5.273 μs)
variance introduced by outliers: 43% (moderately inflated)

benchmarking feedFetch/4 MiB
time                 1.582 ms   (1.509 ms .. 1.677 ms)
                     0.970 R²   (0.936 R² .. 0.993 R²)
mean                 1.645 ms   (1.554 ms .. 1.981 ms)
std dev              490.6 μs   (138.9 μs .. 1.067 ms)
variance introduced by outliers: 97% (severely inflated)
2016-12-14 18:53:06 -08:00

43 lines
1.7 KiB
Haskell

-- Disable full-laziness to keep ghc from optimizing most of the benchmark away.
{-# OPTIONS_GHC -fno-full-laziness #-}
import Control.DeepSeq (NFData(rnf))
import Control.Exception (evaluate)
import Control.Monad.IO.Class (liftIO)
import Criterion.Main (defaultMain, bgroup, bench)
import Criterion.Types (Benchmarkable(..))
import qualified Data.Vector.Storable as S
import qualified TensorFlow.Core as TF
import qualified TensorFlow.Ops as TF
-- | Create 'Benchmarkable' for 'TF.Session'.
--
-- The entire benchmark will be run in a single tensorflow session. The
-- 'TF.Session' argument will be run once and then its result will be run N
-- times.
nfSession :: NFData b => TF.Session (a -> TF.Session b) -> a -> Benchmarkable
nfSession init x = Benchmarkable $ \m -> TF.runSession $ do
f <- init
-- Can't use replicateM because n is Int64.
let go n | n <= 0 = return ()
| otherwise = f x >>= liftIO . evaluate . rnf >> go (n-1)
go m
-- | Benchmark feeding and fetching a vector.
feedFetchBenchmark :: TF.Session (S.Vector Float -> TF.Session (S.Vector Float))
feedFetchBenchmark = do
input <- TF.build (TF.placeholder (TF.Shape [-1]))
output <- TF.build (TF.render (TF.identity input))
return $ \v -> do
let shape = TF.Shape [fromIntegral (S.length v)]
inputData = TF.encodeTensorData shape v
feeds = [TF.feed input inputData]
TF.runWithFeeds feeds output
main :: IO ()
main = defaultMain
[ bgroup "feedFetch"
[ bench "4 byte" $ nfSession feedFetchBenchmark (S.replicate 1 0)
, bench "4 KiB" $ nfSession feedFetchBenchmark (S.replicate 1024 0)
, bench "4 MiB" $ nfSession feedFetchBenchmark (S.replicate (1024^2) 0)
]
]