1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-11-23 11:29:43 +01:00

Adding gradient for Concat (#144)

This commit is contained in:
Jonathan Kochems 2017-07-30 04:29:33 +01:00 committed by fkm3
parent cac45d1cd6
commit 79d8d7edea
3 changed files with 106 additions and 0 deletions

View file

@ -459,6 +459,39 @@ opGrad "Neg" _ [_] [dz] = [Just $ negate $ expr dz]
opGrad "Relu" _ [toT -> x] [dz] = [Just $ reluGrad dz x] opGrad "Relu" _ [toT -> x] [dz] = [Just $ reluGrad dz x]
opGrad "ReluGrad" _ [_, toT -> x ] [dz] = [Just $ reluGrad dz x, Just $ CoreOps.zerosLike x] opGrad "ReluGrad" _ [_, toT -> x ] [dz] = [Just $ reluGrad dz x, Just $ CoreOps.zerosLike x]
opGrad "Concat" _ _ix [dy]
-- Concat concatenates input tensors
-- x1 of shape s1 = [k1, ..., ki_1, ..., kn]
-- x2 of shape s2 = [k1, ..., ki_2, ..., kn]
-- . . . . .
-- . . . . .
-- . . . . .
-- xm of shape sm = [k1, ..., ki_m, ..., kn]
-- along dimension i to an output tensor
-- y of shape sy = [k1, ..., k, ..., kn]
-- where k = sum ki = sum [ki_1,...,ki_m]
--
-- The incoming gradient dy from backpropagation is
-- simply forwarded split across input tensors yielding dx.
-- Forwarded gradients have shapes s = [s1, ..., sm].
| m == 1 = Nothing : [Just $ expr dy]
| otherwise = Nothing : map Just (dx `reshapeZip` s)
where
reshapeZip = zipWith reshape
dx = CoreOps.splitV (fromIntegral m) dy ki _i
s :: [Tensor Build Int32]
s = map shape x
x :: [Tensor Build a]
x = map toT $ tail _ix
-- i: concat dimension. Adjusted modulo n to handle negative indices.
_i = toT (head _ix) `CoreOps.floorMod` n
i = reshape _i $ vector [1 :: Int32]
-- sizes along concatenated dimension
ki :: Tensor Build Int32
ki = CoreOps.concat 0 $ map (\t -> CoreOps.slice t i $ vector [1 :: Int32]) s
m = length x
n = CoreOps.rank (head x)
opGrad "Square" _ [toT -> x] [dz] = opGrad "Square" _ [toT -> x] [dz] =
-- TODO(fmayle): Handle complex numbers. -- TODO(fmayle): Handle complex numbers.
-- TODO(fmayle): The python code makes dz a control dependency of the 2*x -- TODO(fmayle): The python code makes dz a control dependency of the 2*x
@ -744,6 +777,7 @@ numOutputs o =
"AddN" -> 1 "AddN" -> 1
"Cast" -> 1 "Cast" -> 1
"Const" -> 1 "Const" -> 1
"Concat" -> 1
"Conv2D" -> 1 "Conv2D" -> 1
"Div" -> 1 "Div" -> 1
"DynamicStitch" -> 1 "DynamicStitch" -> 1

View file

@ -190,6 +190,7 @@ Test-Suite GradientTest
, base , base
, proto-lens , proto-lens
, lens-family , lens-family
, random
, tensorflow , tensorflow
, tensorflow-core-ops , tensorflow-core-ops
, tensorflow-ops , tensorflow-ops

View file

@ -19,6 +19,7 @@
import Data.Int (Int32, Int64) import Data.Int (Int32, Int64)
import Data.List (sort) import Data.List (sort)
import qualified Data.List as List
import Data.ProtoLens.TextFormat (showMessage) import Data.ProtoLens.TextFormat (showMessage)
import Test.Framework (defaultMain, Test) import Test.Framework (defaultMain, Test)
import Lens.Family2 ((^..), (.~)) import Lens.Family2 ((^..), (.~))
@ -26,6 +27,8 @@ import Lens.Family2 ((^..), (.~))
import Test.Framework.Providers.HUnit (testCase) import Test.Framework.Providers.HUnit (testCase)
import Test.HUnit ((@=?), assertEqual) import Test.HUnit ((@=?), assertEqual)
import qualified Data.Vector as V import qualified Data.Vector as V
import System.Random (randomIO, randomRIO)
import Control.Monad(forM_, replicateM, zipWithM)
import Control.Monad.IO.Class (liftIO) import Control.Monad.IO.Class (liftIO)
import qualified TensorFlow.Core as TF import qualified TensorFlow.Core as TF
@ -173,6 +176,71 @@ testMaxGradient = testCase "testMaxGradient" $ do
TF.gradients y [x] >>= TF.run TF.gradients y [x] >>= TF.run
V.fromList [0, 0, 1, 0, 0 :: Float] @=? dx V.fromList [0, 0, 1, 0, 0 :: Float] @=? dx
testConcatGradient :: Test
testConcatGradient = testCase "testConcatGradient" $ do
[dv,dv'] <- TF.runSession $ do
v <- TF.render $ TF.vector [1 :: Float]
v' <- TF.render $ TF.vector [2 :: Float]
let y = TF.concat (TF.scalar 0) [ v, v' ]
TF.gradients y [v,v'] >>= TF.run
V.fromList [1 :: Float] @=? dv
V.fromList [1 :: Float] @=? dv'
[dw,dw'] <- TF.runSession $ do
w <- TF.render $ TF.vector [1,2,3,4 :: Float]
w' <- TF.render $ TF.vector [5,6,7,8 :: Float]
let y = TF.concat (TF.scalar 0) [ w, w', w ]
TF.gradients y [w,w'] >>= TF.run
V.fromList [2,2,2,2 :: Float] @=? dw
V.fromList [1,1,1,1 :: Float] @=? dw'
verifyConcatGradients :: [[Int64]] -> Int32 -> IO ()
verifyConcatGradients shapes concatDim = do
let floatsFromShape :: [Int64] -> IO [Float]
floatsFromShape shape = replicateM (fromIntegral $ List.product shape) randomIO
constantZip = zipWithM $ \x shape -> TF.render $ TF.constant (TF.Shape shape) x
inputGrads <- mapM floatsFromShape shapes
inputs <- mapM floatsFromShape shapes
dinputs <- TF.runSession $ do
inputTensors <- inputs `constantZip` shapes
inputGradTensors <- inputGrads `constantZip` shapes
inputTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputTensors
inputGradTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputGradTensors
output <- TF.render $ inputTensor `TF.mul` inputGradTensor
TF.gradients output inputTensors >>= TF.run
(V.fromList <$> inputGrads) @=? dinputs
-- This test checks that the gradient of a concat op
-- is correct along the first, second, and third dimension.
testConcatGradientSimple :: Test
testConcatGradientSimple = testCase "testConcatGradientSimple" $ do
-- The following check is equivalent to ConcatTest._testGradientsSimple from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[10,x,2] | x <- [1,2,6]] 1
-- The following check is equivalent to ConcatTest._testGradientsFirstDim from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[x,10,2] | x <- [1,2,6]] 0
-- The following check is equivalent to ConcatTest._testGradientsLastDim from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[10,2,x] | x <- [1,2,6]] 2
-- This test checks that the gradient of a concat op
-- along a random dimension across random shapes is as expected.
-- This test is inspired by ConcatTest._RunAndVerifyGradientsRandom from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py, but also
-- verifies the gradient along negative concat dimensions.
testConcatRunAndVerifyGradientsRandom :: Test
testConcatRunAndVerifyGradientsRandom = testCase "testConcatRunAndVerifyGradientsRandom" $
forM_ [1..5 :: Int] $ \_ -> do
(shapes' :: [Int64]) <- replicateM 5 $ randomRIO (1, 5)
(numTensors :: Int) <- randomRIO (2, 10)
(concatDim :: Int) <- randomRIO (-4, 4)
(concatDimSizes :: [Int64]) <- replicateM numTensors $ randomRIO (1, 5)
let update i xs x = take i xs ++ x: drop (i+1) xs
concatDim' = concatDim `mod` length shapes'
shapes = map (update concatDim' shapes') concatDimSizes
verifyConcatGradients shapes $ fromIntegral concatDim
-- run single test like this: -- run single test like this:
-- stack --docker --docker-image=$IMAGE_NAME test tensorflow-ops:GradientTest --test-arguments -t"*MaximumGrad*" -- stack --docker --docker-image=$IMAGE_NAME test tensorflow-ops:GradientTest --test-arguments -t"*MaximumGrad*"
testMaximumGrad :: Test testMaximumGrad :: Test
@ -329,6 +397,9 @@ main = defaultMain
, testDiamond , testDiamond
, testAddNGradient , testAddNGradient
, testMaxGradient , testMaxGradient
, testConcatGradient
, testConcatGradientSimple
, testConcatRunAndVerifyGradientsRandom
, testMaximumGrad , testMaximumGrad
, testMaximumGradGrad , testMaximumGradGrad
, testReluGrad , testReluGrad