mirror of
https://github.com/tensorflow/haskell.git
synced 2024-12-28 12:39:46 +01:00
6b19e54722
* Update README to refer to 2.3.0-gpu. * Remove old package documentation from haddock directory.
462 lines
30 KiB
Text
462 lines
30 KiB
Text
-- Hoogle documentation, generated by Haddock
|
|
-- See Hoogle, http://www.haskell.org/hoogle/
|
|
|
|
|
|
-- | Friendly layer around TensorFlow bindings.
|
|
--
|
|
-- Please see README.md
|
|
@package tensorflow-ops
|
|
@version 0.3.0.0
|
|
|
|
module TensorFlow.Convolution
|
|
|
|
-- | Convolution padding.
|
|
data Padding
|
|
|
|
-- | output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides[i])
|
|
PaddingValid :: Padding
|
|
|
|
-- | output_spatial_shape[i] = ceil( (input_spatial_shape[i] -
|
|
-- (spatial_filter_shape[i]-1) * dilation_rate[i]) / strides[i])
|
|
PaddingSame :: Padding
|
|
|
|
-- | Matrix format.
|
|
data DataFormat
|
|
|
|
-- | Channel is the last dimension (e.g. NWC, NHWC, NDHWC)
|
|
ChannelLast :: DataFormat
|
|
|
|
-- | Channel is the first dimension after N (e.g. NCW, NCHW, NCDHW)
|
|
ChannelFirst :: DataFormat
|
|
|
|
-- | 2D Convolution with default parameters.
|
|
conv2D :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 t -> Tensor Build t
|
|
conv2D' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 t -> Tensor Build t
|
|
|
|
-- | 2D convolution backpropagation filter with default parameters.
|
|
conv2DBackpropFilter :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 Int32 -> Tensor v3 t -> Tensor Build t
|
|
conv2DBackpropFilter' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 Int32 -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | 2D convolution backpropagation input with default parameters.
|
|
conv2DBackpropInput :: OneOf '[Word16, Double, Float] t => Tensor v1 Int32 -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
conv2DBackpropInput' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 Int32 -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | 3D Convolution with default parameters.
|
|
conv3D :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 t -> Tensor Build t
|
|
conv3D' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 t -> Tensor Build t
|
|
|
|
-- | 3D convolution backpropagation filter with default parameters.
|
|
conv3DBackpropFilter :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
conv3DBackpropFilter' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | 3D convolution backpropagation filter with default parameters.
|
|
conv3DBackpropFilterV2 :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 Int32 -> Tensor v3 t -> Tensor Build t
|
|
conv3DBackpropFilterV2' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 Int32 -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | 3D convolution backpropagation input with default parameters.
|
|
conv3DBackpropInput :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
conv3DBackpropInput' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | 3D convolution backpropagation input with default parameters.
|
|
conv3DBackpropInputV2 :: (OneOf '[Word16, Double, Float] t, OneOf '[Int32, Int64] tshape) => Tensor v1 tshape -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
conv3DBackpropInputV2' :: (OneOf '[Word16, Double, Float] t, OneOf '[Int32, Int64] tshape) => OpParams -> Padding -> DataFormat -> Tensor v1 tshape -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | Depth-wise 2D convolution native with default parameters.
|
|
depthwiseConv2dNative :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 t -> Tensor Build t
|
|
depthwiseConv2dNative' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 t -> Tensor Build t
|
|
|
|
-- | Depth-wise 2D convolution native backpropagation filter with default
|
|
-- parameters.
|
|
depthwiseConv2dNativeBackpropFilter :: OneOf '[Word16, Double, Float] t => Tensor v1 t -> Tensor v2 Int32 -> Tensor v3 t -> Tensor Build t
|
|
depthwiseConv2dNativeBackpropFilter' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 t -> Tensor v2 Int32 -> Tensor v3 t -> Tensor Build t
|
|
|
|
-- | Depth-wise 2D convolution native backpropagation input with default
|
|
-- parameters.
|
|
depthwiseConv2dNativeBackpropInput :: OneOf '[Word16, Double, Float] t => Tensor v1 Int32 -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
depthwiseConv2dNativeBackpropInput' :: OneOf '[Word16, Double, Float] t => OpParams -> Padding -> DataFormat -> Tensor v1 Int32 -> Tensor v2 t -> Tensor v3 t -> Tensor Build t
|
|
|
|
|
|
-- | This module contains definitions for some built-in TensorFlow
|
|
-- operations.
|
|
--
|
|
-- Note that certain, "stateful" ops like <tt>variable</tt> and
|
|
-- <tt>assign</tt> return a <a>Build</a> action (e.g., <tt>Build (Tensor
|
|
-- Ref a)</tt> instead of a pure value; the returned <a>Tensor</a>s are
|
|
-- always rendered in the current <a>Build</a> context. This approach
|
|
-- helps us avoid problems with inlining or common subexpression
|
|
-- elimination, by writing
|
|
--
|
|
-- <pre>
|
|
-- do
|
|
-- v <- variable []
|
|
-- w <- assign v 3
|
|
-- render $ w * w
|
|
-- </pre>
|
|
--
|
|
-- instead of
|
|
--
|
|
-- <pre>
|
|
-- let
|
|
-- v = variable []
|
|
-- w = assign v 3
|
|
-- in w * w
|
|
-- </pre>
|
|
--
|
|
-- since the latter could be reasonably transformed by the compiler into
|
|
-- (or vice versa)
|
|
--
|
|
-- <pre>
|
|
-- let
|
|
-- v = variable []
|
|
-- w = assign v 3
|
|
-- w' = assign v 3
|
|
-- in w * w'
|
|
-- </pre>
|
|
--
|
|
-- Ops should return a <a>Build</a> action if their original
|
|
-- <tt>OpDef</tt> marks them as stateful, or if they take any Refs as
|
|
-- input. (This mirrors the rules that TensorFlow uses to avoid common
|
|
-- subexpression elimination.)
|
|
module TensorFlow.Ops
|
|
|
|
add :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, ByteString, Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
add' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, ByteString, Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
abs :: forall (v'1 :: Type -> Type) t. OneOf '[Int16, Int32, Int64, Int8, Word16, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
abs' :: forall (v'1 :: Type -> Type) t. OneOf '[Int16, Int32, Int64, Int8, Word16, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
addN :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float, Variant] t => [Tensor v'1 t] -> Tensor Build t
|
|
addN' :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float, Variant] t => OpParams -> [Tensor v'1 t] -> Tensor Build t
|
|
|
|
argMax :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tidx output_type. (OneOf '[Complex Double, Complex Float, Bool, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t, OneOf '[Int32, Int64] tidx, OneOf '[Int32, Int64] output_type) => Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build output_type
|
|
argMax' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tidx output_type. (OneOf '[Complex Double, Complex Float, Bool, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t, OneOf '[Int32, Int64] tidx, OneOf '[Int32, Int64] output_type) => OpParams -> Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build output_type
|
|
|
|
assign :: forall (v'2 :: Type -> Type) t m'. (MonadBuild m', TensorType t) => Tensor Ref t -> Tensor v'2 t -> m' (Tensor Ref t)
|
|
assign' :: forall (v'2 :: Type -> Type) t m'. (MonadBuild m', TensorType t) => OpParams -> Tensor Ref t -> Tensor v'2 t -> m' (Tensor Ref t)
|
|
|
|
broadcastGradientArgs :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Int32, Int64] t => Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t)
|
|
broadcastGradientArgs' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Int32, Int64] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t)
|
|
|
|
cast :: forall (v'1 :: Type -> Type) srcT dstT. (TensorType srcT, TensorType dstT) => Tensor v'1 srcT -> Tensor Build dstT
|
|
cast' :: forall (v'1 :: Type -> Type) srcT dstT. (TensorType srcT, TensorType dstT) => OpParams -> Tensor v'1 srcT -> Tensor Build dstT
|
|
|
|
concat :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. TensorType t => Tensor v'1 Int32 -> [Tensor v'2 t] -> Tensor Build t
|
|
concat' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. TensorType t => OpParams -> Tensor v'1 Int32 -> [Tensor v'2 t] -> Tensor Build t
|
|
|
|
-- | Create a constant tensor.
|
|
--
|
|
-- The values should be in row major order, e.g.,
|
|
--
|
|
-- element 0: index (0, ..., 0) element 1: index (0, ..., 1) ...
|
|
constant :: TensorType a => Shape -> [a] -> Tensor Build a
|
|
constant' :: forall a. TensorType a => OpParams -> Shape -> [a] -> Tensor Build a
|
|
|
|
equal :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Bool, ByteString, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build Bool
|
|
equal' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Bool, ByteString, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build Bool
|
|
expandDims :: TensorType t => Tensor v1 t -> Tensor v2 Int32 -> Tensor Build t
|
|
expandDims' :: TensorType t => OpParams -> Tensor v1 t -> Tensor v2 Int32 -> Tensor Build t
|
|
|
|
-- | Creates a variable initialized to the given value. Initialization
|
|
-- happens next time session runs.
|
|
initializedVariable :: (MonadBuild m, TensorType a) => Tensor v a -> m (Tensor Ref a)
|
|
initializedVariable' :: (MonadBuild m, TensorType a) => OpParams -> Tensor v a -> m (Tensor Ref a)
|
|
|
|
-- | Creates a zero-initialized variable with the given shape.
|
|
zeroInitializedVariable :: (MonadBuild m, TensorType a, Num a) => Shape -> m (Tensor Ref a)
|
|
zeroInitializedVariable' :: (MonadBuild m, TensorType a, Num a) => OpParams -> Shape -> m (Tensor Ref a)
|
|
|
|
fill :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t index_type. (TensorType t, OneOf '[Int32, Int64] index_type) => Tensor v'1 index_type -> Tensor v'2 t -> Tensor Build t
|
|
fill' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t index_type. (TensorType t, OneOf '[Int32, Int64] index_type) => OpParams -> Tensor v'1 index_type -> Tensor v'2 t -> Tensor Build t
|
|
|
|
identity :: forall (v'1 :: Type -> Type) t. TensorType t => Tensor v'1 t -> Tensor Build t
|
|
identity' :: forall (v'1 :: Type -> Type) t. TensorType t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
matMul :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int32, Int64, Word16, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
matMul' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int32, Int64, Word16, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
einsum :: forall (v'1 :: Type -> Type) t. TensorType t => ByteString -> [Tensor v'1 t] -> Tensor Build t
|
|
einsum' :: forall (v'1 :: Type -> Type) t. TensorType t => OpParams -> ByteString -> [Tensor v'1 t] -> Tensor Build t
|
|
matTranspose :: TensorType a => Tensor e a -> Tensor Build a
|
|
matTranspose' :: TensorType a => OpParams -> Tensor v a -> Tensor Build a
|
|
|
|
mean :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tidx. (OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t, OneOf '[Int32, Int64] tidx) => Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t
|
|
mean' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tidx. (OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t, OneOf '[Int32, Int64] tidx) => OpParams -> Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t
|
|
|
|
mul :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
mul' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
neg :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
neg' :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
oneHot :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) (v'3 :: Type -> Type) (v'4 :: Type -> Type) t tI. (TensorType t, OneOf '[Int32, Int64, Word8] tI) => Tensor v'1 tI -> Tensor v'2 Int32 -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t
|
|
oneHot' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) (v'3 :: Type -> Type) (v'4 :: Type -> Type) t tI. (TensorType t, OneOf '[Int32, Int64, Word8] tI) => OpParams -> Tensor v'1 tI -> Tensor v'2 Int32 -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t
|
|
|
|
pack :: forall (v'1 :: Type -> Type) t. TensorType t => [Tensor v'1 t] -> Tensor Build t
|
|
pack' :: forall (v'1 :: Type -> Type) t. TensorType t => OpParams -> [Tensor v'1 t] -> Tensor Build t
|
|
placeholder :: (MonadBuild m, TensorType a) => Shape -> m (Tensor Value a)
|
|
placeholder' :: forall m a. (MonadBuild m, TensorType a) => OpParams -> Shape -> m (Tensor Value a)
|
|
|
|
range :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) (v'3 :: Type -> Type) tidx. OneOf '[Int32, Int64, Word16, Double, Float] tidx => Tensor v'1 tidx -> Tensor v'2 tidx -> Tensor v'3 tidx -> Tensor Build tidx
|
|
range' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) (v'3 :: Type -> Type) tidx. OneOf '[Int32, Int64, Word16, Double, Float] tidx => OpParams -> Tensor v'1 tidx -> Tensor v'2 tidx -> Tensor v'3 tidx -> Tensor Build tidx
|
|
|
|
-- | Helper function for reduction ops (translation of
|
|
-- math_ops.reduced_shape).
|
|
reducedShape :: (OneOf '[Int32, Int64] t1, OneOf '[Int32, Int64] t2) => Tensor v1 t1 -> Tensor v2 t2 -> Tensor Build Int32
|
|
|
|
-- | Computes the mean of elements across dimensions of a tensor. See
|
|
-- <a>mean</a>
|
|
reduceMean :: (TensorType a, OneOf '[Double, Float, Complex Float, Complex Double] a) => Tensor v a -> Tensor Build a
|
|
reduceMean' :: (TensorType a, OneOf '[Double, Float, Complex Float, Complex Double] a) => OpParams -> Tensor v a -> Tensor Build a
|
|
|
|
relu :: forall (v'1 :: Type -> Type) t. OneOf '[Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
relu' :: forall (v'1 :: Type -> Type) t. OneOf '[Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
reluGrad :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
reluGrad' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
tanh :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Word16, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
|
|
tanhGrad :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Word16, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
reshape :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tshape. (TensorType t, OneOf '[Int32, Int64] tshape) => Tensor v'1 t -> Tensor v'2 tshape -> Tensor Build t
|
|
reshape' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tshape. (TensorType t, OneOf '[Int32, Int64] tshape) => OpParams -> Tensor v'1 t -> Tensor v'2 tshape -> Tensor Build t
|
|
|
|
-- | Restore a tensor's value from a checkpoint file.
|
|
restore :: forall a m. (MonadBuild m, TensorType a) => ByteString -> Tensor Ref a -> m ControlNode
|
|
|
|
-- | Restore a tensor's value from a checkpoint file.
|
|
--
|
|
-- This version allows restoring from a checkpoint file that uses a
|
|
-- different tensor name than the variable.
|
|
restoreFromName :: forall a m. (MonadBuild m, TensorType a) => ByteString -> ByteString -> Tensor Ref a -> m ControlNode
|
|
save :: forall a m v. (Rendered (Tensor v), MonadBuild m, TensorType a) => ByteString -> [Tensor v a] -> m ControlNode
|
|
|
|
-- | Create a constant scalar.
|
|
scalar :: TensorType a => a -> Tensor Build a
|
|
scalar' :: TensorType a => OpParams -> a -> Tensor Build a
|
|
shape :: TensorType t => Tensor v t -> Tensor Build Int32
|
|
shape' :: TensorType t => OpParams -> Tensor v t -> Tensor Build Int32
|
|
|
|
sigmoid :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Word16, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
|
|
sigmoidGrad :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Word16, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
sign :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int32, Int64, Word16, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
sign' :: forall (v'1 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int32, Int64, Word16, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
size :: forall (v'1 :: Type -> Type) t out_type. (TensorType t, OneOf '[Int32, Int64] out_type) => Tensor v'1 t -> Tensor Build out_type
|
|
size' :: forall (v'1 :: Type -> Type) t out_type. (TensorType t, OneOf '[Int32, Int64] out_type) => OpParams -> Tensor v'1 t -> Tensor Build out_type
|
|
|
|
softmax :: forall (v'1 :: Type -> Type) t. OneOf '[Word16, Double, Float] t => Tensor v'1 t -> Tensor Build t
|
|
softmax' :: forall (v'1 :: Type -> Type) t. OneOf '[Word16, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
softmaxCrossEntropyWithLogits :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Word16, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t)
|
|
softmaxCrossEntropyWithLogits' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Word16, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t)
|
|
|
|
sparseToDense :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) (v'3 :: Type -> Type) (v'4 :: Type -> Type) t tindices. (TensorType t, OneOf '[Int32, Int64] tindices) => Tensor v'1 tindices -> Tensor v'2 tindices -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t
|
|
sparseToDense' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) (v'3 :: Type -> Type) (v'4 :: Type -> Type) t tindices. (TensorType t, OneOf '[Int32, Int64] tindices) => OpParams -> Tensor v'1 tindices -> Tensor v'2 tindices -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t
|
|
|
|
sub :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word8, Double, Float] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
sub' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t. OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word8, Double, Float] t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
|
|
|
|
sum :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tidx. (OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t, OneOf '[Int32, Int64] tidx) => Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t
|
|
sum' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tidx. (OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t, OneOf '[Int32, Int64] tidx) => OpParams -> Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t
|
|
|
|
-- | Sum a tensor down to a scalar Seee <a>sum</a>
|
|
reduceSum :: OneOf '[Double, Float, Int32, Int64, Complex Float, Complex Double] a => Tensor v a -> Tensor Build a
|
|
reduceSum' :: OneOf '[Double, Float, Int32, Int64, Complex Float, Complex Double] a => OpParams -> Tensor v a -> Tensor Build a
|
|
|
|
transpose :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tperm. (TensorType t, OneOf '[Int32, Int64] tperm) => Tensor v'1 t -> Tensor v'2 tperm -> Tensor Build t
|
|
transpose' :: forall (v'1 :: Type -> Type) (v'2 :: Type -> Type) t tperm. (TensorType t, OneOf '[Int32, Int64] tperm) => OpParams -> Tensor v'1 t -> Tensor v'2 tperm -> Tensor Build t
|
|
|
|
-- | Random tensor from the unit normal distribution with bounded values.
|
|
--
|
|
-- This is a type-restricted version of <a>truncatedNormal</a>.
|
|
truncatedNormal :: (MonadBuild m, OneOf '[Word16, Double, Float] a) => Tensor v Int64 -> m (Tensor Value a)
|
|
truncatedNormal' :: (MonadBuild m, OneOf '[Word16, Double, Float] a) => OpParams -> Tensor v Int64 -> m (Tensor Value a)
|
|
|
|
variable :: forall dtype m'. (MonadBuild m', TensorType dtype) => Shape -> m' (Tensor Ref dtype)
|
|
variable' :: forall dtype m'. (MonadBuild m', TensorType dtype) => OpParams -> Shape -> m' (Tensor Ref dtype)
|
|
|
|
-- | Create a constant vector.
|
|
vector :: TensorType a => [a] -> Tensor Build a
|
|
vector' :: TensorType a => OpParams -> [a] -> Tensor Build a
|
|
zeros :: forall a. (Num a, TensorType a) => Shape -> Tensor Build a
|
|
|
|
zerosLike :: forall (v'1 :: Type -> Type) t. TensorType t => Tensor v'1 t -> Tensor Build t
|
|
zerosLike' :: forall (v'1 :: Type -> Type) t. TensorType t => OpParams -> Tensor v'1 t -> Tensor Build t
|
|
|
|
-- | Reshape a N-D tensor down to a scalar.
|
|
--
|
|
-- See <a>reshape</a>.
|
|
scalarize :: TensorType a => Tensor v a -> Tensor Build a
|
|
instance (TensorFlow.Types.TensorType a, GHC.Num.Num a, v GHC.Types.~ TensorFlow.Build.Build, TensorFlow.Types.OneOf '[GHC.Types.Double, GHC.Types.Float, GHC.Int.Int32, GHC.Int.Int64, Data.Complex.Complex GHC.Types.Float, Data.Complex.Complex GHC.Types.Double] a) => GHC.Num.Num (TensorFlow.Tensor.Tensor v a)
|
|
|
|
module TensorFlow.NN
|
|
|
|
-- | Computes sigmoid cross entropy given <tt>logits</tt>.
|
|
--
|
|
-- Measures the probability error in discrete classification tasks in
|
|
-- which each class is independent and not mutually exclusive. For
|
|
-- instance, one could perform multilabel classification where a picture
|
|
-- can contain both an elephant and a dog at the same time.
|
|
--
|
|
-- For brevity, let `x = logits`, `z = targets`. The logistic loss is
|
|
--
|
|
-- z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) = z * -log(1 <i>
|
|
-- (1 + exp(-x))) + (1 - z) * -log(exp(-x) </i> (1 + exp(-x))) = z *
|
|
-- log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x))) = z *
|
|
-- log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x)) = (1 - z) * x +
|
|
-- log(1 + exp(-x)) = x - x * z + log(1 + exp(-x))
|
|
--
|
|
-- For x < 0, to avoid overflow in exp(-x), we reformulate the above
|
|
--
|
|
-- x - x * z + log(1 + exp(-x)) = log(exp(x)) - x * z + log(1 + exp(-x))
|
|
-- = - x * z + log(1 + exp(x))
|
|
--
|
|
-- Hence, to ensure stability and avoid overflow, the implementation uses
|
|
-- this equivalent formulation
|
|
--
|
|
-- max(x, 0) - x * z + log(1 + exp(-abs(x)))
|
|
--
|
|
-- <tt>logits</tt> and <tt>targets</tt> must have the same type and
|
|
-- shape.
|
|
sigmoidCrossEntropyWithLogits :: (MonadBuild m, OneOf '[Float, Double] a, TensorType a, Num a) => Tensor Value a -> Tensor Value a -> m (Tensor Value a)
|
|
|
|
module TensorFlow.Gradient
|
|
type GradientCompatible a = (Num a, OneOf '[Float, Complex Float, Complex Double] a)
|
|
|
|
-- | Gradient of <tt>y</tt> w.r.t. each element of <tt>xs</tt>.
|
|
gradients :: forall a v1 t m. (MonadBuild m, Rendered t, ToTensor t, GradientCompatible a) => Tensor v1 a -> [t a] -> m [Tensor Value a]
|
|
|
|
|
|
-- | Parallel lookups on the list of tensors.
|
|
module TensorFlow.EmbeddingOps
|
|
|
|
-- | Looks up <tt>ids</tt> in a list of embedding tensors.
|
|
--
|
|
-- This function is used to perform parallel lookups on the list of
|
|
-- tensors in <tt>params</tt>. It is a generalization of <a>gather</a>,
|
|
-- where <tt>params</tt> is interpreted as a partition of a larger
|
|
-- embedding tensor.
|
|
--
|
|
-- The partition_strategy is "mod", we assign each id to partition `p =
|
|
-- id % len(params)`. For instance, 13 ids are split across 5 partitions
|
|
-- as: `[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]`
|
|
--
|
|
-- The results of the lookup are concatenated into a dense tensor. The
|
|
-- returned tensor has shape `shape(ids) + shape(params)[1:]`.
|
|
embeddingLookup :: forall a b v1 v2 m. (MonadBuild m, Rendered (Tensor v1), TensorType a, OneOf '[Int64, Int32] b, Num b) => [Tensor v1 a] -> Tensor v2 b -> m (Tensor Value a)
|
|
|
|
|
|
-- | Queues in TensorFlow graph. Very limited support for now.
|
|
module TensorFlow.Queue
|
|
|
|
-- | A queue carrying tuples.
|
|
data Queue (as :: [*])
|
|
|
|
-- | Creates a new queue with the given capacity and shared name.
|
|
makeQueue :: forall as m. (MonadBuild m, TensorTypes as) => Int64 -> ByteString -> m (Queue as)
|
|
|
|
-- | Adds the given values to the queue.
|
|
enqueue :: forall as v m. (MonadBuild m, TensorTypes as) => Queue as -> TensorList v as -> m ControlNode
|
|
|
|
-- | Retrieves the values from the queue.
|
|
dequeue :: forall as m. (MonadBuild m, TensorTypes as) => Queue as -> m (TensorList Value as)
|
|
|
|
|
|
-- | An implementation of ResourceHandle-based variables.
|
|
--
|
|
-- The main difference between this and <a>Ref</a>-based variables is
|
|
-- that reads are explicit, via the <a>readValue</a> op.
|
|
--
|
|
-- TODO: given that distinction, figure out a good story around gradients
|
|
-- and save/restore. Then, merge this module into TensorFlow.Ops.
|
|
module TensorFlow.Variable
|
|
data Variable a
|
|
|
|
-- | Creates a new, uninitialized variable.
|
|
variable :: (MonadBuild m, TensorType a) => Shape -> m (Variable a)
|
|
variable' :: forall m a. (MonadBuild m, TensorType a) => OpParams -> Shape -> m (Variable a)
|
|
|
|
-- | Gets the value stored in a variable.
|
|
--
|
|
-- Note that this op is stateful since it depends on the value of the
|
|
-- variable; however, it may be CSE'd with other reads in the same
|
|
-- context. The context can be fixed by using <a>render</a> along with
|
|
-- (for example) <a>withControlDependencies</a>. For example:
|
|
--
|
|
-- <pre>
|
|
-- runSession $ do
|
|
-- v <- variable []
|
|
-- a <- assign v 24
|
|
-- r <- withControlDependencies a $ render $ readValue v + 18
|
|
-- result <- run r
|
|
-- liftIO $ (42 :: Float) @=? unScalar result
|
|
-- </pre>
|
|
readValue :: TensorType a => Variable a -> Tensor Build a
|
|
|
|
-- | The initial value of a <a>Variable</a> created with
|
|
-- <a>initializedVariable</a>.
|
|
initializedValue :: Variable a -> Maybe (Tensor Value a)
|
|
|
|
-- | Creates a variable initialized to the given value. Initialization
|
|
-- happens next time session runs.
|
|
initializedVariable :: (MonadBuild m, TensorType a) => Tensor v a -> m (Variable a)
|
|
initializedVariable' :: forall a m v. (MonadBuild m, TensorType a) => OpParams -> Tensor v a -> m (Variable a)
|
|
|
|
-- | Creates a zero-initialized variable with the given shape.
|
|
zeroInitializedVariable :: (MonadBuild m, TensorType a, Num a) => Shape -> m (Variable a)
|
|
zeroInitializedVariable' :: (MonadBuild m, TensorType a, Num a) => OpParams -> Shape -> m (Variable a)
|
|
|
|
-- | Sets the value of a variable.
|
|
assign :: (MonadBuild m, TensorType a) => Variable a -> Tensor v a -> m ControlNode
|
|
assign' :: (MonadBuild m, TensorType a) => OpParams -> Variable a -> Tensor v a -> m ControlNode
|
|
|
|
-- | Increments the value of a variable.
|
|
assignAdd :: (MonadBuild m, TensorType a) => Variable a -> Tensor v a -> m ControlNode
|
|
assignAdd' :: (MonadBuild m, TensorType a) => OpParams -> Variable a -> Tensor v a -> m ControlNode
|
|
|
|
-- | Update '*var' according to the Adam algorithm.
|
|
--
|
|
-- lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t) m_t <-
|
|
-- beta1 * m_{t-1} + (1 - beta1) * g_t v_t <- beta2 * v_{t-1} + (1 -
|
|
-- beta2) * g_t * g_t variable <- variable - lr_t * m_t / (sqrt(v_t) +
|
|
-- epsilon)
|
|
resourceApplyAdam :: (MonadBuild m, OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t) => Variable t -> Variable t -> Variable t -> Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor v4 t -> Tensor v5 t -> Tensor v6 t -> Tensor v7 t -> m ControlNode
|
|
resourceApplyAdam' :: (MonadBuild m, OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t) => OpParams -> Variable t -> Variable t -> Variable t -> Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor v4 t -> Tensor v5 t -> Tensor v6 t -> Tensor v7 t -> m ControlNode
|
|
instance TensorFlow.Tensor.Rendered TensorFlow.Variable.Variable
|
|
instance TensorFlow.Tensor.ToTensor TensorFlow.Variable.Variable
|
|
|
|
module TensorFlow.Minimize
|
|
|
|
-- | Functions that minimize a loss w.r.t. a set of <a>Variable</a>s.
|
|
--
|
|
-- Generally only performs one step of an iterative algorithm.
|
|
--
|
|
-- <a>Minimizer</a>s are defined as a function of the gradients instead
|
|
-- of the loss so that users can apply transformations to the gradients.
|
|
type Minimizer a = forall m. MonadBuild m => [Variable a] -> [Tensor Value a] -> m ControlNode
|
|
|
|
-- | Convenience wrapper around <a>gradients</a> and a <a>Minimizer</a>.
|
|
minimizeWith :: (MonadBuild m, GradientCompatible a) => Minimizer a -> Tensor v a -> [Variable a] -> m ControlNode
|
|
|
|
-- | Perform one step of the gradient descent algorithm.
|
|
gradientDescent :: GradientCompatible a => a -> Minimizer a
|
|
type OneOfAdamDataTypes t = OneOf '[Complex Double, Complex Float, Int16, Int32, Int64, Int8, Word16, Word32, Word64, Word8, Double, Float] t
|
|
data AdamConfig t
|
|
AdamConfig :: t -> t -> t -> t -> AdamConfig t
|
|
[adamLearningRate] :: AdamConfig t -> t
|
|
[adamBeta1] :: AdamConfig t -> t
|
|
[adamBeta2] :: AdamConfig t -> t
|
|
[adamEpsilon] :: AdamConfig t -> t
|
|
|
|
-- | Perform one step of the adam algorithm.
|
|
--
|
|
-- See <a>https://arxiv.org/abs/1412.6980</a>.
|
|
--
|
|
-- NOTE: Currently requires all <a>Variable</a>s to have an
|
|
-- <a>initializedValue</a>.
|
|
adam :: (OneOfAdamDataTypes t, Fractional t) => Minimizer t
|
|
adam' :: OneOfAdamDataTypes t => AdamConfig t -> Minimizer t
|
|
instance GHC.Real.Fractional t => Data.Default.Class.Default (TensorFlow.Minimize.AdamConfig t)
|