1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-09 02:19:49 +01:00
tensorflow-haskell/tensorflow-mnist/tests/ParseTest.hs
Judah Jacobson a7cbc27d36 Distinguish between "rendered" and "unrendered" Tensors. (#88)
Distinguish between "rendered" and "unrendered" Tensors.

There are now three types of `Tensor`:

- `Tensor Value a`: rendered value
- `Tensor Ref a`: rendered reference
- `Tensor Build a` : unrendered value

The extra bookkeeping makes it easier to track (and enforce) which tensors are
rendered or not.  For examples where this has been confusing in the past, see

With this change, pure ops look similar to before, returning `Tensor Build`
instead of `Tensor Value`.  "Stateful" (monadic) ops are unchanged.  For
example:

    add :: OneOf [..] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
    assign :: (MonadBuild m, TensorType t)
           => Tensor Ref t -> Tensor v'2 t -> m (Tensor Ref t)

The `gradients` function now requires that the variables over which it's
differentiating are pre-rendered:

    gradients :: (..., Rendered v2) => Tensor v1 a -> [Tensor v2 a]
              -> m [Tensor Value a]

(`Rendered v2` means that `v2` is either a `Ref` or a `Value`.)

Additionally, the implementation of `gradients` now takes care to render every
intermediate value when performing the reverse accumulation.  I suspect this
fixes an exponential blowup for complicated expressions.
2017-04-11 09:30:21 +02:00

175 lines
6.4 KiB
Haskell

-- Copyright 2016 TensorFlow authors.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE OverloadedStrings #-}
module Main where
import Control.Monad.IO.Class (liftIO)
import Data.Int (Int64)
import Data.Text (Text)
import qualified Data.Text.IO as Text
import Lens.Family2 ((&), (.~), (^.))
import Prelude hiding (abs)
import Proto.Tensorflow.Core.Framework.Graph
( GraphDef(..)
, version
, node )
import Proto.Tensorflow.Core.Framework.NodeDef
( NodeDef(..)
, op )
import System.IO as IO
import TensorFlow.Examples.MNIST.InputData
import TensorFlow.Examples.MNIST.Parse
import TensorFlow.Examples.MNIST.TrainedGraph
import TensorFlow.Build
( asGraphDef
, addGraphDef
, Build
)
import TensorFlow.Tensor
( Tensor(..)
, Ref
, feed
, render
, tensorFromName
, tensorValueFromName
)
import TensorFlow.Ops
import TensorFlow.Session
(runSession, run, run_, runWithFeeds, build)
import TensorFlow.Types (TensorDataType(..), Shape(..), unScalar)
import Test.Framework (Test)
import Test.Framework.Providers.HUnit (testCase)
import Test.HUnit ((@=?), Assertion)
import Google.Test
import qualified Data.Vector as V
-- | Test that a file can be read and the GraphDef proto correctly parsed.
testReadMessageFromFileOrDie :: Test
testReadMessageFromFileOrDie = testCase "testReadMessageFromFileOrDie" $ do
-- Check the function on a known well-formatted file.
mnist <- readMessageFromFileOrDie =<< mnistPb :: IO GraphDef
-- Simple field read.
1 @=? mnist^.version
-- Count the number of nodes.
let nodes :: [NodeDef]
nodes = mnist^.node
100 @=? length nodes
-- Check that the expected op is found at an arbitrary index.
"Variable" @=? nodes!!6^.op
-- | Parse the test set for label and image data. Will only fail if the file is
-- missing or incredibly corrupt.
testReadMNIST :: Test
testReadMNIST = testCase "testReadMNIST" $ do
imageData <- readMNISTSamples =<< testImageData
10000 @=? length imageData
labelData <- readMNISTLabels =<< testLabelData
10000 @=? length labelData
testNodeName :: Text -> Tensor Build a -> Assertion
testNodeName n g = n @=? opName
where
opName = head (gDef^.node)^.op
gDef = asGraphDef $ render g
testGraphDefGen :: Test
testGraphDefGen = testCase "testGraphDefGen" $ do
-- Test the inferred operation type.
let f0 :: Tensor Build Float
f0 = 0
testNodeName "Const" f0
testNodeName "Add" $ 1 + f0
testNodeName "Mul" $ 1 * f0
testNodeName "Sub" $ 1 - f0
testNodeName "Abs" $ abs f0
testNodeName "Sign" $ signum f0
testNodeName "Neg" $ -f0
-- Test the grouping.
testNodeName "Add" $ 1 + f0 * 2
testNodeName "Add" $ 1 + (f0 * 2)
testNodeName "Mul" $ (1 + f0) * 2
-- | Convert a simple graph to GraphDef, load it, run it, and check the output.
testGraphDefExec :: Test
testGraphDefExec = testCase "testGraphDefExec" $ do
let graphDef = asGraphDef $ render $ scalar (5 :: Float) * 10
runSession $ do
addGraphDef graphDef
x <- run $ tensorValueFromName "Mul_2"
liftIO $ (50 :: Float) @=? unScalar x
-- | Load MNIST from a GraphDef and the weights from a checkpoint and run on
-- sample data.
testMNISTExec :: Test
testMNISTExec = testCase "testMNISTExec" $ do
-- Switch to unicode to enable pretty printing of MNIST digits.
IO.hSetEncoding IO.stdout IO.utf8
-- Parse the Graph definition, samples, & labels from files.
mnist <- readMessageFromFileOrDie =<< mnistPb :: IO GraphDef
mnistSamples <- readMNISTSamples =<< testImageData
mnistLabels <- readMNISTLabels =<< testLabelData
-- Select a sample to run on and convert it into a TensorData of Floats.
let idx = 12
sample :: MNIST
sample = mnistSamples !! idx
label = mnistLabels !! idx
tensorSample = encodeTensorData (Shape [1,784]) floatSample
where
floatSample :: V.Vector Float
floatSample = V.map fromIntegral sample
Text.putStrLn $ drawMNIST sample
-- Execute the graph on the sample data.
runSession $ do
-- The version of this session is 0, but the version of the graph is 1.
-- Change the graph version to 0 so they're compatible.
build $ addGraphDef $ mnist & version .~ 0
-- Define nodes that restore saved weights and biases.
let bias, wts :: Tensor Ref Float
bias = tensorFromName "Variable"
wts = tensorFromName "weights"
wtsCkptPath <- liftIO wtsCkpt
biasCkptPath <- liftIO biasCkpt
-- Run those restoring nodes on the graph in the current session.
run_ =<< (sequence :: Monad m => [m a] -> m [a])
[ restore wtsCkptPath wts
, restoreFromName biasCkptPath "bias" bias
]
-- Encode the expected sample data as one-hot data.
let ty = encodeTensorData [10] oneHotLabels
where oneHotLabels = V.replicate 10 (0 :: Float) V.// updates
updates = [(fromIntegral label, 1)]
let feeds = [ feed (tensorValueFromName "x-input") tensorSample
, feed (tensorValueFromName "y-input") ty
]
-- Run the graph with the input feeds and read the ArgMax'd result from
-- the test (not training) side of the evaluation.
x <- runWithFeeds feeds $ tensorValueFromName "test/ArgMax"
-- Print the trained model's predicted outcome.
liftIO $ putStrLn $ "Expectation: " ++ show label ++ "\n"
++ "Prediction: " ++ show (unScalar x :: Int64)
-- Check whether the prediction matches the expectation.
liftIO $ (fromInteger . toInteger $ label :: Int64) @=? unScalar x
main :: IO ()
main = googleTest [ testReadMessageFromFileOrDie
, testReadMNIST
, testGraphDefGen
, testGraphDefExec
, testMNISTExec]