Theory of Computer Science:
Why All That Formal Stuff?

Sergiu lvanov

sergiu.ivanov@univ-grenoble-alpes.fr

Université Grenoble Alpes

Open Seminar

Question

Computer Science <+ Maths

p

What is the relationship?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

e

Outline

1. Part1

2.

Calculus
Formal Languages
Set Theory

Part 2

Collections

Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

iversité Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

-he

Outline

1. Part 1
Calculus
Formal Languages
Set Theory

Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

-he

Calculus

o df . °
derivatives —— integrals f dx
dx a

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

Calculus
df b

derivatives —— integrals f dx

dx a

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

Calculus
df b

derivatives —— integrals f dx

dx 5

How often do we use that in practice?

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

Calculus
df b

derivatives —— integrals f dx

dx 5

How often do we use that in practice?

We use thatin games! collisions, ray tracing, ..

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

Outline

1. Part1

Formal Languages

Sergiu Ivanov, Université Grenoble Alpes

Theory of Computer Science: Why All That Formal Stuff?

-he

Formal Languages

N

Finite alphabet: V = {a1,a,,...,an} letters

Sergiu Ivanov, Université Grenoble Alpes

Theory of Computer Science: Why All That Formal Stuff?

3N6

Formal Languages

o RN
Finite alphabet: V = {a1,a,,...,an} letters

Word = any finite sequence of letters

> ajap, ajaiap, dzazaiajdzay

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

3N6

Formal Languages

o RN
Finite alphabet: V = {a1,a,,...,an} letters

Word = any finite sequence of letters

> ajap, ajaiap, dzazaiajdzay

Language over V = any set of words over V

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

3N6

Formal Languages

o RN
Finite alphabet: V = {a1,a,,...,an} letters

Word = any finite sequence of letters

> ajap, ajaiap, dzazaiajdzay
Language over V = any set of words over V

regular languages, finite automata, pushdown automata, Turing

machines, context-free language, pumping lemma, ...

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

3N6

Formal Languages

o RN
Finite alphabet: V = {a1,a,,...,an} letters

Word = any finite sequence of letters

> ajap, ajaiap, dzazaiajdzay
Language over V = any set of words over V

regular languages, finite automata, pushdown automata, Turing

machines, context-free language, pumping lemma, ..

Why? Why? @

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

3N6

Formal Languages: Compilers
Programming languages are formal languages

» alphabet for C = {if, for,int,+, *,...}

parsing

1+ 2 %x3 =

Compiler = parser + binary code generator

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 46

Formal Languages: Regular Expressions
[letter]

[Ietter]([letter] ‘ [digit])*
)

» a, ab, c2, x2a, ..
[digit]

finite automaton

Formal regular expressions ~ finite automata

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

516

Formal Languages: Regular Expressions
[letter]

[Ietter]([letter] ‘ [digit])*

» a, ab, c2, x2a, ..
[digit]
finite automaton

Formal regular expressions ~ finite automata

Regexp = rather extended regular expressions

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 5016

Formal Languages: A Philosophy of Computers

Finite automata

[letter]

. [letter]

[digit]

Turing machines

a | b T

vanov, Université Grenoble Alpes

Theory of Computer Science: Why All That Formal Stuff?

6/16

Formal Languages: A Philosophy of Computers
strictly less powerful

Finite automata <{ Turing machines
[letter]

. [letter] -1l a b 1
[digit]

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

Formal Languages: A Philosophy of Computers
strictly less powerful

Finite automata <{ Turing machines
[letter]

. [letter] -1l a b 1
[digit]

Computers correspond to which?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16

Formal Languages: A Philosophy of Computers
strictly less powerful

Finite automata <{ Turing machines
[letter]

. [letter] -1l a b 1
[digit]

Computers correspond to which?

Finite automata!

» all resources are finite

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16

Formal Languages: A Philosophy of Computers
strictly less powerful

Finite automata <{ Turing machines
[letter]

. [letter] -1l a b 1
[digit]

Computers correspond to which?

Finite automata! Programming languages

» all resources are finite but are Turing powerful!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16

Outline

1. Part 1
Calculus
Formal Languages
Set Theory

Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

-he

Set Theory

A={ab,c, ...}

When do programmers use set theory?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

7h6

Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

o\ @
e (G €D)
el gy ,) e e e

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

o\
o (R
ny gy r y e e e

Inheritance = set inclusion

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

o\
o (R
ny gy r y e e e

Inheritance = set inclusion

house C building

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

o\
o (R
ny gy r y e e e

Inheritance = set inclusion
house C building

Every house is a building, but not every building is a house.

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

Types and Operations on Sets
MyType x; x € MyType

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

9N6

https://openclipart.org/

Types and Operations on Sets

MyType X; X € MyType
struct Person { Person = String X int =
String name; {("Vasile",1234), (“lon”, =2), ...}
int age;

3

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 96

https://openclipart.org/

Types and Operations on Sets

MyType X; X € MyType
struct Person { Person = String X int =
String name; {("Vasile",1234), (“lon”, —2), ..
int age;

by

-

Person = String U int =
{*"Vasile", 1234 “lon", —2,...}

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

9he

https://openclipart.org/

Types and Operations on Sets

MyType X; X € MyType

struct Person { Person = String X int =
String name; {("Vasile",1234), (“lon”, =2),... }
int age;

}

union Variant { Person = String U int =
String str; {*"Vasile", 1234 “lon", —2,...}
int num;

¥

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 96

https://openclipart.org/

Types and Operations on Sets

MyType x;

struct Person {
String name;

X € MyType

Person = String X int =
{("Vasile",1234), (“lon”, =2),... }

int age;

}

union Variant { Person = String U int =
String str; {*"Vasile", 1234 “lon", —2,...}
int num;

}

f :: Int -> Double
fx=x/2

f:Z — ReRE

Sergiu Ivanov, Université Grenoble Alpes

Theory of Computer Science: Why All That Formal Stuff? 96

https://openclipart.org/

Types and Operations on Sets

MyType X; X € MyType
struct Person { Person = String X int =
String name; {("Vasile",1234), (“lon”, =2),... }
int age;
}
union Variant { Person = String U int =
String str; {*"Vasile", 1234 “lon", —2,...}
int num;
}
f :: Int -> Double f:Z —ReRZ
fx=x/2

How about M, \,..?

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 96

https://openclipart.org/

Outline

Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

-he

Abstract Algebra

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10116

https://openclipart.org/

Abstract Algebra

i L
Croup gl o

» associativity: X+ (y+2z)=(X+y)+z
» identity: Xx+0=0+x=xX

» inverses: X+ (—Xx)=(—x)+x=0

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10116

https://openclipart.org/

Abstract Algebra

Group

» associativity: X+ (y+2z)=(X+y)+z
» identity: x+0=0+x=x

» inverses: X+ (—Xx)=(—x)+x=0

Free Monoid
» associativity: X+ (y+2z)=(X+y)+z
» identity: x+0=0+x=x

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10116

https://openclipart.org/

Abstract Algebra

Group

» associativity: X+ (y+2z)=(X+y)+z
» identity: x+0=0+x=x

» inverses: X+ (—Xx)=(—x)+x=0

Free Monoid
» associativity: X+ (y+2z)=(x+y)+2z
» identity: x+0=0+x=x
LY 4

Who uses monoids?? . &

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10116

https://openclipart.org/

Abstract Algebra

Group

» associativity: X+ (y+2z)=(X+y)+z
» identity: x+0=0+x=x

» inverses: X+ (—Xx)=(—x)+x=0

Free Monoid
» associativity: X+ (y+2z)=(x+y)+2z
» identity: x+0=0+x=x
LY 4

Who uses monoids? *.*/ Turns out, yOU do!

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10116

https://openclipart.org/

Monoids as Collections

In a free monoid M, no sum cancels out.

X+ 0 = x, same length
Takex e M <
X +v, alonger sum

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

nhe

Monoids as Collections

In a free monoid M, no sum cancels out.

X+ 0 = x, same length
Takex e M <
X +v, alonger sum

Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

nhe

Monoids as Collections

In a free monoid M, no sum cancels out.
X+ 0 = x, same length
Take x € M <
X +v, alonger sum
Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

The sum operator is the concatenation.
» 131 +[3,7] = [1,33,7]

» “big” t+ “banana” = “bigbanana”

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? /e

Monoids as Collections

In a free monoid M, no sum cancels out.
X+ 0 = x, same length
Take x € M <
X +v, alonger sum
Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

The sum operator is the concatenation.
» 131 +[3,7] = [1,33,7]
» “big” t+ “banana” = “bigbanana”

A log is a typical free monoid.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? /e

Outline

2. Part 2

Parallel and Concurrent Programming

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

-he

“Easy” Parallelism with Functional Programming

Higher-order functions are easier to handle.

for(i = 0; 1 < n; i++) map (A x — x + 2) vect

vect[i] = vect[i] + 2; \\\

easier to parallelise

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1216

“Easy” Parallelism with Functional Programming

Higher-order functions are easier to handle.

for(i = 0; 1 < n; i++) map (A x — x + 2) vect

vect[i] = vectl[i] + 2; \\\
easier to parallelise

» each step in for explicitly depends on the previous
one: i = i+l

» the behaviour of map is explicitly fixed

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1216

Parallelism vs. Concurrency. Statically.

Parallelism

Concurrency

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13/16

Parallelism vs. Concurrency. Statically.

1. problem — independent subproblems Parallelism

2. solve subproblems independently

» no shared resources

multiple threads share resources Concurrency
» synchronisation

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13016

Parallelism vs. Concurrency. Statically.

1. problem — independent subproblems Parallelism

2. solve subproblems independently

» no shared resources

multiple threads share resources Concurrency
» synchronisation

Types allow static differentiation between
parallel threads and concurrent threads.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13016

Parallelism vs. Concurrency. Statically.

1. problem — independent subproblems Parallelism

2. solve subproblems independently

» no shared resources

multiple threads share resources Concurrency
» synchronisation

Types allow static differentiation between
parallel threads and concurrent threads.

» monads W

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13016

Outline

2. Part 2

Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

-he

Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John'’s car.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1416

https://openclipart.org/

Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John'’s car.

case personByName "John" of
Nothing -> Nothing
Just john —->

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1416

https://openclipart.org/

Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John'’s car.

case personByName "John" of
Nothing -> Nothing
Just john —->
case carByPerson john of
Nothing -> Nothing

Just johnsCar -> model johnsCar

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1416

https://openclipart.org/

Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John'’s car.

case personByName "John" of
Nothing -> Nothing
Just john —->
case carByPerson john of
Nothing -> Nothing

Just johnsCar -> model johnsCar

Imagine what happens if one has longer chains.

https://openclipart.org/

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1416

https://openclipart.org/

Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-
tween two function calls:

» check whether the previous lookup returned a value

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

15/16

Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-
tween two function calls:

» check whether the previous lookup returned a value

» handle states

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

15/16

Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-
tween two function calls:

v

check whether the previous lookup returned a value

handle states

v

v

strictly specify and handle side effects

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

15/16

Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-
tween two function calls:

» check whether the previous lookup returned a value
» handle states

» strictly specify and handle side effects

Monads help factor out such patterns.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 15/16

Conclusion

Thinking formally may be useful.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1616

Conclusion

Thinking formally may be useful.

Don’t overdo it tho.

» that's the subject of my next talk

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff?

16/16

	Part 1
	Calculus
	Formal Languages
	Set Theory

	Part 2
	Collections
	Parallel and Concurrent Programming
	Factoring Out Some Repeating Patterns

