1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-27 19:25:02 +01:00
tensorflow-haskell/tensorflow-ops/tests/FeedFetchBench.hs

44 lines
1.7 KiB
Haskell
Raw Normal View History

Optimize fetching (#27) * Add MNIST data to gitignore * Add simple tensor round-trip benchmark * Use deepseq + cleaner imports * Use safe version of fromIntegral in FFI code * Don't copy data when fetching tensors BEFORE benchmarking feedFetch/4 byte time 55.79 μs (54.88 μs .. 56.62 μs) 0.998 R² (0.997 R² .. 0.999 R²) mean 55.61 μs (55.09 μs .. 56.11 μs) std dev 1.828 μs (1.424 μs .. 2.518 μs) variance introduced by outliers: 34% (moderately inflated) benchmarking feedFetch/4 KiB time 231.4 μs (221.9 μs .. 247.3 μs) 0.988 R² (0.974 R² .. 1.000 R²) mean 226.6 μs (224.1 μs .. 236.2 μs) std dev 13.45 μs (7.115 μs .. 27.14 μs) variance introduced by outliers: 57% (severely inflated) benchmarking feedFetch/4 MiB time 485.8 ms (424.6 ms .. 526.7 ms) 0.998 R² (0.994 R² .. 1.000 R²) mean 515.7 ms (512.5 ms .. 517.9 ms) std dev 3.320 ms (0.0 s .. 3.822 ms) variance introduced by outliers: 19% (moderately inflated) AFTER benchmarking feedFetch/4 byte time 53.11 μs (52.12 μs .. 54.22 μs) 0.996 R² (0.995 R² .. 0.998 R²) mean 54.64 μs (53.59 μs .. 56.18 μs) std dev 4.249 μs (2.910 μs .. 6.076 μs) variance introduced by outliers: 75% (severely inflated) benchmarking feedFetch/4 KiB time 83.83 μs (82.72 μs .. 84.92 μs) 0.999 R² (0.998 R² .. 0.999 R²) mean 83.82 μs (83.20 μs .. 84.35 μs) std dev 1.943 μs (1.557 μs .. 2.614 μs) variance introduced by outliers: 20% (moderately inflated) benchmarking feedFetch/4 MiB time 95.54 ms (93.62 ms .. 97.82 ms) 0.999 R² (0.998 R² .. 1.000 R²) mean 96.61 ms (95.76 ms .. 97.51 ms) std dev 1.408 ms (1.005 ms .. 1.889 ms)
2016-11-17 10:41:49 -08:00
-- Disable full-laziness to keep ghc from optimizing most of the benchmark away.
{-# OPTIONS_GHC -fno-full-laziness #-}
import Control.DeepSeq (NFData(rnf))
import Control.Exception (evaluate)
import Control.Monad.IO.Class (liftIO)
import Criterion.Main (defaultMain, bgroup, bench)
import Criterion.Types (Benchmarkable(..))
Support fetching storable vectors + use them in benchmark (#50) In addition, you can now fetch TensorData directly. This might be useful in scenarios where you feed the result of a computation back in, like RNN. Before: benchmarking feedFetch/4 byte time 83.31 μs (81.88 μs .. 84.75 μs) 0.997 R² (0.994 R² .. 0.998 R²) mean 87.32 μs (86.06 μs .. 88.83 μs) std dev 4.580 μs (3.698 μs .. 5.567 μs) variance introduced by outliers: 55% (severely inflated) benchmarking feedFetch/4 KiB time 114.9 μs (111.5 μs .. 118.2 μs) 0.996 R² (0.994 R² .. 0.998 R²) mean 117.3 μs (116.2 μs .. 118.6 μs) std dev 3.877 μs (3.058 μs .. 5.565 μs) variance introduced by outliers: 31% (moderately inflated) benchmarking feedFetch/4 MiB time 109.0 ms (107.9 ms .. 110.7 ms) 1.000 R² (0.999 R² .. 1.000 R²) mean 108.6 ms (108.2 ms .. 109.2 ms) std dev 740.2 μs (353.2 μs .. 1.186 ms) After: benchmarking feedFetch/4 byte time 82.92 μs (80.55 μs .. 85.24 μs) 0.996 R² (0.993 R² .. 0.998 R²) mean 83.58 μs (82.34 μs .. 84.89 μs) std dev 4.327 μs (3.664 μs .. 5.375 μs) variance introduced by outliers: 54% (severely inflated) benchmarking feedFetch/4 KiB time 85.69 μs (83.81 μs .. 87.30 μs) 0.997 R² (0.996 R² .. 0.999 R²) mean 86.99 μs (86.11 μs .. 88.15 μs) std dev 3.608 μs (2.854 μs .. 5.273 μs) variance introduced by outliers: 43% (moderately inflated) benchmarking feedFetch/4 MiB time 1.582 ms (1.509 ms .. 1.677 ms) 0.970 R² (0.936 R² .. 0.993 R²) mean 1.645 ms (1.554 ms .. 1.981 ms) std dev 490.6 μs (138.9 μs .. 1.067 ms) variance introduced by outliers: 97% (severely inflated)
2016-12-14 18:53:06 -08:00
import qualified Data.Vector.Storable as S
Optimize fetching (#27) * Add MNIST data to gitignore * Add simple tensor round-trip benchmark * Use deepseq + cleaner imports * Use safe version of fromIntegral in FFI code * Don't copy data when fetching tensors BEFORE benchmarking feedFetch/4 byte time 55.79 μs (54.88 μs .. 56.62 μs) 0.998 R² (0.997 R² .. 0.999 R²) mean 55.61 μs (55.09 μs .. 56.11 μs) std dev 1.828 μs (1.424 μs .. 2.518 μs) variance introduced by outliers: 34% (moderately inflated) benchmarking feedFetch/4 KiB time 231.4 μs (221.9 μs .. 247.3 μs) 0.988 R² (0.974 R² .. 1.000 R²) mean 226.6 μs (224.1 μs .. 236.2 μs) std dev 13.45 μs (7.115 μs .. 27.14 μs) variance introduced by outliers: 57% (severely inflated) benchmarking feedFetch/4 MiB time 485.8 ms (424.6 ms .. 526.7 ms) 0.998 R² (0.994 R² .. 1.000 R²) mean 515.7 ms (512.5 ms .. 517.9 ms) std dev 3.320 ms (0.0 s .. 3.822 ms) variance introduced by outliers: 19% (moderately inflated) AFTER benchmarking feedFetch/4 byte time 53.11 μs (52.12 μs .. 54.22 μs) 0.996 R² (0.995 R² .. 0.998 R²) mean 54.64 μs (53.59 μs .. 56.18 μs) std dev 4.249 μs (2.910 μs .. 6.076 μs) variance introduced by outliers: 75% (severely inflated) benchmarking feedFetch/4 KiB time 83.83 μs (82.72 μs .. 84.92 μs) 0.999 R² (0.998 R² .. 0.999 R²) mean 83.82 μs (83.20 μs .. 84.35 μs) std dev 1.943 μs (1.557 μs .. 2.614 μs) variance introduced by outliers: 20% (moderately inflated) benchmarking feedFetch/4 MiB time 95.54 ms (93.62 ms .. 97.82 ms) 0.999 R² (0.998 R² .. 1.000 R²) mean 96.61 ms (95.76 ms .. 97.51 ms) std dev 1.408 ms (1.005 ms .. 1.889 ms)
2016-11-17 10:41:49 -08:00
import qualified TensorFlow.Core as TF
import qualified TensorFlow.Ops as TF
-- | Create 'Benchmarkable' for 'TF.Session'.
--
-- The entire benchmark will be run in a single tensorflow session. The
-- 'TF.Session' argument will be run once and then its result will be run N
-- times.
nfSession :: NFData b => TF.Session (a -> TF.Session b) -> a -> Benchmarkable
nfSession init x = Benchmarkable $ \m -> TF.runSession $ do
f <- init
-- Can't use replicateM because n is Int64.
let go n | n <= 0 = return ()
| otherwise = f x >>= liftIO . evaluate . rnf >> go (n-1)
go m
-- | Benchmark feeding and fetching a vector.
Support fetching storable vectors + use them in benchmark (#50) In addition, you can now fetch TensorData directly. This might be useful in scenarios where you feed the result of a computation back in, like RNN. Before: benchmarking feedFetch/4 byte time 83.31 μs (81.88 μs .. 84.75 μs) 0.997 R² (0.994 R² .. 0.998 R²) mean 87.32 μs (86.06 μs .. 88.83 μs) std dev 4.580 μs (3.698 μs .. 5.567 μs) variance introduced by outliers: 55% (severely inflated) benchmarking feedFetch/4 KiB time 114.9 μs (111.5 μs .. 118.2 μs) 0.996 R² (0.994 R² .. 0.998 R²) mean 117.3 μs (116.2 μs .. 118.6 μs) std dev 3.877 μs (3.058 μs .. 5.565 μs) variance introduced by outliers: 31% (moderately inflated) benchmarking feedFetch/4 MiB time 109.0 ms (107.9 ms .. 110.7 ms) 1.000 R² (0.999 R² .. 1.000 R²) mean 108.6 ms (108.2 ms .. 109.2 ms) std dev 740.2 μs (353.2 μs .. 1.186 ms) After: benchmarking feedFetch/4 byte time 82.92 μs (80.55 μs .. 85.24 μs) 0.996 R² (0.993 R² .. 0.998 R²) mean 83.58 μs (82.34 μs .. 84.89 μs) std dev 4.327 μs (3.664 μs .. 5.375 μs) variance introduced by outliers: 54% (severely inflated) benchmarking feedFetch/4 KiB time 85.69 μs (83.81 μs .. 87.30 μs) 0.997 R² (0.996 R² .. 0.999 R²) mean 86.99 μs (86.11 μs .. 88.15 μs) std dev 3.608 μs (2.854 μs .. 5.273 μs) variance introduced by outliers: 43% (moderately inflated) benchmarking feedFetch/4 MiB time 1.582 ms (1.509 ms .. 1.677 ms) 0.970 R² (0.936 R² .. 0.993 R²) mean 1.645 ms (1.554 ms .. 1.981 ms) std dev 490.6 μs (138.9 μs .. 1.067 ms) variance introduced by outliers: 97% (severely inflated)
2016-12-14 18:53:06 -08:00
feedFetchBenchmark :: TF.Session (S.Vector Float -> TF.Session (S.Vector Float))
Optimize fetching (#27) * Add MNIST data to gitignore * Add simple tensor round-trip benchmark * Use deepseq + cleaner imports * Use safe version of fromIntegral in FFI code * Don't copy data when fetching tensors BEFORE benchmarking feedFetch/4 byte time 55.79 μs (54.88 μs .. 56.62 μs) 0.998 R² (0.997 R² .. 0.999 R²) mean 55.61 μs (55.09 μs .. 56.11 μs) std dev 1.828 μs (1.424 μs .. 2.518 μs) variance introduced by outliers: 34% (moderately inflated) benchmarking feedFetch/4 KiB time 231.4 μs (221.9 μs .. 247.3 μs) 0.988 R² (0.974 R² .. 1.000 R²) mean 226.6 μs (224.1 μs .. 236.2 μs) std dev 13.45 μs (7.115 μs .. 27.14 μs) variance introduced by outliers: 57% (severely inflated) benchmarking feedFetch/4 MiB time 485.8 ms (424.6 ms .. 526.7 ms) 0.998 R² (0.994 R² .. 1.000 R²) mean 515.7 ms (512.5 ms .. 517.9 ms) std dev 3.320 ms (0.0 s .. 3.822 ms) variance introduced by outliers: 19% (moderately inflated) AFTER benchmarking feedFetch/4 byte time 53.11 μs (52.12 μs .. 54.22 μs) 0.996 R² (0.995 R² .. 0.998 R²) mean 54.64 μs (53.59 μs .. 56.18 μs) std dev 4.249 μs (2.910 μs .. 6.076 μs) variance introduced by outliers: 75% (severely inflated) benchmarking feedFetch/4 KiB time 83.83 μs (82.72 μs .. 84.92 μs) 0.999 R² (0.998 R² .. 0.999 R²) mean 83.82 μs (83.20 μs .. 84.35 μs) std dev 1.943 μs (1.557 μs .. 2.614 μs) variance introduced by outliers: 20% (moderately inflated) benchmarking feedFetch/4 MiB time 95.54 ms (93.62 ms .. 97.82 ms) 0.999 R² (0.998 R² .. 1.000 R²) mean 96.61 ms (95.76 ms .. 97.51 ms) std dev 1.408 ms (1.005 ms .. 1.889 ms)
2016-11-17 10:41:49 -08:00
feedFetchBenchmark = do
input <- TF.build (TF.placeholder (TF.Shape [-1]))
output <- TF.build (TF.render (TF.identity input))
return $ \v -> do
Support fetching storable vectors + use them in benchmark (#50) In addition, you can now fetch TensorData directly. This might be useful in scenarios where you feed the result of a computation back in, like RNN. Before: benchmarking feedFetch/4 byte time 83.31 μs (81.88 μs .. 84.75 μs) 0.997 R² (0.994 R² .. 0.998 R²) mean 87.32 μs (86.06 μs .. 88.83 μs) std dev 4.580 μs (3.698 μs .. 5.567 μs) variance introduced by outliers: 55% (severely inflated) benchmarking feedFetch/4 KiB time 114.9 μs (111.5 μs .. 118.2 μs) 0.996 R² (0.994 R² .. 0.998 R²) mean 117.3 μs (116.2 μs .. 118.6 μs) std dev 3.877 μs (3.058 μs .. 5.565 μs) variance introduced by outliers: 31% (moderately inflated) benchmarking feedFetch/4 MiB time 109.0 ms (107.9 ms .. 110.7 ms) 1.000 R² (0.999 R² .. 1.000 R²) mean 108.6 ms (108.2 ms .. 109.2 ms) std dev 740.2 μs (353.2 μs .. 1.186 ms) After: benchmarking feedFetch/4 byte time 82.92 μs (80.55 μs .. 85.24 μs) 0.996 R² (0.993 R² .. 0.998 R²) mean 83.58 μs (82.34 μs .. 84.89 μs) std dev 4.327 μs (3.664 μs .. 5.375 μs) variance introduced by outliers: 54% (severely inflated) benchmarking feedFetch/4 KiB time 85.69 μs (83.81 μs .. 87.30 μs) 0.997 R² (0.996 R² .. 0.999 R²) mean 86.99 μs (86.11 μs .. 88.15 μs) std dev 3.608 μs (2.854 μs .. 5.273 μs) variance introduced by outliers: 43% (moderately inflated) benchmarking feedFetch/4 MiB time 1.582 ms (1.509 ms .. 1.677 ms) 0.970 R² (0.936 R² .. 0.993 R²) mean 1.645 ms (1.554 ms .. 1.981 ms) std dev 490.6 μs (138.9 μs .. 1.067 ms) variance introduced by outliers: 97% (severely inflated)
2016-12-14 18:53:06 -08:00
let shape = TF.Shape [fromIntegral (S.length v)]
Optimize fetching (#27) * Add MNIST data to gitignore * Add simple tensor round-trip benchmark * Use deepseq + cleaner imports * Use safe version of fromIntegral in FFI code * Don't copy data when fetching tensors BEFORE benchmarking feedFetch/4 byte time 55.79 μs (54.88 μs .. 56.62 μs) 0.998 R² (0.997 R² .. 0.999 R²) mean 55.61 μs (55.09 μs .. 56.11 μs) std dev 1.828 μs (1.424 μs .. 2.518 μs) variance introduced by outliers: 34% (moderately inflated) benchmarking feedFetch/4 KiB time 231.4 μs (221.9 μs .. 247.3 μs) 0.988 R² (0.974 R² .. 1.000 R²) mean 226.6 μs (224.1 μs .. 236.2 μs) std dev 13.45 μs (7.115 μs .. 27.14 μs) variance introduced by outliers: 57% (severely inflated) benchmarking feedFetch/4 MiB time 485.8 ms (424.6 ms .. 526.7 ms) 0.998 R² (0.994 R² .. 1.000 R²) mean 515.7 ms (512.5 ms .. 517.9 ms) std dev 3.320 ms (0.0 s .. 3.822 ms) variance introduced by outliers: 19% (moderately inflated) AFTER benchmarking feedFetch/4 byte time 53.11 μs (52.12 μs .. 54.22 μs) 0.996 R² (0.995 R² .. 0.998 R²) mean 54.64 μs (53.59 μs .. 56.18 μs) std dev 4.249 μs (2.910 μs .. 6.076 μs) variance introduced by outliers: 75% (severely inflated) benchmarking feedFetch/4 KiB time 83.83 μs (82.72 μs .. 84.92 μs) 0.999 R² (0.998 R² .. 0.999 R²) mean 83.82 μs (83.20 μs .. 84.35 μs) std dev 1.943 μs (1.557 μs .. 2.614 μs) variance introduced by outliers: 20% (moderately inflated) benchmarking feedFetch/4 MiB time 95.54 ms (93.62 ms .. 97.82 ms) 0.999 R² (0.998 R² .. 1.000 R²) mean 96.61 ms (95.76 ms .. 97.51 ms) std dev 1.408 ms (1.005 ms .. 1.889 ms)
2016-11-17 10:41:49 -08:00
inputData = TF.encodeTensorData shape v
feeds = [TF.feed input inputData]
TF.runWithFeeds feeds output
main :: IO ()
main = defaultMain
[ bgroup "feedFetch"
Support fetching storable vectors + use them in benchmark (#50) In addition, you can now fetch TensorData directly. This might be useful in scenarios where you feed the result of a computation back in, like RNN. Before: benchmarking feedFetch/4 byte time 83.31 μs (81.88 μs .. 84.75 μs) 0.997 R² (0.994 R² .. 0.998 R²) mean 87.32 μs (86.06 μs .. 88.83 μs) std dev 4.580 μs (3.698 μs .. 5.567 μs) variance introduced by outliers: 55% (severely inflated) benchmarking feedFetch/4 KiB time 114.9 μs (111.5 μs .. 118.2 μs) 0.996 R² (0.994 R² .. 0.998 R²) mean 117.3 μs (116.2 μs .. 118.6 μs) std dev 3.877 μs (3.058 μs .. 5.565 μs) variance introduced by outliers: 31% (moderately inflated) benchmarking feedFetch/4 MiB time 109.0 ms (107.9 ms .. 110.7 ms) 1.000 R² (0.999 R² .. 1.000 R²) mean 108.6 ms (108.2 ms .. 109.2 ms) std dev 740.2 μs (353.2 μs .. 1.186 ms) After: benchmarking feedFetch/4 byte time 82.92 μs (80.55 μs .. 85.24 μs) 0.996 R² (0.993 R² .. 0.998 R²) mean 83.58 μs (82.34 μs .. 84.89 μs) std dev 4.327 μs (3.664 μs .. 5.375 μs) variance introduced by outliers: 54% (severely inflated) benchmarking feedFetch/4 KiB time 85.69 μs (83.81 μs .. 87.30 μs) 0.997 R² (0.996 R² .. 0.999 R²) mean 86.99 μs (86.11 μs .. 88.15 μs) std dev 3.608 μs (2.854 μs .. 5.273 μs) variance introduced by outliers: 43% (moderately inflated) benchmarking feedFetch/4 MiB time 1.582 ms (1.509 ms .. 1.677 ms) 0.970 R² (0.936 R² .. 0.993 R²) mean 1.645 ms (1.554 ms .. 1.981 ms) std dev 490.6 μs (138.9 μs .. 1.067 ms) variance introduced by outliers: 97% (severely inflated)
2016-12-14 18:53:06 -08:00
[ bench "4 byte" $ nfSession feedFetchBenchmark (S.replicate 1 0)
, bench "4 KiB" $ nfSession feedFetchBenchmark (S.replicate 1024 0)
, bench "4 MiB" $ nfSession feedFetchBenchmark (S.replicate (1024^2) 0)
Optimize fetching (#27) * Add MNIST data to gitignore * Add simple tensor round-trip benchmark * Use deepseq + cleaner imports * Use safe version of fromIntegral in FFI code * Don't copy data when fetching tensors BEFORE benchmarking feedFetch/4 byte time 55.79 μs (54.88 μs .. 56.62 μs) 0.998 R² (0.997 R² .. 0.999 R²) mean 55.61 μs (55.09 μs .. 56.11 μs) std dev 1.828 μs (1.424 μs .. 2.518 μs) variance introduced by outliers: 34% (moderately inflated) benchmarking feedFetch/4 KiB time 231.4 μs (221.9 μs .. 247.3 μs) 0.988 R² (0.974 R² .. 1.000 R²) mean 226.6 μs (224.1 μs .. 236.2 μs) std dev 13.45 μs (7.115 μs .. 27.14 μs) variance introduced by outliers: 57% (severely inflated) benchmarking feedFetch/4 MiB time 485.8 ms (424.6 ms .. 526.7 ms) 0.998 R² (0.994 R² .. 1.000 R²) mean 515.7 ms (512.5 ms .. 517.9 ms) std dev 3.320 ms (0.0 s .. 3.822 ms) variance introduced by outliers: 19% (moderately inflated) AFTER benchmarking feedFetch/4 byte time 53.11 μs (52.12 μs .. 54.22 μs) 0.996 R² (0.995 R² .. 0.998 R²) mean 54.64 μs (53.59 μs .. 56.18 μs) std dev 4.249 μs (2.910 μs .. 6.076 μs) variance introduced by outliers: 75% (severely inflated) benchmarking feedFetch/4 KiB time 83.83 μs (82.72 μs .. 84.92 μs) 0.999 R² (0.998 R² .. 0.999 R²) mean 83.82 μs (83.20 μs .. 84.35 μs) std dev 1.943 μs (1.557 μs .. 2.614 μs) variance introduced by outliers: 20% (moderately inflated) benchmarking feedFetch/4 MiB time 95.54 ms (93.62 ms .. 97.82 ms) 0.999 R² (0.998 R² .. 1.000 R²) mean 96.61 ms (95.76 ms .. 97.51 ms) std dev 1.408 ms (1.005 ms .. 1.889 ms)
2016-11-17 10:41:49 -08:00
]
]