1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-11 19:39:49 +01:00
Haskell bindings for TensorFlow
Find a file
Judah Jacobson 80a5a4a7d0 Fill out the modules in tensorflow-proto. (#132)
That package now includes everything in the `tensorflow/core:protos_all` target:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/BUILD#L131

I also made all of the modules exposed for simplicity.  (As a particular
example: `MetaGraph`, which was previously in `other-modules`, is useful for
constructing some TensorFlow serving RPCs.)

* Use the new release of proto-lens-{protoc,protobuf-types}.
2017-06-08 20:24:42 -07:00
ci_build Switched to lts-8.13, added custom-setup. (#106) 2017-05-09 20:49:51 -07:00
docker Update to 1.0 release and newest proto-lens (#77) 2017-02-22 15:24:45 -08:00
docs/haddock Regenerate the Haddock docs. (#95) 2017-04-08 07:14:47 -07:00
tensorflow Add initializedValue function for Variable (#124) 2017-05-20 21:42:45 -07:00
tensorflow-core-ops Fix 'sdist' for tensorflow-core-ops. (#113) 2017-05-10 16:29:31 -07:00
tensorflow-logging Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-mnist Add Minimize module with gradient descent and adam implementations (#125) 2017-05-25 19:19:22 -07:00
tensorflow-mnist-input-data Modifying tensorflow-mnist-input-data's setup to download MNIST through http proxy if necessary (#127) 2017-05-28 22:56:15 -07:00
tensorflow-opgen Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-ops Add Minimize module with gradient descent and adam implementations (#125) 2017-05-25 19:19:22 -07:00
tensorflow-proto Fill out the modules in tensorflow-proto. (#132) 2017-06-08 20:24:42 -07:00
tensorflow-records Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-records-conduit Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-test Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
third_party Uprev to TF 1.0rc1. (#69) 2017-02-09 14:20:43 -08:00
tools call sudo consistently within OSX build script (#91) 2017-04-03 20:27:22 -07:00
.gitignore Optimize fetching (#27) 2016-11-17 10:41:49 -08:00
.gitmodules Initial commit 2016-10-24 19:26:42 +00:00
ChangeLog.md Add initializedValue function for Variable (#124) 2017-05-20 21:42:45 -07:00
CONTRIBUTING.md Initial commit 2016-10-24 19:26:42 +00:00
LICENSE Initial commit 2016-10-24 19:26:42 +00:00
README.md Note that we require stack-1.4.0 or newer. 2017-06-02 22:29:40 -07:00
stack.yaml Fill out the modules in tensorflow-proto. (#132) 2017-06-08 20:24:42 -07:00

Build Status

The tensorflow-haskell package provides Haskell bindings to TensorFlow.

This is not an official Google product.

Documentation

https://tensorflow.github.io/haskell/haddock/

TensorFlow.Core is a good place to start.

Examples

Neural network model for the MNIST dataset: code

Toy example of a linear regression model (full code):

import Control.Monad (replicateM, replicateM_)
import System.Random (randomIO)
import Test.HUnit (assertBool)

import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Minimize as TF
import qualified TensorFlow.Ops as TF hiding (initializedVariable)
import qualified TensorFlow.Variable as TF

main :: IO ()
main = do
    -- Generate data where `y = x*3 + 8`.
    xData <- replicateM 100 randomIO
    let yData = [x*3 + 8 | x <- xData]
    -- Fit linear regression model.
    (w, b) <- fit xData yData
    assertBool "w == 3" (abs (3 - w) < 0.001)
    assertBool "b == 8" (abs (8 - b) < 0.001)

fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
    -- Create tensorflow constants for x and y.
    let x = TF.vector xData
        y = TF.vector yData
    -- Create scalar variables for slope and intercept.
    w <- TF.initializedVariable 0
    b <- TF.initializedVariable 0
    -- Define the loss function.
    let yHat = (x `TF.mul` TF.readValue w) `TF.add` TF.readValue b
        loss = TF.square (yHat `TF.sub` y)
    -- Optimize with gradient descent.
    trainStep <- TF.minimizeWith (TF.gradientDescent 0.001) loss [w, b]
    replicateM_ 1000 (TF.run trainStep)
    -- Return the learned parameters.
    (TF.Scalar w', TF.Scalar b') <- TF.run (TF.readValue w, TF.readValue b)
    return (w', b')

Installation Instructions

Note: building this repository with stack requires version 1.4.0 or newer.

Build with Docker on Linux

As an expedient we use docker for building. Once you have docker working, the following commands will compile and run the tests.

git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
IMAGE_NAME=tensorflow/haskell:v0
docker build -t $IMAGE_NAME docker
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test

There is also a demo application:

cd tensorflow-mnist
stack --docker --docker-image=$IMAGE_NAME build --exec Main

Build on Mac OS X

Run the install_osx_dependencies.sh script in the tools/ directory. The script installs dependencies via Homebrew and then downloads and installs the TensorFlow library on your machine under /usr/local.

After running the script to install system dependencies, build the project with stack:

stack test