1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-12-12 12:49:48 +01:00
tensorflow-haskell/tensorflow-ops/tests/GradientTest.hs

441 lines
17 KiB
Haskell
Raw Normal View History

2016-10-24 21:26:42 +02:00
-- Copyright 2016 TensorFlow authors.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
2016-10-24 21:26:42 +02:00
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
2016-10-24 21:26:42 +02:00
import Data.Int (Int32, Int64)
2016-10-24 21:26:42 +02:00
import Data.List (sort)
2017-07-30 05:29:33 +02:00
import qualified Data.List as List
2016-10-24 21:26:42 +02:00
import Data.ProtoLens.TextFormat (showMessage)
import Test.Framework (defaultMain, Test)
import Lens.Family2 ((^..), (.~))
2016-10-24 21:26:42 +02:00
import Test.Framework.Providers.HUnit (testCase)
import Test.HUnit ((@=?), assertEqual)
import qualified Data.Vector as V
2017-07-30 05:29:33 +02:00
import System.Random (randomIO, randomRIO)
import Control.Monad(forM_, replicateM, zipWithM)
import Control.Monad.IO.Class (liftIO)
2016-10-24 21:26:42 +02:00
import qualified TensorFlow.Core as TF
2017-10-15 20:49:44 +02:00
import qualified TensorFlow.GenOps.Core as TF (conv2DBackpropInput', max, maximum, tile)
2016-10-24 21:26:42 +02:00
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF hiding (zeroInitializedVariable)
import qualified TensorFlow.Output as TF
import qualified TensorFlow.Types as TF
import qualified TensorFlow.Variable as TF
2016-10-24 21:26:42 +02:00
import Proto.Tensorflow.Core.Framework.Graph (node)
import Proto.Tensorflow.Core.Framework.NodeDef (op)
2017-10-15 20:49:44 +02:00
import qualified Data.ByteString.Char8 as BS
2016-10-24 21:26:42 +02:00
testGradientSimple :: Test
testGradientSimple = testCase "testGradientSimple" $ do
let grads = do
x <- TF.render $ TF.scalar (3 :: Float)
b <- TF.render $ TF.scalar (4 :: Float)
let y = x `TF.mul` x `TF.add` b
TF.gradients y [x, b]
2016-10-24 21:26:42 +02:00
-- Assert that the gradients are right.
[dx, db] <- TF.runSession $ grads >>= TF.run
2016-10-24 21:26:42 +02:00
6 @=? TF.unScalar dx
1 @=? TF.unScalar db
-- Assert that the graph has the expected ops.
let graphDef = TF.asGraphDef grads
putStrLn $ showMessage graphDef
let ops = graphDef ^.. node . traverse . op
expected = [ "Const"
, "Mul"
, "Const"
, "Add"
-- Default output gradient of y.
, "Shape"
, "Const"
, "Fill"
-- Add gradient.
, "Shape"
, "Shape"
, "BroadcastGradientArgs"
, "Sum"
, "Sum"
, "Reshape"
, "Reshape"
-- Mul gradient.
, "Shape"
-- This Op gets dedup'd because the inputs are the same.
-- TODO(fmayle): The same would happen to the Mul and Sum ops
-- below if the gradient function didn't multiply one as
-- 'dz * y' and the other as 'x * dz'. We could change the
-- order, but I'm going to keep it the same as the python
-- version for now.
--
-- , "Shape"
, "BroadcastGradientArgs"
, "Mul"
, "Mul"
, "Sum"
, "Sum"
, "Reshape"
, "Reshape"
-- AddN to combine x's output gradients.
, "AddN"
]
sort expected @=? sort ops
testGradientDisconnected :: Test
testGradientDisconnected = testCase "testGradientDisconnected" $ do
let grads = do
x <- TF.render $ TF.scalar (3 :: Float)
b <- TF.render $ TF.scalar (4 :: Float)
TF.gradients x [x, b]
2016-10-24 21:26:42 +02:00
-- Assert that the gradients are right.
[dx, db] <- TF.runSession $ grads >>= TF.run
2016-10-24 21:26:42 +02:00
1 @=? TF.unScalar dx
0 @=? TF.unScalar db
-- Assert that the graph has the expected ops.
let graphDef = TF.asGraphDef grads
putStrLn $ showMessage graphDef
let ops = graphDef ^.. node . traverse . op
expected = [ "Const"
, "Const"
-- Default output gradient of x.
, "Shape"
, "Const"
, "Fill"
-- Default output gradient of b.
, "ZerosLike"
]
sort expected @=? sort ops
-- Test that identical "stateful" ops work with createGraph.
testCreateGraphStateful :: Test
testCreateGraphStateful = testCase "testCreateGraphStateful" $ do
[dx, dy] <- TF.runSession $ do
2016-10-24 21:26:42 +02:00
let shape = TF.constant (TF.Shape [1]) [1]
x :: TF.Tensor TF.Value Float <- TF.truncatedNormal shape
y :: TF.Tensor TF.Value Float <- TF.truncatedNormal shape
TF.gradients (TF.expr x + TF.expr y * 3) [x, y] >>= TF.run
2016-10-24 21:26:42 +02:00
-- If this test fails, it will likely be caused by an exception within
-- `TF.gradients`. These asserts are extra.
1 @=? TF.unScalar dx
3 @=? TF.unScalar dy
-- Test that name scopes work with createGraph.
testCreateGraphNameScopes :: Test
testCreateGraphNameScopes = testCase "testCreateGraphNameScopes" $ do
[dx] <- TF.runSession $ do
2016-10-24 21:26:42 +02:00
let shape = TF.constant (TF.Shape [1]) [1]
x :: TF.Tensor TF.Value Float <-
TF.withNameScope "foo" (TF.truncatedNormal shape)
TF.gradients x [x] >>= TF.run
2016-10-24 21:26:42 +02:00
-- If this test fails, it will likely be caused by an exception within
-- `TF.gradients`. This assert is extra.
1 @=? TF.unScalar dx
-- Test that createGraph can handle graphs with diamond shapes.
testDiamond :: Test
testDiamond = testCase "testDiamond" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1]
let y = x `TF.mul` x
2016-10-24 21:26:42 +02:00
z = y*y
TF.gradients z [x] >>= TF.run
2016-10-24 21:26:42 +02:00
(4 :: Float) @=? TF.unScalar dx
2017-06-16 13:42:33 +02:00
testAddNGradient :: Test
testAddNGradient = testCase "testAddNGradient" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1, 2, 0 :: Float]
let y = TF.addN [x, x]
TF.gradients y [x] >>= TF.run
V.fromList [2, 2, 2 :: Float] @=? dx
testMaxGradient :: Test
testMaxGradient = testCase "testMaxGradient" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [1, 2, 3, 0, 1 :: Float]
let y = TF.max x (0 :: TF.Tensor TF.Build Int32)
TF.gradients y [x] >>= TF.run
V.fromList [0, 0, 1, 0, 0 :: Float] @=? dx
2017-07-30 05:29:33 +02:00
testConcatGradient :: Test
testConcatGradient = testCase "testConcatGradient" $ do
[dv,dv'] <- TF.runSession $ do
v <- TF.render $ TF.vector [1 :: Float]
v' <- TF.render $ TF.vector [2 :: Float]
let y = TF.concat (TF.scalar 0) [ v, v' ]
TF.gradients y [v,v'] >>= TF.run
V.fromList [1 :: Float] @=? dv
V.fromList [1 :: Float] @=? dv'
[dw,dw'] <- TF.runSession $ do
w <- TF.render $ TF.vector [1,2,3,4 :: Float]
w' <- TF.render $ TF.vector [5,6,7,8 :: Float]
let y = TF.concat (TF.scalar 0) [ w, w', w ]
TF.gradients y [w,w'] >>= TF.run
V.fromList [2,2,2,2 :: Float] @=? dw
V.fromList [1,1,1,1 :: Float] @=? dw'
verifyConcatGradients :: [[Int64]] -> Int32 -> IO ()
verifyConcatGradients shapes concatDim = do
let floatsFromShape :: [Int64] -> IO [Float]
floatsFromShape shape = replicateM (fromIntegral $ List.product shape) randomIO
constantZip = zipWithM $ \x shape -> TF.render $ TF.constant (TF.Shape shape) x
inputGrads <- mapM floatsFromShape shapes
inputs <- mapM floatsFromShape shapes
dinputs <- TF.runSession $ do
inputTensors <- inputs `constantZip` shapes
inputGradTensors <- inputGrads `constantZip` shapes
inputTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputTensors
inputGradTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputGradTensors
output <- TF.render $ inputTensor `TF.mul` inputGradTensor
TF.gradients output inputTensors >>= TF.run
(V.fromList <$> inputGrads) @=? dinputs
-- This test checks that the gradient of a concat op
-- is correct along the first, second, and third dimension.
testConcatGradientSimple :: Test
testConcatGradientSimple = testCase "testConcatGradientSimple" $ do
-- The following check is equivalent to ConcatTest._testGradientsSimple from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[10,x,2] | x <- [1,2,6]] 1
-- The following check is equivalent to ConcatTest._testGradientsFirstDim from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[x,10,2] | x <- [1,2,6]] 0
-- The following check is equivalent to ConcatTest._testGradientsLastDim from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py
verifyConcatGradients [[10,2,x] | x <- [1,2,6]] 2
-- This test checks that the gradient of a concat op
-- along a random dimension across random shapes is as expected.
-- This test is inspired by ConcatTest._RunAndVerifyGradientsRandom from
-- tensorflow/tensorflow/compiler/tests/concat_ops_test.py, but also
-- verifies the gradient along negative concat dimensions.
testConcatRunAndVerifyGradientsRandom :: Test
testConcatRunAndVerifyGradientsRandom = testCase "testConcatRunAndVerifyGradientsRandom" $
forM_ [1..5 :: Int] $ \_ -> do
(shapes' :: [Int64]) <- replicateM 5 $ randomRIO (1, 5)
(numTensors :: Int) <- randomRIO (2, 10)
(concatDim :: Int) <- randomRIO (-4, 4)
(concatDimSizes :: [Int64]) <- replicateM numTensors $ randomRIO (1, 5)
let update i xs x = take i xs ++ x: drop (i+1) xs
concatDim' = concatDim `mod` length shapes'
shapes = map (update concatDim' shapes') concatDimSizes
verifyConcatGradients shapes $ fromIntegral concatDim
-- run single test like this:
-- stack --docker --docker-image=$IMAGE_NAME test tensorflow-ops:GradientTest --test-arguments -t"*MaximumGrad*"
testMaximumGrad :: Test
testMaximumGrad = testCase "testMaximumGrad" $ do
[gx, gy] <- TF.runSession $ do
x <- TF.render $ TF.vector [0 :: Float]
y <- TF.render $ TF.vector [0 :: Float]
let z = TF.maximum x y
TF.gradients z [x, y] >>= TF.run
V.fromList [1] @=? gx
V.fromList [1] @=? gy
testMaximumGradGrad :: Test
testMaximumGradGrad = testCase "testMaximumGradGrad" $ do
[ggx] <- TF.runSession $ do
x <- TF.render $ TF.vector [2 :: Float]
y <- TF.render $ TF.vector [1 :: Float]
let z = TF.maximum x y
[gx, _gy] <- TF.gradients z [x, y]
TF.gradients gx [x] >>= TF.run
V.fromList [0] @=? ggx
testReluGrad :: Test
testReluGrad = testCase "testReluGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [2 :: Float]
let y = TF.relu x
TF.gradients y [x] >>= TF.run
V.fromList [1] @=? dx
testReluGradGrad :: Test
testReluGradGrad = testCase "testReluGradGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [2 :: Float]
let y = TF.relu x
[y'] <- TF.gradients y [x]
TF.gradients y' [x] >>= TF.run
V.fromList [0] @=? dx
testFillGrad :: Test
testFillGrad = testCase "testFillGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.scalar (9 :: Float)
let shape = TF.vector [2, 3 :: Int32]
let y = TF.fill shape x
TF.gradients y [x] >>= TF.run
V.fromList [6] @=? dx
testTileGrad :: Test
testTileGrad = testCase "testTileGrad" $ do
[dx] <- TF.runSession $ do
x <- TF.render $ TF.vector [5, 9 :: Float]
let multiples = TF.vector [2 :: Int32]
let y = TF.tile x multiples
TF.gradients y [x] >>= TF.run
V.fromList [2, 2] @=? dx
testTile2DGrad :: Test
testTile2DGrad = testCase "testTileGrad2D" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let shape = TF.vector [3, 2 :: Int32]
x <- TF.render $ TF.fill shape (TF.scalar (1::Float))
let multiples = TF.vector [2, 3 :: Int32]
let y = TF.tile x multiples
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
V.fromList [6, 6, 6, 6, 6, 6::Float] @=? (dx :: V.Vector Float)
matMulGradient :: Test
matMulGradient = testCase "matMulGradients" $ do
let dfBuild = do
x <- TF.render $ TF.zeros $ TF.Shape [3, 1 :: Int64]
w <- TF.zeroInitializedVariable $ TF.Shape [1, 2 :: Int64]
let f = x `TF.matMul` TF.readValue w :: TF.Tensor TF.Build Float
dfs <- TF.gradients f [x]
return (x, dfs)
(xShape, dxShape) <- TF.runSession $ do
(x, [dx]) <- TF.build dfBuild
TF.run (TF.shape x, TF.shape dx)
assertEqual "Shape of gradient must match shape of input" xShape (dxShape :: V.Vector Int32)
-- test that gradient of matMul can be taken gradient of
matMulGradGrad :: Test
matMulGradGrad = testCase "matMulGradGrad" $ do
let width = 2 :: Int64
batch = 4 :: Int64
let tower = do
x <- TF.render $ TF.zeros $ TF.Shape [batch, 1]
w <- TF.zeroInitializedVariable $ TF.Shape [1, width]
let f = x `TF.matMul` TF.readValue w
[dfdx] <- TF.gradients f [x]
let f'x = TF.reduceSum dfdx
[dfdw] <- TF.gradients f'x [w] -- take gradient again (this time over w)
return [TF.readValue w, TF.expr dfdw]
TF.runSession $ do
[w, dfdw] <- TF.build tower
(wShape, dfdwShape) <- TF.run (TF.shape w, TF.shape dfdw)
liftIO $ assertEqual "Shape of gradient must match input" wShape (dfdwShape :: V.Vector Int32)
let step = w `TF.add` dfdw
w0 <- TF.run step
liftIO $ V.fromList [4, 4 :: Float] @=? w0
-- test that gradient of matMul deals correctly with transpose_a and transpose_b
matMulTransposeGradient :: (Bool, Bool) -> Test
matMulTransposeGradient txw = testCase ("matMulTransposeGradients " ++ show txw) $ do
let (transposeX, transposeW) = txw
let dfBuild = do
let xShape = TF.Shape [3, 1 :: Int64]
let xZeros = TF.zeros xShape
x <- TF.render $ if transposeX then TF.matTranspose xZeros else xZeros
variable <- TF.zeroInitializedVariable $ TF.Shape [1, 2 :: Int64]
let wv = if transposeW then TF.matTranspose (TF.readValue variable) else TF.readValue variable
let f = TF.matMul' (transAttrs transposeX transposeW) x wv :: TF.Tensor TF.Build Float
w <- TF.render wv
ds <- TF.gradients f [x, w]
return (x, w, ds)
TF.runSession $ do
(x, w, [dx, dw]) <- TF.build dfBuild
xShape <- TF.run $ TF.shape x
dxShape <- TF.run $ TF.shape dx
liftIO $ assertEqual "xShape must match dxShape" xShape (dxShape :: V.Vector Int32)
wShape <- TF.run $ TF.shape w
dwShape <- TF.run $ TF.shape dw
liftIO $ assertEqual "wShape must match dwShape" wShape (dwShape :: V.Vector Int32)
transAttrs :: (TF.Attribute a,
TF.Attribute b) =>
a -> b -> TF.OpDef -> TF.OpDef
transAttrs a b =
(TF.opAttr "transpose_a" .~ a) . (TF.opAttr "transpose_b" .~ b)
2017-10-15 20:49:44 +02:00
testConv2DBackpropInputGrad :: Test
testConv2DBackpropInputGrad = testCase "testConv2DBackpropInputGrad" $ do
(dx, shapeDX, shapeX) <- TF.runSession $ do
let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32] -- [batch, h, w, in_channels]
let conv_out_shape = TF.vector [1, 1, 1, 1 :: Int32] -- [batch, h, w, out_channels]
x <- TF.render $ TF.fill conv_out_shape (TF.scalar (1::Float))
let filterShape = TF.vector [2, 2, 1, 1 :: Int32] -- [fh, fw, inc, out]
filter <- TF.render $ TF.fill filterShape (TF.scalar (1::Float))
let y = TF.conv2DBackpropInput'
( (TF.opAttr "strides" .~ [1::Int64, 1, 1, 1])
. (TF.opAttr "padding" .~ (BS.pack "VALID"))
. (TF.opAttr "data_format" .~ (BS.pack "NHWC"))
)
conv_input_shape filter x
[dx] <- TF.gradients y [x]
TF.run (dx, TF.shape dx, TF.shape x)
shapeX @=? (shapeDX :: V.Vector Int32)
V.fromList [4::Float] @=? (dx :: V.Vector Float)
2016-10-24 21:26:42 +02:00
main :: IO ()
main = defaultMain
[ testGradientSimple
, testGradientDisconnected
, testCreateGraphStateful
, testCreateGraphNameScopes
, testDiamond
2017-06-16 13:42:33 +02:00
, testAddNGradient
, testMaxGradient
2017-07-30 05:29:33 +02:00
, testConcatGradient
, testConcatGradientSimple
, testConcatRunAndVerifyGradientsRandom
, testMaximumGrad
, testMaximumGradGrad
, testReluGrad
, testReluGradGrad
, testFillGrad
, testTileGrad
, testTile2DGrad
, matMulGradient
, matMulGradGrad
, matMulTransposeGradient (False, False)
, matMulTransposeGradient (False, True)
, matMulTransposeGradient (True, False)
, matMulTransposeGradient (True, True)
2017-10-15 20:49:44 +02:00
, testConv2DBackpropInputGrad
]