1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-26 18:55:02 +01:00
tensorflow-haskell/tensorflow-mnist/app/Main.hs
fkm3 7720af0afd Update to tensorflow 1.3 (#161)
* Tested on linux without Docker.
* Couldn't get nix build to work, so I just updated the URL and hash.
* Did not test macos build.

The mnist change was necessary because the argmax output type is now polmorphic.
2017-10-19 13:41:55 -04:00

147 lines
5.6 KiB
Haskell

-- Copyright 2016 TensorFlow authors.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeApplications #-}
import Control.Monad (forM_, when)
import Control.Monad.IO.Class (liftIO)
import Data.Int (Int32, Int64)
import Data.List (genericLength)
import qualified Data.Text.IO as T
import qualified Data.Vector as V
import qualified TensorFlow.Core as TF
import qualified TensorFlow.Ops as TF hiding (initializedVariable, zeroInitializedVariable)
import qualified TensorFlow.Variable as TF
import qualified TensorFlow.Minimize as TF
import TensorFlow.Examples.MNIST.InputData
import TensorFlow.Examples.MNIST.Parse
numPixels, numLabels :: Int64
numPixels = 28*28 :: Int64
numLabels = 10 :: Int64
-- | Create tensor with random values where the stddev depends on the width.
randomParam :: Int64 -> TF.Shape -> TF.Build (TF.Tensor TF.Build Float)
randomParam width (TF.Shape shape) =
(`TF.mul` stddev) <$> TF.truncatedNormal (TF.vector shape)
where
stddev = TF.scalar (1 / sqrt (fromIntegral width))
-- Types must match due to model structure.
type LabelType = Int32
data Model = Model {
train :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session ()
, infer :: TF.TensorData Float -- ^ images
-> TF.Session (V.Vector LabelType) -- ^ predictions
, errorRate :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session Float
}
createModel :: TF.Build Model
createModel = do
-- Use -1 batch size to support variable sized batches.
let batchSize = -1
-- Inputs.
images <- TF.placeholder [batchSize, numPixels]
-- Hidden layer.
let numUnits = 500
hiddenWeights <-
TF.initializedVariable =<< randomParam numPixels [numPixels, numUnits]
hiddenBiases <- TF.zeroInitializedVariable [numUnits]
let hiddenZ = (images `TF.matMul` TF.readValue hiddenWeights)
`TF.add` TF.readValue hiddenBiases
let hidden = TF.relu hiddenZ
-- Logits.
logitWeights <-
TF.initializedVariable =<< randomParam numUnits [numUnits, numLabels]
logitBiases <- TF.zeroInitializedVariable [numLabels]
let logits = (hidden `TF.matMul` TF.readValue logitWeights)
`TF.add` TF.readValue logitBiases
predict <- TF.render @TF.Build @LabelType $
TF.argMax (TF.softmax logits) (TF.scalar (1 :: LabelType))
-- Create training action.
labels <- TF.placeholder [batchSize]
let labelVecs = TF.oneHot labels (fromIntegral numLabels) 1 0
loss =
TF.reduceMean $ fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs
params = [hiddenWeights, hiddenBiases, logitWeights, logitBiases]
trainStep <- TF.minimizeWith TF.adam loss params
let correctPredictions = TF.equal predict labels
errorRateTensor <- TF.render $ 1 - TF.reduceMean (TF.cast correctPredictions)
return Model {
train = \imFeed lFeed -> TF.runWithFeeds_ [
TF.feed images imFeed
, TF.feed labels lFeed
] trainStep
, infer = \imFeed -> TF.runWithFeeds [TF.feed images imFeed] predict
, errorRate = \imFeed lFeed -> TF.unScalar <$> TF.runWithFeeds [
TF.feed images imFeed
, TF.feed labels lFeed
] errorRateTensor
}
main :: IO ()
main = TF.runSession $ do
-- Read training and test data.
trainingImages <- liftIO (readMNISTSamples =<< trainingImageData)
trainingLabels <- liftIO (readMNISTLabels =<< trainingLabelData)
testImages <- liftIO (readMNISTSamples =<< testImageData)
testLabels <- liftIO (readMNISTLabels =<< testLabelData)
-- Create the model.
model <- TF.build createModel
-- Functions for generating batches.
let encodeImageBatch xs =
TF.encodeTensorData [genericLength xs, numPixels]
(fromIntegral <$> mconcat xs)
let encodeLabelBatch xs =
TF.encodeTensorData [genericLength xs]
(fromIntegral <$> V.fromList xs)
let batchSize = 100
let selectBatch i xs = take batchSize $ drop (i * batchSize) (cycle xs)
-- Train.
forM_ ([0..1000] :: [Int]) $ \i -> do
let images = encodeImageBatch (selectBatch i trainingImages)
labels = encodeLabelBatch (selectBatch i trainingLabels)
train model images labels
when (i `mod` 100 == 0) $ do
err <- errorRate model images labels
liftIO $ putStrLn $ "training error " ++ show (err * 100)
liftIO $ putStrLn ""
-- Test.
testErr <- errorRate model (encodeImageBatch testImages)
(encodeLabelBatch testLabels)
liftIO $ putStrLn $ "test error " ++ show (testErr * 100)
-- Show some predictions.
testPreds <- infer model (encodeImageBatch testImages)
liftIO $ forM_ ([0..3] :: [Int]) $ \i -> do
putStrLn ""
T.putStrLn $ drawMNIST $ testImages !! i
putStrLn $ "expected " ++ show (testLabels !! i)
putStrLn $ " got " ++ show (testPreds V.! i)