mirror of
https://github.com/tensorflow/haskell.git
synced 2025-01-27 11:15:03 +01:00
162 lines
6.1 KiB
Haskell
162 lines
6.1 KiB
Haskell
|
-- Copyright 2016 TensorFlow authors.
|
||
|
--
|
||
|
-- Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
-- you may not use this file except in compliance with the License.
|
||
|
-- You may obtain a copy of the License at
|
||
|
--
|
||
|
-- http://www.apache.org/licenses/LICENSE-2.0
|
||
|
--
|
||
|
-- Unless required by applicable law or agreed to in writing, software
|
||
|
-- distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
-- See the License for the specific language governing permissions and
|
||
|
-- limitations under the License.
|
||
|
|
||
|
{-# LANGUAGE OverloadedLists #-}
|
||
|
|
||
|
import Control.Monad (zipWithM, when, forM, forM_)
|
||
|
import Control.Monad.IO.Class (liftIO)
|
||
|
import Data.Int (Int32, Int64)
|
||
|
import qualified Data.Text.IO as T
|
||
|
import qualified Data.Vector as V
|
||
|
|
||
|
import qualified TensorFlow.ControlFlow as TF
|
||
|
import qualified TensorFlow.Build as TF
|
||
|
import qualified TensorFlow.Ops as TF
|
||
|
import qualified TensorFlow.Session as TF
|
||
|
import qualified TensorFlow.Tensor as TF
|
||
|
import qualified TensorFlow.Types as TF
|
||
|
import qualified TensorFlow.Gradient as TF
|
||
|
|
||
|
import TensorFlow.Examples.MNIST.InputData
|
||
|
import TensorFlow.Examples.MNIST.Parse
|
||
|
|
||
|
numPixels = 28^2 :: Int64
|
||
|
numLabels = 10 :: Int64
|
||
|
|
||
|
-- | Create tensor with random values where the stddev depends on the width.
|
||
|
randomParam :: Int64 -> TF.Shape -> TF.Build (TF.Tensor TF.Value Float)
|
||
|
randomParam width (TF.Shape shape) =
|
||
|
(* stddev) <$> TF.truncatedNormal (TF.vector shape)
|
||
|
where
|
||
|
stddev = TF.scalar (1 / sqrt (fromIntegral width))
|
||
|
|
||
|
-- Types must match due to model structure (sparseToDense requires
|
||
|
-- index types to match)
|
||
|
type LabelType = Int32
|
||
|
type BatchSize = Int32
|
||
|
|
||
|
-- | Convert scalar labels to one-hot vectors.
|
||
|
labelClasses :: TF.Tensor TF.Value LabelType
|
||
|
-> LabelType
|
||
|
-> BatchSize
|
||
|
-> TF.Tensor TF.Value Float
|
||
|
labelClasses labels numClasses batchSize =
|
||
|
let indices = TF.range 0 (TF.scalar batchSize) 1
|
||
|
concated = TF.concat 1 [TF.expandDims indices 1, TF.expandDims labels 1]
|
||
|
in TF.sparseToDense concated
|
||
|
(TF.constant [2] [batchSize, numClasses])
|
||
|
1 {- ON value -}
|
||
|
0 {- default (OFF) value -}
|
||
|
|
||
|
-- | Fraction of elements that differ between two vectors.
|
||
|
errorRate :: Eq a => V.Vector a -> V.Vector a -> Double
|
||
|
errorRate xs ys = fromIntegral (len - numCorrect) / fromIntegral len
|
||
|
where
|
||
|
numCorrect = V.length $ V.filter id $ V.zipWith (==) xs ys
|
||
|
len = V.length xs
|
||
|
|
||
|
data Model = Model {
|
||
|
train :: TF.TensorData Float -- ^ images
|
||
|
-> TF.TensorData LabelType
|
||
|
-> TF.Session ()
|
||
|
, infer :: TF.TensorData Float -- ^ images
|
||
|
-> TF.Session (V.Vector LabelType) -- ^ predictions
|
||
|
}
|
||
|
|
||
|
createModel :: Int64 -> TF.Build Model
|
||
|
createModel batchSize = do
|
||
|
-- Inputs.
|
||
|
images <- TF.placeholder [batchSize, numPixels]
|
||
|
-- Hidden layer.
|
||
|
let numUnits = 500
|
||
|
hiddenWeights <-
|
||
|
TF.initializedVariable =<< randomParam numPixels [numPixels, numUnits]
|
||
|
hiddenBiases <- TF.zeroInitializedVariable [numUnits]
|
||
|
let hiddenZ = (images `TF.matMul` hiddenWeights) `TF.add` hiddenBiases
|
||
|
let hidden = TF.relu hiddenZ
|
||
|
-- Logits.
|
||
|
logitWeights <-
|
||
|
TF.initializedVariable =<< randomParam numUnits [numUnits, numLabels]
|
||
|
logitBiases <- TF.zeroInitializedVariable [numLabels]
|
||
|
let logits = (hidden `TF.matMul` logitWeights) `TF.add` logitBiases
|
||
|
predict <- TF.render $ TF.cast $
|
||
|
TF.argMax (TF.softmax logits) (TF.scalar (1 :: LabelType))
|
||
|
|
||
|
-- Create training action.
|
||
|
labels <- TF.placeholder [batchSize]
|
||
|
let labelVecs = labelClasses labels 10 (fromIntegral batchSize)
|
||
|
loss = fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs
|
||
|
params = [hiddenWeights, hiddenBiases, logitWeights, logitBiases]
|
||
|
grads <- TF.gradients loss params
|
||
|
|
||
|
let lr = TF.scalar $ 0.001 / fromIntegral batchSize
|
||
|
applyGrad param grad
|
||
|
= TF.assign param $ param `TF.sub` (lr * grad)
|
||
|
trainStep <- TF.group =<< zipWithM applyGrad params grads
|
||
|
|
||
|
return Model {
|
||
|
train = \imFeed lFeed -> TF.runWithFeeds_ [
|
||
|
TF.feed images imFeed
|
||
|
, TF.feed labels lFeed
|
||
|
] trainStep
|
||
|
, infer = \imFeed -> TF.runWithFeeds [TF.feed images imFeed] predict
|
||
|
}
|
||
|
|
||
|
main = TF.runSession $ do
|
||
|
-- Read training and test data.
|
||
|
trainingImages <- liftIO (readMNISTSamples =<< trainingImageData)
|
||
|
trainingLabels <- liftIO (readMNISTLabels =<< trainingLabelData)
|
||
|
testImages <- liftIO (readMNISTSamples =<< testImageData)
|
||
|
testLabels <- liftIO (readMNISTLabels =<< testLabelData)
|
||
|
|
||
|
let batchSize = 100 :: Int64
|
||
|
|
||
|
-- Create the model.
|
||
|
model <- TF.build $ createModel batchSize
|
||
|
|
||
|
-- Helpers for generate batches.
|
||
|
let selectBatch i xs = take size $ drop (i * size) $ cycle xs
|
||
|
where size = fromIntegral batchSize
|
||
|
let getImageBatch i xs = TF.encodeTensorData
|
||
|
[batchSize, numPixels]
|
||
|
$ fromIntegral <$> mconcat (selectBatch i xs)
|
||
|
let getExpectedLabelBatch i xs =
|
||
|
fromIntegral <$> V.fromList (selectBatch i xs)
|
||
|
|
||
|
-- Train.
|
||
|
forM_ ([0..1000] :: [Int]) $ \i -> do
|
||
|
let images = getImageBatch i trainingImages
|
||
|
labels = getExpectedLabelBatch i trainingLabels
|
||
|
train model images (TF.encodeTensorData [batchSize] labels)
|
||
|
when (i `mod` 100 == 0) $ do
|
||
|
preds <- infer model images
|
||
|
liftIO $ putStrLn $
|
||
|
"training error " ++ show (errorRate preds labels * 100)
|
||
|
liftIO $ putStrLn ""
|
||
|
|
||
|
-- Test.
|
||
|
let numTestBatches = length testImages `div` fromIntegral batchSize
|
||
|
testPreds <- fmap mconcat $ forM [0..numTestBatches] $ \i -> do
|
||
|
infer model (getImageBatch i testImages)
|
||
|
let testExpected = fromIntegral <$> V.fromList testLabels
|
||
|
liftIO $ putStrLn $
|
||
|
"test error " ++ show (errorRate testPreds testExpected * 100)
|
||
|
|
||
|
-- Show some predictions.
|
||
|
liftIO $ forM_ ([0..3] :: [Int]) $ \i -> do
|
||
|
putStrLn ""
|
||
|
T.putStrLn $ drawMNIST $ testImages !! i
|
||
|
putStrLn $ "expected " ++ show (testLabels !! i)
|
||
|
putStrLn $ " got " ++ show (testPreds V.! i)
|