1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-13 20:39:47 +01:00
tensorflow-haskell/tensorflow-ops/tests/GradientTest.hs
jcmartin c66c912c32
Tensorflow 2.3.0 Support (#267)
* Tensorflow 2.3.0 building and passing tests.
* Added einsum and test.
* Added ByteString as a possible argument to a function.
* Support more data types for Adam.
* Move to later version of LTS on stackage.
* Added a wrapper module for convolution functions.
* Update ci build to use a later version of stack.
* Removed a deprecated import in GradientTest.
2020-11-06 11:32:21 -08:00

811 lines
31 KiB
Haskell

-- Copyright 2016 TensorFlow authors.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
import Data.Int (Int32, Int64)
import Data.List (sort)
import qualified Data.List as List
import Data.ProtoLens.TextFormat (showMessage)
import Test.Framework (defaultMain, Test)
import Lens.Family2 ((^..), (.~))
import Test.Framework.Providers.HUnit (testCase)
import Test.HUnit ((@=?), assertEqual, assertFailure)
import qualified Data.Vector as V
import System.Random (randomIO, randomRIO)
import Control.Monad(forM_, replicateM, zipWithM)
import Control.Monad.IO.Class (liftIO)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF (max, maximum, resizeBilinear', tile, pad, batchToSpaceND, spaceToBatchND, squeeze, sqrt, slice, shape, diag, batchMatMul, batchMatMul', conjugateTranspose)
import qualified TensorFlow.Convolution as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF hiding (zeroInitializedVariable, shape)
import qualified TensorFlow.Output as TF
import qualified TensorFlow.Types as TF
import qualified TensorFlow.Variable as TF
import Proto.Tensorflow.Core.Framework.Graph_Fields (node)
import Proto.Tensorflow.Core.Framework.NodeDef_Fields (op)
import TensorFlow.Session (SessionT)
testGradientSimple :: Test
testGradientSimple = testCase "testGradientSimple" $ do
let grads = do
x <- TF.render $ TF.scalar (3 :: Float)
b <- TF.render $ TF.scalar (4 :: Float)
let y = x `TF.mul` x `TF.add` b
TF.gradients y [x, b]
-- Assert that the gradients are right.
[dx, db] <- TF.runSession $ grads >>= TF.run
6 @=? TF.unScalar dx
1 @=? TF.unScalar db
-- Assert that the graph has the expected ops.
let graphDef = TF.asGraphDef grads
putStrLn $ showMessage graphDef
let ops = graphDef ^.. node . traverse . op
expected = [ "Const"
, "Mul"
, "Const"
, "Add"
-- Default output gradient of y.
, "Shape"
, "Const"
, "Fill"
-- Add gradient.
, "Shape"
, "Shape"
, "BroadcastGradientArgs"
, "Sum"
, "Sum"
, "Reshape"
, "Reshape"
-- Mul gradient.
, "Shape"
-- This Op gets dedup'd because the inputs are the same.
-- TODO(fmayle): The same would happen to the Mul and Sum ops
-- below if the gradient function didn't multiply one as
-- 'dz * y' and the other as 'x * dz'. We could change the
-- order, but I'm going to keep it the same as the python
-- version for now.
--
-- , "Shape"
, "BroadcastGradientArgs"
, "Mul"
, "Mul"
, "Sum"
, "Sum"
, "Reshape"
, "Reshape"
-- AddN to combine x's output gradients.
, "AddN"
]
sort expected @=? sort ops
testGradientDisconnected :: Test
testGradientDisconnected = testCase "testGradientDisconnected" $ do
let grads = do
x <- TF.render $ TF.scalar (3 :: Float)
b <- TF.render $ TF.scalar (4 :: Float)
TF.gradients x [x, b]
-- Assert that the gradients are right.
[dx, db] <- TF.runSession $ grads >>= TF.run
1 @=? TF.unScalar dx
0 @=? TF.unScalar db
-- Assert that the graph has the expected ops.
let graphDef = TF.asGraphDef grads
putStrLn $ showMessage graphDef
let ops = graphDef ^.. node . traverse . op
expected = [ "Const"
, "Const"
-- Default output gradient of x.
, "Shape"
, "Const"
, "Fill"
-- Default output gradient of b.
, "ZerosLike"
]
sort expected @=? sort ops
testGradientIncidental :: Test
testGradientIncidental = testCase "testGradientIncidental" $ do
let grads = do
x <- TF.render $ TF.scalar (3 :: Float)
b <- TF.render $ TF.scalar (4 :: Float)
w <- TF.render $ TF.diag $ TF.vector [ 1.0 :: Float ]
let incidental = b `TF.mul` w
let y = (x `TF.mul` b) `TF.add` incidental
TF.gradients y [x]
-- Assert that the gradients are right.
[dx] <- TF.runSession $ grads >>= TF.run
4 @=? TF.unScalar dx
-- Assert that the graph has the expected ops.
let graphDef = TF.asGraphDef grads
putStrLn $ showMessage graphDef
let ops = graphDef ^.. node . traverse . op
expected = [ "Add"
, "BroadcastGradientArgs"
, "BroadcastGradientArgs"
, "Const"
, "Const"
, "Const"
, "Const"
, "Diag"
, "Fill"
, "Mul"
, "Mul"
, "Mul"
, "Mul"
, "Reshape"
, "Reshape"
, "Reshape"
, "Reshape"
, "Shape"
, "Shape"
, "Shape"
, "Shape"
, "Shape"
, "Sum"
, "Sum"
, "Sum"
, "Sum"
]
sort expected @=? sort ops
testGradientPruning :: Test
testGradientPruning = testCase "testGradientPruning" $ do
let grads = do
x <- TF.render $ TF.scalar (3 :: Float)
b <- TF.render $ TF.scalar (4 :: Float)
bx <- TF.render $ b `TF.mul` x
let y = bx `TF.add` b
TF.gradients y [x, bx]
-- Assert that the gradients are right.
[dx, dxb] <- TF.runSession $ grads >>= TF.run
4 @=? TF.unScalar dx
1 @=? TF.unScalar dxb
-- Test that identical "stateful" ops work with createGraph.
testCreateGraphStateful :: Test
testCreateGraphStateful = testCase "testCreateGraphStateful" $ do
[dx, dy] <- TF.runSession $ do
let shape = TF.constant (TF.Shape [1]) [1]
x :: TF.Tensor TF.Value Float <- TF.truncatedNormal shape
y :: TF.Tensor TF.Value Float <- TF.truncatedNormal shape
TF.gradients (TF.expr x + TF.expr y * 3) [x, y] >>= TF.run
-- If this test fails, it will likely be caused by an exception within
-- `TF.gradients`. These asserts are extra.
1 @=? TF.unScalar dx
3 @=? TF.unScalar dy
-- Test that name scopes work with createGraph.
testCreateGraphNameScopes :: Test
testCreateGraphNameScopes = testCase "testCreateGraphNameScopes" $ do
[dx] <- TF.runSession $ do
let shape = TF.constant (TF.Shape [1]) [1]
x :: TF.Tensor TF.Value Float <-
TF.withNameScope "foo" (TF.truncatedNormal shape)
TF.gradients x [x] >>= TF.run
-- If this test fails, it will likely be caused by an exception within
-- `TF.gradients`. This assert is extra.
1 @=? TF.unScalar dx
-- Test that createGraph can handle graphs with diamond shapes.
testDiamond :: Test
testDiamond = testCase "testDiamond" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1]
let y = x `TF.mul` x
z = y*y
TF.gradients z [x] >>= TF.run
(4 :: Float) @=? TF.unScalar dx
testAddNGradient :: Test
testAddNGradient = testCase "testAddNGradient" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1, 2, 0 :: Float]
let y = TF.addN [x, x]
TF.gradients y [x] >>= TF.run
V.fromList [2, 2, 2 :: Float] @=? dx
testMeanGradient :: Test
testMeanGradient = testCase "testMeanGradient" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1, 2, 0 :: Float]
let y = TF.mean x (TF.vector [0 :: Int32])
TF.gradients y [x] >>= TF.run
V.fromList [1, 1, 1 :: Float] @=? dx
testMeanGradGrad :: Test
testMeanGradGrad = testCase "testMeanGradGrad" $ do
[ddx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1, 2, 0 :: Float]
let y = TF.mean x (TF.vector [0 :: Int32])
[dx] <- TF.gradients y [x]
TF.gradients dx [x] >>= TF.run
V.fromList [0, 0, 0 :: Float] @=? ddx
testMaxGradient :: Test
testMaxGradient = testCase "testMaxGradient" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1, 2, 3, 0, 1 :: Float]
let y = TF.max x (0 :: TF.Tensor TF.Build Int32)
TF.gradients y [x] >>= TF.run
V.fromList [0, 0, 1, 0, 0 :: Float] @=? dx
testConcatGradient :: Test
testConcatGradient = testCase "testConcatGradient" $ do
[dv,dv'] <- TF.runSession $ do
v <- TF.render $ TF.vector [1 :: Float]
v' <- TF.render $ TF.vector [2 :: Float]
let y = TF.concat (TF.scalar 0) [ v, v' ]
TF.gradients y [v,v'] >>= TF.run
V.fromList [1 :: Float] @=? dv
V.fromList [1 :: Float] @=? dv'
[dw,dw'] <- TF.runSession $ do
w <- TF.render $ TF.vector [1,2,3,4 :: Float]
w' <- TF.render $ TF.vector [5,6,7,8 :: Float]
let y = TF.concat (TF.scalar 0) [ w, w', w ]
TF.gradients y [w,w'] >>= TF.run
V.fromList [2,2,2,2 :: Float] @=? dw
V.fromList [1,1,1,1 :: Float] @=? dw'
verifyConcatGradients :: [[Int64]] -> Int32 -> IO ()
verifyConcatGradients shapes concatDim = do
let floatsFromShape :: [Int64] -> IO [Float]
floatsFromShape shape = replicateM (fromIntegral $ List.product shape) randomIO
constantZip = zipWithM $ \x shape -> TF.render $ TF.constant (TF.Shape shape) x
inputGrads <- mapM floatsFromShape shapes
inputs <- mapM floatsFromShape shapes
dinputs <- TF.runSession $ do
inputTensors <- inputs `constantZip` shapes
inputGradTensors <- inputGrads `constantZip` shapes
inputTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputTensors
inputGradTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputGradTensors
output <- TF.render $ inputTensor `TF.mul` inputGradTensor
TF.gradients output inputTensors >>= TF.run
(V.fromList <$> inputGrads) @=? dinputs
-- This test checks that the gradient of a concat op
-- is correct along the first, second, and third dimension.
testConcatGradientSimple :: Test
testConcatGradientSimple = testCase "testConcatGradientSimple" $ do
-- The following check is equivalent to ConcatTest._testGradientsSimple from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[10,x,2] | x <- [1,2,6]] 1
-- The following check is equivalent to ConcatTest._testGradientsFirstDim from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[x,10,2] | x <- [1,2,6]] 0
-- The following check is equivalent to ConcatTest._testGradientsLastDim from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[10,2,x] | x <- [1,2,6]] 2
-- This test checks that the gradient of a concat op
-- along a random dimension across random shapes is as expected.
-- This test is inspired by ConcatTest._RunAndVerifyGradientsRandom from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py, but also
-- verifies the gradient along negative concat dimensions.
testConcatRunAndVerifyGradientsRandom :: Test
testConcatRunAndVerifyGradientsRandom = testCase "testConcatRunAndVerifyGradientsRandom" $
forM_ [1..5 :: Int] $ \_ -> do
(shapes' :: [Int64]) <- replicateM 5 $ randomRIO (1, 5)
(numTensors :: Int) <- randomRIO (2, 10)
(concatDim :: Int) <- randomRIO (-4, 4)
(concatDimSizes :: [Int64]) <- replicateM numTensors $ randomRIO (1, 5)
let update i xs x = take i xs ++ x: drop (i+1) xs
concatDim' = concatDim `mod` length shapes'
shapes = map (update concatDim' shapes') concatDimSizes
verifyConcatGradients shapes $ fromIntegral concatDim
-- run single test like this:
-- stack --docker --docker-image=$IMAGE_NAME test tensorflow-ops:GradientTest --test-arguments -t"*MaximumGrad*"
testMaximumGrad :: Test
testMaximumGrad = testCase "testMaximumGrad" $ do
[gx, gy] <- TF.runSession $ do
x <- TF.render $ TF.vector [0 :: Float]
y <- TF.render $ TF.vector [0 :: Float]
let z = TF.maximum x y
TF.gradients z [x, y] >>= TF.run
V.fromList [1] @=? gx
V.fromList [1] @=? gy
testMaximumGradGrad :: Test
testMaximumGradGrad = testCase "testMaximumGradGrad" $ do
[ggx] <- TF.runSession $ do
x <- TF.render $ TF.vector [2 :: Float]
y <- TF.render $ TF.vector [1 :: Float]
let z = TF.maximum x y
[gx, _gy] <- TF.gradients z [x, y]
TF.gradients gx [x] >>= TF.run
V.fromList [0] @=? ggx
testReluGrad :: Test
testReluGrad = testCase "testReluGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [2 :: Float]
let y = TF.relu x
TF.gradients y [x] >>= TF.run
V.fromList [1] @=? dx
testReluGradGrad :: Test
testReluGradGrad = testCase "testReluGradGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [2 :: Float]
let y = TF.relu x
[y'] <- TF.gradients y [x]
TF.gradients y' [x] >>= TF.run
V.fromList [0] @=? dx
testTanhGrad :: Test
testTanhGrad = testCase "testTanhGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [0 :: Float]
let y = TF.tanh x
TF.gradients y [x] >>= TF.run
V.fromList [1] @=? dx
testSigmoidGrad :: Test
testSigmoidGrad = testCase "testSigmoidGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [0 :: Float]
let y = TF.sigmoid x
TF.gradients y [x] >>= TF.run
V.fromList [0.25] @=? dx
testExpandDims :: Test
testExpandDims =
testCase "testExpandDims" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 3 :: Int64]
let y = TF.expandDims x $ TF.constant (TF.Shape [1]) [0 :: Int32]
calculateGradWithShape y x
V.fromList [1, 1, 1, 1, 1, 1] @=? dx
V.fromList [1, 2, 3] @=? s
testReshape :: Test
testReshape =
testCase "testReshape" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 2 :: Int64]
let y = TF.reshape x $ TF.constant (TF.Shape [2]) [1, 4 :: Int32]
calculateGradWithShape y x
V.fromList [1, 1, 1, 1] @=? dx
V.fromList [2, 2] @=? s
testPad :: Test
testPad =
testCase "testPad" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 2, 3 :: Int64]
let y = TF.pad x $ TF.constant (TF.Shape [3, 2]) [1, 4, 1, 1, 2, 3 :: Int32]
calculateGradWithShape y x
V.fromList [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] @=? dx
V.fromList [2, 2, 3] @=? s
testSqrt :: Test
testSqrt = testCase "testSqrt" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [0.0625 :: Float]
let y = TF.sqrt x
TF.gradients y [x] >>= TF.run
V.fromList [2] @=? dx
testSlice :: Test
testSlice =
testCase "testSlice" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 3, 4 :: Int64]
(z :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 2 :: Int64]
let y = TF.slice x (TF.constant (TF.Shape [3]) [1, 1, 1 :: Int32]) (TF.shape z)
calculateGradWithShape y x
let expected =
[0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 1, 1, 0,
0, 1, 1, 0]
V.fromList expected @=? dx
V.fromList [2, 3, 4] @=? s
testBatchToSpaceND :: Test
testBatchToSpaceND =
testCase "testBatchToSpaceND" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.constant (TF.Shape [4, 1, 1, 1 :: Int64]) [1, 2, 3, 4]
shape <- TF.render $ TF.vector [2, 2 :: Int32]
crops <- TF.render $ TF.constant (TF.Shape [2, 2]) [0, 0, 0, 0 :: Int32]
let y = TF.batchToSpaceND x shape crops
calculateGradWithShape y x
V.fromList [1, 1, 1, 1] @=? dx
V.fromList [4, 1, 1, 1] @=? s
testSpaceToBatchND :: Test
testSpaceToBatchND =
testCase "testSpaceToBatchND" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.constant (TF.Shape [1, 2, 2, 1 :: Int64]) [1, 2, 3, 4]
shape <- TF.render $ TF.vector [2, 2 :: Int32]
paddings <- TF.render $ TF.constant (TF.Shape [2, 2]) [0, 0, 0, 0 :: Int32]
let y = TF.spaceToBatchND x shape paddings
calculateGradWithShape y x
V.fromList [1, 1, 1, 1] @=? dx
V.fromList [1, 2, 2, 1] @=? s
testSqueeze :: Test
testSqueeze =
testCase "testSqueeze" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 3 :: Int64]
let y = TF.squeeze x
calculateGradWithShape y x
V.fromList [1, 1, 1, 1, 1, 1] @=? dx
V.fromList [1, 2, 3] @=? s
calculateGradWithShape :: TF.Tensor TF.Build Float -> TF.Tensor TF.Value Float -> SessionT IO ([V.Vector Float], [V.Vector Int32])
calculateGradWithShape y x = do
gs <- TF.gradients y [x]
xs <- TF.run gs
(shapes :: [V.Vector Int32]) <- mapM (TF.run . TF.shape) gs
return (xs, shapes)
testFillGrad :: Test
testFillGrad = testCase "testFillGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.scalar (9 :: Float)
let shape = TF.vector [2, 3 :: Int32]
let y = TF.fill shape x
TF.gradients y [x] >>= TF.run
V.fromList [6] @=? dx
testTileGrad :: Test
testTileGrad = testCase "testTileGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [5, 9 :: Float]
let multiples = TF.vector [2 :: Int32]
let y = TF.tile x multiples
TF.gradients y [x] >>= TF.run
V.fromList [2, 2] @=? dx
testTile2DGrad :: Test
testTile2DGrad = testCase "testTileGrad2D" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let shape = TF.vector [3, 2 :: Int32]
x <- TF.render $ TF.fill shape (TF.scalar (1::Float))
let multiples = TF.vector [2, 3 :: Int32]
let y = TF.tile x multiples
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
V.fromList [6, 6, 6, 6, 6, 6::Float] @=? (dx :: V.Vector Float)
testResizeBilinearGrad :: Test
testResizeBilinearGrad = testCase "testResizeBilinearGrad" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let shape = TF.vector [1, 2, 2, 1 :: Int32]
x <- TF.render $ TF.fill shape (TF.scalar (1 :: Float))
let outSize = TF.vector [4, 4 :: Int32]
align = TF.opAttr "align_corners" .~ True
y = TF.resizeBilinear' align x outSize
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
let expect = V.fromList [4, 4, 4, 4 :: Float]
near = 0.00001 > (V.sum $ V.zipWith (-) expect (dx :: V.Vector Float))
near @=? True
matMulGradient :: Test
matMulGradient = testCase "matMulGradients" $ do
let dfBuild = do
x <- TF.render $ TF.zeros $ TF.Shape [3, 1 :: Int64]
w <- TF.zeroInitializedVariable $ TF.Shape [1, 2 :: Int64]
let f = x `TF.matMul` TF.readValue w :: TF.Tensor TF.Build Float
dfs <- TF.gradients f [x]
return (x, dfs)
(xShape, dxShape) <- TF.runSession $ do
(x, [dx]) <- TF.build dfBuild
TF.run (TF.shape x, TF.shape dx)
assertEqual "Shape of gradient must match shape of input" xShape (dxShape :: V.Vector Int32)
-- test that gradient of matMul can be taken gradient of
matMulGradGrad :: Test
matMulGradGrad = testCase "matMulGradGrad" $ do
let width = 2 :: Int64
batch = 4 :: Int64
let tower = do
x <- TF.render $ TF.zeros $ TF.Shape [batch, 1]
w <- TF.zeroInitializedVariable $ TF.Shape [1, width]
let f = x `TF.matMul` TF.readValue w
l1 <- TF.gradients f [x]
let dfdx = head l1 -- avoid MonadFail
let f'x = TF.reduceSum dfdx
l2 <- TF.gradients f'x [w] -- take gradient again (this time over w)
let dfdw = head l2
return [TF.readValue w, TF.expr dfdw]
TF.runSession $ do
l <- TF.build tower
(w, dfdw) <-
case l of
[w, dfdw] -> pure (w, dfdw)
_ -> liftIO $ assertFailure "pattern-match failure in matMulGradMad"
(wShape, dfdwShape) <- TF.run (TF.shape w, TF.shape dfdw)
liftIO $ assertEqual "Shape of gradient must match input" wShape (dfdwShape :: V.Vector Int32)
let step = w `TF.add` dfdw
w0 <- TF.run step
liftIO $ V.fromList [4, 4 :: Float] @=? w0
-- test that gradient of matMul deals correctly with transpose_a and transpose_b
matMulTransposeGradient :: (Bool, Bool) -> Test
matMulTransposeGradient txw = testCase ("matMulTransposeGradients " ++ show txw) $ do
let (transposeX, transposeW) = txw
let dfBuild = do
let xShape = TF.Shape [3, 1 :: Int64]
let xZeros = TF.zeros xShape
x <- TF.render $ if transposeX then TF.matTranspose xZeros else xZeros
variable <- TF.zeroInitializedVariable $ TF.Shape [1, 2 :: Int64]
let wv = if transposeW then TF.matTranspose (TF.readValue variable) else TF.readValue variable
let f = TF.matMul' (transAttrs transposeX transposeW) x wv :: TF.Tensor TF.Build Float
w <- TF.render wv
ds <- TF.gradients f [x, w]
return (x, w, ds)
TF.runSession $ do
(x, w, d) <- TF.build dfBuild
(dx, dw) <-
case d of
[dx, dw] -> pure (dx, dw)
_ -> liftIO $ assertFailure "pattern-match failure in matMulTransposeGradient"
xShape <- TF.run $ TF.shape x
dxShape <- TF.run $ TF.shape dx
liftIO $ assertEqual "xShape must match dxShape" xShape (dxShape :: V.Vector Int32)
wShape <- TF.run $ TF.shape w
dwShape <- TF.run $ TF.shape dw
liftIO $ assertEqual "wShape must match dwShape" wShape (dwShape :: V.Vector Int32)
transAttrs :: (TF.Attribute a,
TF.Attribute b) =>
a -> b -> TF.OpDef -> TF.OpDef
transAttrs a b =
(TF.opAttr "transpose_a" .~ a) . (TF.opAttr "transpose_b" .~ b)
batchMatMulGradient :: Test
batchMatMulGradient = testCase "batchMatMulGradients" $ do
let dfBuild = do
x <- TF.render $ TF.zeros $ TF.Shape [2,3, 1 :: Int64]
w <- TF.zeroInitializedVariable $ TF.Shape [2,1, 2 :: Int64]
let f = x `TF.batchMatMul` TF.readValue w :: TF.Tensor TF.Build Float
dfs <- TF.gradients f [x]
return (x, dfs)
(xShape, dxShape) <- TF.runSession $ do
(x, dl) <- TF.build dfBuild
dx <-
case dl of
[dx] -> pure dx
_ -> liftIO $ assertFailure "pattern-match failure in batchMatMulGradient"
TF.run (TF.shape x, TF.shape dx)
assertEqual "Shape of gradient must match shape of input" xShape (dxShape :: V.Vector Int32)
-- test that gradient of batchMatMul can be taken gradient of
batchMatMulGradGrad :: Test
batchMatMulGradGrad = testCase "batchMatMulGradGrad" $ do
let width = 2 :: Int64
height = 3 :: Int64
batch = 4 :: Int64
let tower = do
x <- TF.render $ TF.zeros $ TF.Shape [batch, height, 1]
w <- TF.zeroInitializedVariable $ TF.Shape [batch, 1, width]
let f = x `TF.batchMatMul` TF.readValue w
l1 <- TF.gradients f [x]
let dfdx = head l1
let f'x = TF.sum dfdx (TF.vector [1, 2 :: Int32])
l2 <- TF.gradients f'x [w] -- take gradient again (this time over w)
let dfdw = head l2
return [TF.readValue w, TF.expr dfdw]
TF.runSession $ do
l <- TF.build tower
(w, dfdw) <-
case l of
[w, dfdw] -> pure (w, dfdw)
_ -> liftIO $ assertFailure "pattern-match failure in batchMatMulGradGrad"
(wShape, dfdwShape) <- TF.run (TF.shape w, TF.shape dfdw)
liftIO $ assertEqual "Shape of gradient must match input" wShape (dfdwShape :: V.Vector Int32)
let step = w `TF.add` dfdw
w0 <- TF.run step
liftIO $ V.fromList [3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0 :: Float] @=? w0
-- test that gradient of batchMatMul deals correctly with adj_x and adj_y
batchMatMulAdjointGradient :: (Bool, Bool) -> Test
batchMatMulAdjointGradient axw = testCase ("batchMatMulAdjointGradients " ++ show axw) $ do
let (adjX, adjW) = axw
let dfBuild = do
let xShape = TF.Shape [2, 3, 1 :: Int64]
let xZeros = TF.zeros xShape
x <- TF.render $ if adjX then TF.conjugateTranspose xZeros (TF.vector [0, 2, 1 :: Int32]) else xZeros
variable <- TF.zeroInitializedVariable $ TF.Shape [2, 1, 2 :: Int64]
let wv = if adjW then TF.conjugateTranspose (TF.readValue variable) (TF.vector [0, 2, 1 :: Int32]) else TF.readValue variable
let f = TF.batchMatMul' (adjAttrs adjX adjW) x wv :: TF.Tensor TF.Build Float
w <- TF.render wv
ds <- TF.gradients f [x, w]
return (x, w, ds)
TF.runSession $ do
(x, w, d) <- TF.build dfBuild
(dx, dw) <-
case d of
[dx, dw] -> pure (dx, dw)
_ -> liftIO $ assertFailure "pattern-match failure in batchMatMulAdjointGradient"
xShape <- TF.run $ TF.shape x
dxShape <- TF.run $ TF.shape dx
liftIO $ assertEqual "xShape must match dxShape" xShape (dxShape :: V.Vector Int32)
wShape <- TF.run $ TF.shape w
dwShape <- TF.run $ TF.shape dw
liftIO $ assertEqual "wShape must match dwShape" wShape (dwShape :: V.Vector Int32)
adjAttrs :: (TF.Attribute x,
TF.Attribute y) =>
x -> y -> TF.OpDef -> TF.OpDef
adjAttrs x y =
(TF.opAttr "adj_x" .~ x) . (TF.opAttr "adj_y" .~ y)
-- TODO check gradient with regard to filter also
testConv2DBackpropInputGrad :: Test
testConv2DBackpropInputGrad = testCase "testConv2DBackpropInputGrad" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32] -- [batch, h, w, in_channels]
let conv_out_shape = TF.vector [1, 1, 1, 1 :: Int32] -- [batch, h, w, out_channels]
x <- TF.render $ TF.fill conv_out_shape (TF.scalar (1::Float))
let filterShape = TF.vector [2, 2, 1, 1 :: Int32] -- [fh, fw, inc, out]
filter' <- TF.render $ TF.fill filterShape (TF.scalar (1::Float))
let y = TF.conv2DBackpropInput'
(TF.opAttr "strides" .~ [1::Int64, 1, 1, 1])
TF.PaddingValid TF.ChannelLast conv_input_shape filter' x
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
V.fromList [4::Float] @=? (dx :: V.Vector Float)
testDepthwiseConv2dGrad :: Test
testDepthwiseConv2dGrad = testCase "testDepthwiseConv2dGrad" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32]
x <- TF.render $ TF.fill conv_input_shape (TF.scalar (2 :: Float))
let filterShape = TF.vector [2, 2, 1, 1 :: Int32]
filter' <- TF.render $ TF.fill filterShape (TF.scalar (1 :: Float))
let y = TF.depthwiseConv2dNative'
(TF.opAttr "strides" .~ [1 :: Int64, 1, 1, 1])
TF.PaddingValid TF.ChannelLast x filter'
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
V.fromList [1, 1, 1, 1 :: Float] @=? (dx :: V.Vector Float)
-- TODO also test filter gradient
testDepthwiseConv2dBackpropInputGrad :: Test
testDepthwiseConv2dBackpropInputGrad = testCase "testDepthwiseConv2dBackpropInputGrad" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32]
let conv_out_shape = TF.vector [1, 1, 1, 1 :: Int32] -- [batch, h, w, out_channels]
x <- TF.render $ TF.fill conv_out_shape (TF.scalar (1::Float))
let filterShape = TF.vector [2, 2, 1, 1 :: Int32]
filter' <- TF.render $ TF.fill filterShape (TF.scalar (1 :: Float))
let y = TF.depthwiseConv2dNativeBackpropInput'
(TF.opAttr "strides" .~ [1 :: Int64, 1, 1, 1])
TF.PaddingValid TF.ChannelLast conv_input_shape filter' x
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
V.fromList [4::Float] @=? (dx :: V.Vector Float)
main :: IO ()
main = defaultMain
[ testGradientSimple
, testGradientDisconnected
, testGradientIncidental
, testGradientPruning
, testCreateGraphStateful
, testCreateGraphNameScopes
, testDiamond
, testAddNGradient
, testMeanGradient
, testMeanGradGrad
, testMaxGradient
, testConcatGradient
, testConcatGradientSimple
, testConcatRunAndVerifyGradientsRandom
, testMaximumGrad
, testMaximumGradGrad
, testReluGrad
, testReluGradGrad
, testTanhGrad
, testSigmoidGrad
, testExpandDims
, testReshape
, testPad
, testSqrt
, testSlice
, testBatchToSpaceND
, testSpaceToBatchND
, testSqueeze
, testFillGrad
, testTileGrad
, testTile2DGrad
, testResizeBilinearGrad
, matMulGradient
, matMulGradGrad
, matMulTransposeGradient (False, False)
, matMulTransposeGradient (False, True)
, matMulTransposeGradient (True, False)
, matMulTransposeGradient (True, True)
, batchMatMulGradient
, batchMatMulGradGrad
, batchMatMulAdjointGradient (False, False)
, batchMatMulAdjointGradient (False, True)
, batchMatMulAdjointGradient (True, False)
, batchMatMulAdjointGradient (True, True)
, testConv2DBackpropInputGrad
, testDepthwiseConv2dGrad
, testDepthwiseConv2dBackpropInputGrad
]