jamulus/windows/sound.cpp
2008-03-16 13:10:46 +00:00

1388 lines
37 KiB
C++
Executable File

/******************************************************************************\
* Copyright (c) 2004-2006
*
* Author(s):
* Volker Fischer
*
* Description:
* Sound card interface for Windows operating systems
*
******************************************************************************
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
\******************************************************************************/
#include "Sound.h"
/* Implementation *************************************************************/
#ifdef USE_ASIO_SND_INTERFACE
// external references
extern AsioDrivers* asioDrivers;
bool loadAsioDriver ( char *name );
/******************************************************************************\
* Wave in *
\******************************************************************************/
bool CSound::Read ( CVector<short>& psData )
{
int i;
bool bError = false;
// check if device must be opened or reinitialized
if ( bChangParamIn )
{
// Reinit sound interface
InitRecordingAndPlayback ( iBufferSize );
// Reset flag
bChangParamIn = false;
}
/*
// wait until data is available
if ( ! ( m_WaveInHeader[iWhichBufferIn].dwFlags & WHDR_DONE ) )
{
if ( bBlockingRec )
{
WaitForSingleObject ( m_WaveInEvent, INFINITE );
}
else
{
return false;
}
}
*/
/*
// check if buffers got lost
int iNumInBufDone = 0;
for ( i = 0; i < iCurNumSndBufIn; i++ )
{
if ( m_WaveInHeader[i].dwFlags & WHDR_DONE )
{
iNumInBufDone++;
}
}
*/
/*
// If the number of done buffers equals the total number of buffers, it is
// very likely that a buffer got lost -> set error flag
if ( iNumInBufDone == iCurNumSndBufIn )
{
bError = true;
}
else
{
bError = false;
}
*/
/*
// copy data from sound card in output buffer
for ( i = 0; i < iBufferSize; i++ )
{
psData[i] = psSoundcardBuffer[iWhichBufferIn][i];
}
// add the buffer so that it can be filled with new samples
AddInBuffer();
// in case more than one buffer was ready, reset event
ResetEvent ( m_WaveInEvent );
*/
return bError;
}
void CSound::AddInBuffer()
{
/*
// unprepare old wave-header
waveInUnprepareHeader (
m_WaveIn, &m_WaveInHeader[iWhichBufferIn], sizeof ( WAVEHDR ) );
// prepare buffers for sending to sound interface
PrepareInBuffer ( iWhichBufferIn );
// send buffer to driver for filling with new data
waveInAddBuffer ( m_WaveIn, &m_WaveInHeader[iWhichBufferIn], sizeof ( WAVEHDR ) );
*/
// toggle buffers
iWhichBufferIn++;
if ( iWhichBufferIn == iCurNumSndBufIn )
{
iWhichBufferIn = 0;
}
}
void CSound::PrepareInBuffer ( int iBufNum )
{
/*
// set struct entries
m_WaveInHeader[iBufNum].lpData = (LPSTR) &psSoundcardBuffer[iBufNum][0];
m_WaveInHeader[iBufNum].dwBufferLength = iBufferSizeIn * BYTES_PER_SAMPLE;
m_WaveInHeader[iBufNum].dwFlags = 0;
// prepare wave-header
waveInPrepareHeader ( m_WaveIn, &m_WaveInHeader[iBufNum], sizeof ( WAVEHDR ) );
*/
}
void CSound::SetInNumBuf ( int iNewNum )
{
// check new parameter
if ( ( iNewNum >= MAX_SND_BUF_IN ) || ( iNewNum < 1 ) )
{
iNewNum = NUM_SOUND_BUFFERS_IN;
}
// change only if parameter is different
if ( iNewNum != iCurNumSndBufIn )
{
iCurNumSndBufIn = iNewNum;
bChangParamIn = true;
}
}
/******************************************************************************\
* Wave out *
\******************************************************************************/
bool CSound::Write ( CVector<short>& psData )
{
int i, j;
int iCntPrepBuf;
int iIndexDoneBuf;
bool bError;
// check if device must be opened or reinitialized
if ( bChangParamOut )
{
// reinit sound interface
InitRecordingAndPlayback ( iBufferSize );
// reset flag
bChangParamOut = false;
}
/*
// get number of "done"-buffers and position of one of them
GetDoneBuffer ( iCntPrepBuf, iIndexDoneBuf );
// now check special cases (Buffer is full or empty)
if ( iCntPrepBuf == 0 )
{
// Blocking wave out routine. Needed for transmitter. Always
// ensure that the buffer is completely filled to avoid buffer
// underruns
while ( iCntPrepBuf == 0 )
{
WaitForSingleObject ( m_WaveOutEvent, INFINITE );
GetDoneBuffer ( iCntPrepBuf, iIndexDoneBuf );
}
}
else
{
if ( iCntPrepBuf == iCurNumSndBufOut )
{
// -----------------------------------------------------------------
// Buffer is empty -> send as many cleared blocks to the sound-
// interface until half of the buffer size is reached
// send half of the buffer size blocks to the sound-interface
for ( j = 0; j < iCurNumSndBufOut / 2; j++ )
{
// first, clear these buffers
for ( i = 0; i < iBufferSize; i++ )
{
psPlaybackBuffer[j][i] = 0;
}
// then send them to the interface
AddOutBuffer ( j );
}
// set index for done buffer
iIndexDoneBuf = iCurNumSndBufOut / 2;
bError = true;
}
else
{
bError = false;
}
}
*/
/*
// copy stereo data from input in soundcard buffer
for ( i = 0; i < iBufferSize; i++ )
{
psPlaybackBuffer[iIndexDoneBuf][i] = psData[i];
}
*/
/*
// now, send the current block
AddOutBuffer ( iIndexDoneBuf );
*/
// TEST
Sleep(10);
return true;
return bError;
}
void CSound::GetDoneBuffer ( int& iCntPrepBuf, int& iIndexDoneBuf )
{
/*
// get number of "done"-buffers and position of one of them
iCntPrepBuf = 0;
for ( int i = 0; i < iCurNumSndBufOut; i++ )
{
if ( m_WaveOutHeader[i].dwFlags & WHDR_DONE )
{
iCntPrepBuf++;
iIndexDoneBuf = i;
}
}
*/
}
void CSound::AddOutBuffer ( int iBufNum )
{
/*
// Unprepare old wave-header
waveOutUnprepareHeader (
m_WaveOut, &m_WaveOutHeader[iBufNum], sizeof ( WAVEHDR ) );
// Prepare buffers for sending to sound interface
PrepareOutBuffer ( iBufNum );
// Send buffer to driver for filling with new data
waveOutWrite ( m_WaveOut, &m_WaveOutHeader[iBufNum], sizeof ( WAVEHDR ) );
*/
}
void CSound::PrepareOutBuffer ( int iBufNum )
{
/*
// Set Header data
m_WaveOutHeader[iBufNum].lpData = (LPSTR) &psPlaybackBuffer[iBufNum][0];
m_WaveOutHeader[iBufNum].dwBufferLength = iBufferSizeOut * BYTES_PER_SAMPLE;
m_WaveOutHeader[iBufNum].dwFlags = 0;
// Prepare wave-header
waveOutPrepareHeader ( m_WaveOut, &m_WaveOutHeader[iBufNum], sizeof ( WAVEHDR ) );
*/
}
void CSound::SetOutNumBuf ( int iNewNum )
{
// check new parameter
if ( ( iNewNum >= MAX_SND_BUF_OUT ) || ( iNewNum < 1 ) )
{
iNewNum = NUM_SOUND_BUFFERS_OUT;
}
// change only if parameter is different
if ( iNewNum != iCurNumSndBufOut )
{
iCurNumSndBufOut = iNewNum;
bChangParamOut = true;
}
}
/******************************************************************************\
* Common *
\******************************************************************************/
void CSound::InitRecordingAndPlayback ( int iNewBufferSize )
{
int i, j;
// first, stop audio
ASIOStop();
// set internal parameters
iBufferSize = iNewBufferSize;
/*
// reset interface so that all buffers are returned from the interface
waveInReset ( m_WaveIn );
waveInStop ( m_WaveIn );
*/
// reset current buffer ID (it is important to do this BEFORE calling
// "AddInBuffer()"
iWhichBufferIn = 0;
// create memory for sound card buffer
for ( i = 0; i < iCurNumSndBufIn; i++ )
{
/*
// Unprepare old wave-header in case that we "re-initialized" this
// module. Calling "waveInUnprepareHeader()" with an unprepared
// buffer (when the module is initialized for the first time) has
// simply no effect
waveInUnprepareHeader ( m_WaveIn, &m_WaveInHeader[i], sizeof ( WAVEHDR ) );
*/
if ( psSoundcardBuffer[i] != NULL )
{
delete[] psSoundcardBuffer[i];
}
psSoundcardBuffer[i] = new short[iBufferSize];
/* Send all buffers to driver for filling the queue ----------------- */
// prepare buffers before sending them to the sound interface
PrepareInBuffer ( i );
AddInBuffer();
}
/*
// notify that sound capturing can start now
waveInStart ( m_WaveIn );
*/
// This reset event is very important for initialization, otherwise we will
// get errors!
ResetEvent ( m_WaveInEvent );
// TODO this should be done in the setinoutbuf functions
// create and activate buffers
// ASIOCreateBuffers(bufferInfos, 2 * NUM_IN_OUT_CHANNELS,
// iBufferSizeIn * BYTES_PER_SAMPLE, &asioCallbacks);
ASIOCreateBuffers(bufferInfos, 2 * NUM_IN_OUT_CHANNELS,
iBufferSize * BYTES_PER_SAMPLE, &asioCallbacks);
// now set all the buffer details
for ( i = 0; i < 2 * NUM_IN_OUT_CHANNELS; i++ )
{
channelInfos[i].channel = NUM_IN_OUT_CHANNELS;
channelInfos[i].isInput = bufferInfos[i].isInput;
ASIOGetChannelInfo ( &channelInfos[i] );
}
/*
// reset interface
waveOutReset ( m_WaveOut );
*/
for ( j = 0; j < iCurNumSndBufOut; j++ )
{
/*
// Unprepare old wave-header (in case header was not prepared before,
// simply nothing happens with this function call
waveOutUnprepareHeader ( m_WaveOut, &m_WaveOutHeader[j], sizeof ( WAVEHDR ) );
*/
// create memory for playback buffer
if ( psPlaybackBuffer[j] != NULL )
{
delete[] psPlaybackBuffer[j];
}
psPlaybackBuffer[j] = new short[iBufferSize];
// clear new buffer
for ( i = 0; i < iBufferSize; i++ )
{
psPlaybackBuffer[j][i] = 0;
}
// prepare buffer for sending to the sound interface
PrepareOutBuffer ( j );
// initially, send all buffers to the interface
AddOutBuffer ( j );
}
// initialization is done, (re)start audio
ASIOStart();
}
void CSound::Close()
{
// set event to ensure that thread leaves the waiting function
if ( m_WaveInEvent != NULL )
{
SetEvent(m_WaveInEvent);
}
// wait for the thread to terminate
Sleep ( 500 );
// set flag to open devices the next time it is initialized
bChangParamIn = true;
bChangParamOut = true;
}
CSound::CSound()
{
int i;
// init number of sound buffers
iCurNumSndBufIn = NUM_SOUND_BUFFERS_IN;
iCurNumSndBufOut = NUM_SOUND_BUFFERS_OUT;
// should be initialized because an error can occur during init
m_WaveInEvent = NULL;
m_WaveOutEvent = NULL;
// get available ASIO driver names in system
char* cDriverNames[MAX_NUMBER_SOUND_CARDS];
for ( i = 0; i < MAX_NUMBER_SOUND_CARDS; i++ )
{
cDriverNames[i] = new char[32];
}
loadAsioDriver ( "dummy" ); // to initialize external object
const long lNumDetDriv = asioDrivers->getDriverNames ( cDriverNames, MAX_NUMBER_SOUND_CARDS );
// load and initialize first valid ASIO driver
bool bValidDriverDetected = false;
int iCurDriverIdx = 0;
while ( !bValidDriverDetected && iCurDriverIdx < lNumDetDriv )
{
if ( loadAsioDriver ( cDriverNames[iCurDriverIdx] ) )
{
if ( ASIOInit ( &driverInfo ) == ASE_OK )
{
bValidDriverDetected = true;
}
else
{
// driver could not be loaded, free memory
asioDrivers->removeCurrentDriver();
}
}
// try next driver
iCurDriverIdx++;
}
// in case we do not have a driver available, throw error
if ( !bValidDriverDetected )
{
throw CGenErr ( "No suitable ASIO audio device found." );
}
// TEST we only use one driver for a first try
iNumDevs = 1;
pstrDevices[0] = driverInfo.name;
// check the number of available channels
long lNumInChan;
long lNumOutChan;
ASIOGetChannels ( &lNumInChan, &lNumOutChan );
if ( ( lNumInChan != NUM_IN_OUT_CHANNELS ) || ( lNumOutChan != NUM_IN_OUT_CHANNELS ) )
{
throw CGenErr ( "The audio device does not support required number of channels." );
}
// check the usable buffer sizes
long lMinSize;
long lMaxSize;
long lPreferredSize;
long lGranularity;
ASIOGetBufferSize ( &lMinSize, &lMaxSize, &lPreferredSize, &lGranularity );
// TODO make use of the information...
// set the sample rate and check if sample rate is supported
ASIOSetSampleRate ( SND_CRD_SAMPLE_RATE );
ASIOSampleRate sampleRate;
ASIOGetSampleRate ( &sampleRate );
if ( sampleRate != SND_CRD_SAMPLE_RATE )
{
throw CGenErr ( "The audio device does not support required sample rate." );
}
// check wether the driver requires the ASIOOutputReady() optimization
// (can be used by the driver to reduce output latency by one block)
bASIOPostOutput = ( ASIOOutputReady() == ASE_OK );
// set up the asioCallback structure and create the ASIO data buffer
asioCallbacks.bufferSwitch = &bufferSwitch;
asioCallbacks.sampleRateDidChange = &sampleRateChanged;
asioCallbacks.asioMessage = &asioMessages;
asioCallbacks.bufferSwitchTimeInfo = &bufferSwitchTimeInfo;
// prepare input channels
for ( i = 0; i < NUM_IN_OUT_CHANNELS; i++ )
{
bufferInfos[i].isInput = ASIOTrue;
bufferInfos[i].channelNum = i;
bufferInfos[i].buffers[0] = 0;
bufferInfos[i].buffers[1] = 0;
}
// prepare output channels
for ( i = 0; i < NUM_IN_OUT_CHANNELS; i++ )
{
bufferInfos[NUM_IN_OUT_CHANNELS + i].isInput = ASIOFalse;
bufferInfos[NUM_IN_OUT_CHANNELS + i].channelNum = i;
bufferInfos[NUM_IN_OUT_CHANNELS + i].buffers[0] = 0;
bufferInfos[NUM_IN_OUT_CHANNELS + i].buffers[1] = 0;
}
// init buffer pointer to zero
for ( i = 0; i < MAX_SND_BUF_IN; i++ )
{
psSoundcardBuffer[i] = NULL;
}
for ( i = 0; i < MAX_SND_BUF_OUT; i++ )
{
psPlaybackBuffer[i] = NULL;
}
// we use an event controlled wave-in (wave-out) structure
// create events
m_WaveInEvent = CreateEvent ( NULL, FALSE, FALSE, NULL );
m_WaveOutEvent = CreateEvent ( NULL, FALSE, FALSE, NULL );
// set flag to open devices
bChangParamIn = true;
bChangParamOut = true;
}
CSound::~CSound()
{
int i;
// cleanup ASIO stuff
ASIOStop();
ASIODisposeBuffers();
ASIOExit();
asioDrivers->removeCurrentDriver();
// delete allocated memory
for ( i = 0; i < iCurNumSndBufIn; i++ )
{
if ( psSoundcardBuffer[i] != NULL )
{
delete[] psSoundcardBuffer[i];
}
}
for ( i = 0; i < iCurNumSndBufOut; i++ )
{
if ( psPlaybackBuffer[i] != NULL )
{
delete[] psPlaybackBuffer[i];
}
}
/*
// close the handle for the events
if ( m_WaveInEvent != NULL )
{
CloseHandle ( m_WaveInEvent );
}
if ( m_WaveOutEvent != NULL )
{
CloseHandle ( m_WaveOutEvent );
}
*/
}
// ASIO callbacks -------------------------------------------------------------
ASIOTime* CSound::bufferSwitchTimeInfo ( ASIOTime *timeInfo, long index, ASIOBool processNow )
{
bufferSwitch ( index, processNow );
return 0L;
}
void CSound::bufferSwitch( long index, ASIOBool processNow )
{
static long processedSamples = 0;
/*
// buffer size in samples
// long buffSize = asioDriverInfo.preferredSize;
// perform the processing
for ( int i = 0; i < asioDriverInfo.inputBuffers + asioDriverInfo.outputBuffers; i++ )
{
if ( asioDriverInfo.bufferInfos[i].isInput == false )
{
// OK do processing for the outputs only
switch ( asioDriverInfo.channelInfos[i].type )
{
case ASIOSTInt16LSB:
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 2 );
break;
case ASIOSTInt24LSB: // used for 20 bits as well
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 3 );
break;
case ASIOSTInt32LSB:
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 4 );
break;
case ASIOSTFloat32LSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 4 );
break;
case ASIOSTFloat64LSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 8 );
break;
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32LSB16: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32LSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32LSB24: // 32 bit data with 24 bit alignment
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 4 );
break;
case ASIOSTInt16MSB:
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 2 );
break;
case ASIOSTInt24MSB: // used for 20 bits as well
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 3 );
break;
case ASIOSTInt32MSB:
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 4 );
break;
case ASIOSTFloat32MSB: // IEEE 754 32 bit float, as found on Intel x86 architecture
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 4 );
break;
case ASIOSTFloat64MSB: // IEEE 754 64 bit double float, as found on Intel x86 architecture
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 8 );
break;
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
case ASIOSTInt32MSB16: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB18: // 32 bit data with 18 bit alignment
case ASIOSTInt32MSB20: // 32 bit data with 20 bit alignment
case ASIOSTInt32MSB24: // 32 bit data with 24 bit alignment
memset ( asioDriverInfo.bufferInfos[i].buffers[index], 0, buffSize * 4 );
break;
}
}
}
// finally if the driver supports the ASIOOutputReady() optimization, do it here, all data are in place
if ( asioDriverInfo.postOutput )
{
ASIOOutputReady();
}
if ( processedSamples >= asioDriverInfo.sampleRate * TEST_RUN_TIME ) // roughly measured
{
asioDriverInfo.stopped = true;
}
else
{
processedSamples += buffSize;
}
*/
}
long CSound::asioMessages ( long selector, long value, void* message, double* opt )
{
long ret = 0;
switch(selector)
{
case kAsioEngineVersion:
// return the supported ASIO version of the host application
ret = 2L;
break;
}
return ret;
}
#else // USE_ASIO_SND_INTERFACE
/******************************************************************************\
* Wave in *
\******************************************************************************/
bool CSound::Read ( CVector<short>& psData )
{
int i;
bool bError;
// check if device must be opened or reinitialized
if ( bChangParamIn )
{
OpenInDevice();
// Reinit sound interface
InitRecording ( iBufferSizeIn, bBlockingRec );
// Reset flag
bChangParamIn = false;
}
// wait until data is available
if ( ! ( m_WaveInHeader[iWhichBufferIn].dwFlags & WHDR_DONE ) )
{
if ( bBlockingRec )
{
WaitForSingleObject ( m_WaveInEvent, INFINITE );
}
else
{
return false;
}
}
// check if buffers got lost
int iNumInBufDone = 0;
for ( i = 0; i < iCurNumSndBufIn; i++ )
{
if ( m_WaveInHeader[i].dwFlags & WHDR_DONE )
{
iNumInBufDone++;
}
}
/* If the number of done buffers equals the total number of buffers, it is
very likely that a buffer got lost -> set error flag */
if ( iNumInBufDone == iCurNumSndBufIn )
{
bError = true;
}
else
{
bError = false;
}
// copy data from sound card in output buffer
for ( i = 0; i < iBufferSizeIn; i++ )
{
psData[i] = psSoundcardBuffer[iWhichBufferIn][i];
}
// add the buffer so that it can be filled with new samples
AddInBuffer();
// in case more than one buffer was ready, reset event
ResetEvent ( m_WaveInEvent );
return bError;
}
void CSound::AddInBuffer()
{
// unprepare old wave-header
waveInUnprepareHeader (
m_WaveIn, &m_WaveInHeader[iWhichBufferIn], sizeof ( WAVEHDR ) );
// prepare buffers for sending to sound interface
PrepareInBuffer ( iWhichBufferIn );
// send buffer to driver for filling with new data
waveInAddBuffer ( m_WaveIn, &m_WaveInHeader[iWhichBufferIn], sizeof ( WAVEHDR ) );
// toggle buffers
iWhichBufferIn++;
if ( iWhichBufferIn == iCurNumSndBufIn )
{
iWhichBufferIn = 0;
}
}
void CSound::PrepareInBuffer ( int iBufNum )
{
// set struct entries
m_WaveInHeader[iBufNum].lpData = (LPSTR) &psSoundcardBuffer[iBufNum][0];
m_WaveInHeader[iBufNum].dwBufferLength = iBufferSizeIn * BYTES_PER_SAMPLE;
m_WaveInHeader[iBufNum].dwFlags = 0;
// prepare wave-header
waveInPrepareHeader ( m_WaveIn, &m_WaveInHeader[iBufNum], sizeof ( WAVEHDR ) );
}
void CSound::InitRecording ( int iNewBufferSize, bool bNewBlocking )
{
// check if device must be opened or reinitialized
if ( bChangParamIn )
{
OpenInDevice();
// reset flag
bChangParamIn = false;
}
// set internal parameter
iBufferSizeIn = iNewBufferSize;
bBlockingRec = bNewBlocking;
// reset interface so that all buffers are returned from the interface
waveInReset ( m_WaveIn );
waveInStop ( m_WaveIn );
/* reset current buffer ID (it is important to do this BEFORE calling
"AddInBuffer()" */
iWhichBufferIn = 0;
// create memory for sound card buffer
for ( int i = 0; i < iCurNumSndBufIn; i++ )
{
/* Unprepare old wave-header in case that we "re-initialized" this
module. Calling "waveInUnprepareHeader()" with an unprepared
buffer (when the module is initialized for the first time) has
simply no effect */
waveInUnprepareHeader ( m_WaveIn, &m_WaveInHeader[i], sizeof ( WAVEHDR ) );
if ( psSoundcardBuffer[i] != NULL )
{
delete[] psSoundcardBuffer[i];
}
psSoundcardBuffer[i] = new short[iBufferSizeIn];
// Send all buffers to driver for filling the queue --------------------
// prepare buffers before sending them to the sound interface
PrepareInBuffer ( i );
AddInBuffer();
}
// notify that sound capturing can start now
waveInStart ( m_WaveIn );
/* This reset event is very important for initialization, otherwise we will
get errors! */
ResetEvent ( m_WaveInEvent );
}
void CSound::OpenInDevice()
{
// open wave-input and set call-back mechanism to event handle
if ( m_WaveIn != NULL )
{
waveInReset ( m_WaveIn );
waveInClose ( m_WaveIn );
}
MMRESULT result = waveInOpen ( &m_WaveIn, iCurInDev, &sWaveFormatEx,
(DWORD) m_WaveInEvent, NULL, CALLBACK_EVENT );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface Start, waveInOpen() failed. This error "
"usually occurs if another application blocks the sound in." );
}
}
void CSound::SetInDev ( int iNewDev )
{
// set device to wave mapper if iNewDev is invalid
if ( ( iNewDev >= iNumDevs ) || ( iNewDev < 0 ) )
{
iNewDev = WAVE_MAPPER;
}
// change only in case new device id is not already active
if ( iNewDev != iCurInDev )
{
iCurInDev = iNewDev;
bChangParamIn = true;
}
}
void CSound::SetInNumBuf ( int iNewNum )
{
// check new parameter
if ( ( iNewNum >= MAX_SND_BUF_IN ) || ( iNewNum < 1 ) )
{
iNewNum = NUM_SOUND_BUFFERS_IN;
}
// change only if parameter is different
if ( iNewNum != iCurNumSndBufIn )
{
iCurNumSndBufIn = iNewNum;
bChangParamIn = true;
}
}
/******************************************************************************\
* Wave out *
\******************************************************************************/
bool CSound::Write ( CVector<short>& psData )
{
int i, j;
int iCntPrepBuf;
int iIndexDoneBuf;
bool bError;
// check if device must be opened or reinitialized
if ( bChangParamOut )
{
OpenOutDevice();
// reinit sound interface
InitPlayback ( iBufferSizeOut, bBlockingPlay );
// reset flag
bChangParamOut = false;
}
// get number of "done"-buffers and position of one of them
GetDoneBuffer ( iCntPrepBuf, iIndexDoneBuf );
// now check special cases (Buffer is full or empty)
if ( iCntPrepBuf == 0 )
{
if ( bBlockingPlay )
{
/* Blocking wave out routine. Always
ensure that the buffer is completely filled to avoid buffer
underruns */
while ( iCntPrepBuf == 0 )
{
WaitForSingleObject ( m_WaveOutEvent, INFINITE );
GetDoneBuffer ( iCntPrepBuf, iIndexDoneBuf );
}
}
else
{
// All buffers are filled, dump new block --------------------------
// It would be better to kill half of the buffer blocks to set the start
// back to the middle: TODO
return true; // an error occurred
}
}
else
{
if ( iCntPrepBuf == iCurNumSndBufOut )
{
/* -----------------------------------------------------------------
Buffer is empty -> send as many cleared blocks to the sound-
interface until half of the buffer size is reached */
// send half of the buffer size blocks to the sound-interface
for ( j = 0; j < iCurNumSndBufOut / 2; j++ )
{
// first, clear these buffers
for ( i = 0; i < iBufferSizeOut; i++ )
{
psPlaybackBuffer[j][i] = 0;
}
// then send them to the interface
AddOutBuffer ( j );
}
// set index for done buffer
iIndexDoneBuf = iCurNumSndBufOut / 2;
bError = true;
}
else
{
bError = false;
}
}
// copy stereo data from input in soundcard buffer
for ( i = 0; i < iBufferSizeOut; i++ )
{
psPlaybackBuffer[iIndexDoneBuf][i] = psData[i];
}
// now, send the current block
AddOutBuffer ( iIndexDoneBuf );
return bError;
}
void CSound::GetDoneBuffer ( int& iCntPrepBuf, int& iIndexDoneBuf )
{
// get number of "done"-buffers and position of one of them
iCntPrepBuf = 0;
for ( int i = 0; i < iCurNumSndBufOut; i++ )
{
if ( m_WaveOutHeader[i].dwFlags & WHDR_DONE )
{
iCntPrepBuf++;
iIndexDoneBuf = i;
}
}
}
void CSound::AddOutBuffer ( int iBufNum )
{
// unprepare old wave-header
waveOutUnprepareHeader (
m_WaveOut, &m_WaveOutHeader[iBufNum], sizeof ( WAVEHDR ) );
// prepare buffers for sending to sound interface
PrepareOutBuffer ( iBufNum );
// send buffer to driver for filling with new data
waveOutWrite ( m_WaveOut, &m_WaveOutHeader[iBufNum], sizeof ( WAVEHDR ) );
}
void CSound::PrepareOutBuffer ( int iBufNum )
{
// set Header data
m_WaveOutHeader[iBufNum].lpData = (LPSTR) &psPlaybackBuffer[iBufNum][0];
m_WaveOutHeader[iBufNum].dwBufferLength = iBufferSizeOut * BYTES_PER_SAMPLE;
m_WaveOutHeader[iBufNum].dwFlags = 0;
// prepare wave-header
waveOutPrepareHeader ( m_WaveOut, &m_WaveOutHeader[iBufNum], sizeof ( WAVEHDR ) );
}
void CSound::InitPlayback ( int iNewBufferSize, bool bNewBlocking )
{
int i, j;
// check if device must be opened or reinitialized
if ( bChangParamOut )
{
OpenOutDevice();
// reset flag
bChangParamOut = false;
}
// set internal parameters
iBufferSizeOut = iNewBufferSize;
bBlockingPlay = bNewBlocking;
// reset interface
waveOutReset ( m_WaveOut );
for ( j = 0; j < iCurNumSndBufOut; j++ )
{
/* Unprepare old wave-header (in case header was not prepared before,
simply nothing happens with this function call */
waveOutUnprepareHeader ( m_WaveOut, &m_WaveOutHeader[j], sizeof ( WAVEHDR ) );
// create memory for playback buffer
if ( psPlaybackBuffer[j] != NULL )
{
delete[] psPlaybackBuffer[j];
}
psPlaybackBuffer[j] = new short[iBufferSizeOut];
// clear new buffer
for ( i = 0; i < iBufferSizeOut; i++ )
{
psPlaybackBuffer[j][i] = 0;
}
// prepare buffer for sending to the sound interface
PrepareOutBuffer ( j );
// initially, send all buffers to the interface
AddOutBuffer ( j );
}
}
void CSound::OpenOutDevice()
{
if ( m_WaveOut != NULL )
{
waveOutReset ( m_WaveOut );
waveOutClose ( m_WaveOut );
}
MMRESULT result = waveOutOpen ( &m_WaveOut, iCurOutDev, &sWaveFormatEx,
(DWORD) m_WaveOutEvent, NULL, CALLBACK_EVENT );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface Start, waveOutOpen() failed." );
}
}
void CSound::SetOutDev ( int iNewDev )
{
// set device to wave mapper if iNewDev is invalid
if ( ( iNewDev >= iNumDevs ) || ( iNewDev < 0 ) )
{
iNewDev = WAVE_MAPPER;
}
// change only in case new device id is not already active
if ( iNewDev != iCurOutDev )
{
iCurOutDev = iNewDev;
bChangParamOut = true;
}
}
void CSound::SetOutNumBuf ( int iNewNum )
{
// check new parameter
if ( ( iNewNum >= MAX_SND_BUF_OUT ) || ( iNewNum < 1 ) )
{
iNewNum = NUM_SOUND_BUFFERS_OUT;
}
// change only if parameter is different
if ( iNewNum != iCurNumSndBufOut )
{
iCurNumSndBufOut = iNewNum;
bChangParamOut = true;
}
}
/******************************************************************************\
* Common *
\******************************************************************************/
void CSound::Close()
{
int i;
MMRESULT result;
// reset audio driver
if ( m_WaveOut != NULL )
{
result = waveOutReset ( m_WaveOut );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface, waveOutReset() failed." );
}
}
if ( m_WaveIn != NULL )
{
result = waveInReset ( m_WaveIn );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface, waveInReset() failed." );
}
}
// set event to ensure that thread leaves the waiting function
if ( m_WaveInEvent != NULL )
{
SetEvent(m_WaveInEvent);
}
// wait for the thread to terminate
Sleep ( 500 );
// unprepare wave-headers
if ( m_WaveIn != NULL )
{
for ( i = 0; i < iCurNumSndBufIn; i++ )
{
result = waveInUnprepareHeader (
m_WaveIn, &m_WaveInHeader[i], sizeof ( WAVEHDR ) );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface, waveInUnprepareHeader()"
" failed." );
}
}
// close the sound in device
result = waveInClose ( m_WaveIn );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface, waveInClose() failed." );
}
}
if ( m_WaveOut != NULL )
{
for ( i = 0; i < iCurNumSndBufOut; i++ )
{
result = waveOutUnprepareHeader (
m_WaveOut, &m_WaveOutHeader[i], sizeof ( WAVEHDR ) );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface, waveOutUnprepareHeader()"
" failed." );
}
}
// close the sound out device
result = waveOutClose ( m_WaveOut );
if ( result != MMSYSERR_NOERROR )
{
throw CGenErr ( "Sound Interface, waveOutClose() failed." );
}
}
// set flag to open devices the next time it is initialized
bChangParamIn = true;
bChangParamOut = true;
}
CSound::CSound()
{
int i;
// init number of sound buffers
iCurNumSndBufIn = NUM_SOUND_BUFFERS_IN;
iCurNumSndBufOut = NUM_SOUND_BUFFERS_OUT;
// should be initialized because an error can occur during init
m_WaveInEvent = NULL;
m_WaveOutEvent = NULL;
m_WaveIn = NULL;
m_WaveOut = NULL;
// init buffer pointer to zero
for ( i = 0; i < MAX_SND_BUF_IN; i++ )
{
memset ( &m_WaveInHeader[i], 0, sizeof ( WAVEHDR ) );
psSoundcardBuffer[i] = NULL;
}
for ( i = 0; i < MAX_SND_BUF_OUT; i++ )
{
memset ( &m_WaveOutHeader[i], 0, sizeof ( WAVEHDR ) );
psPlaybackBuffer[i] = NULL;
}
// init wave-format structure
sWaveFormatEx.wFormatTag = WAVE_FORMAT_PCM;
sWaveFormatEx.nChannels = NUM_IN_OUT_CHANNELS;
sWaveFormatEx.wBitsPerSample = BITS_PER_SAMPLE;
sWaveFormatEx.nSamplesPerSec = SND_CRD_SAMPLE_RATE;
sWaveFormatEx.nBlockAlign = sWaveFormatEx.nChannels *
sWaveFormatEx.wBitsPerSample / 8;
sWaveFormatEx.nAvgBytesPerSec = sWaveFormatEx.nBlockAlign *
sWaveFormatEx.nSamplesPerSec;
sWaveFormatEx.cbSize = 0;
// get the number of digital audio devices in this computer, check range
iNumDevs = waveInGetNumDevs();
if ( iNumDevs > MAX_NUMBER_SOUND_CARDS )
{
iNumDevs = MAX_NUMBER_SOUND_CARDS;
}
// at least one device must exist in the system
if ( iNumDevs == 0 )
{
throw CGenErr ( "No audio device found." );
}
// get info about the devices and store the names
for ( i = 0; i < iNumDevs; i++ )
{
if ( !waveInGetDevCaps ( i, &m_WaveInDevCaps, sizeof ( WAVEINCAPS ) ) )
{
pstrDevices[i] = m_WaveInDevCaps.szPname;
}
}
// we use an event controlled wave-in (wave-out) structure
// create events
m_WaveInEvent = CreateEvent ( NULL, FALSE, FALSE, NULL );
m_WaveOutEvent = CreateEvent ( NULL, FALSE, FALSE, NULL );
// set flag to open devices
bChangParamIn = true;
bChangParamOut = true;
// default device number, "wave mapper"
iCurInDev = WAVE_MAPPER;
iCurOutDev = WAVE_MAPPER;
// non-blocking wave out is default
bBlockingPlay = false;
// blocking wave in is default
bBlockingRec = true;
}
CSound::~CSound()
{
int i;
// delete allocated memory
for ( i = 0; i < iCurNumSndBufIn; i++ )
{
if ( psSoundcardBuffer[i] != NULL )
{
delete[] psSoundcardBuffer[i];
}
}
for ( i = 0; i < iCurNumSndBufOut; i++ )
{
if ( psPlaybackBuffer[i] != NULL )
{
delete[] psPlaybackBuffer[i];
}
}
// close the handle for the events
if ( m_WaveInEvent != NULL )
{
CloseHandle ( m_WaveInEvent );
}
if ( m_WaveOutEvent != NULL )
{
CloseHandle ( m_WaveOutEvent );
}
}
#endif // USE_ASIO_SND_INTERFACE