

Network Medicine Petri Nets: Properties

Sergiu Ivanov

sergiu.ivanov@ibisc.univ-evry.fr

http://lacl.fr/~sivanov/doku.php?id=en:pn-biomodelling

Petri Nets: Reminder

	(stu	dents, t)	(aogs, t)	(<i>t</i> , treasu	re)
W	3		1	4	
		students	o dogs	treasure	
	M_0	2	1	0	

The Spirit of the Lecture

- What? Formal descriptions of what we (would like to) see.
 - Why? To properly formulate queries to computers.
- Feels like? A kind of mind games.

Outline

1. Behavioural Properties

2. Structural Properties

Outline

1. Behavioural Properties

2. Structural Properties

Behavioural Properties

Dynamical Properties

Properties of the state graph.

- how does the net evolve?
- which markings may it attain?

May depend on the evolution mode.

the state graph under asynchronous mode

Reachability

Given a marking (state) M, can the net reach it from its initial marking M_0 ?

Depends on the mode.

Markings p_1^2 , p_1p_2 , p_1p_3 , p_2^2 , p_2p_3 , p_3^2 are reachable. Are there any markings this net cannot reach under asyn? p_1^3 , $p_1^2p_2$, $p_2^2p_3$, etc.

Reachability set = all states listed in the state graph

Reachability set = all states listed in the state graph

Reachability set = all states listed in the state graph

Answer: $\{p^2, p^1, p, \lambda\} \leftarrow \lambda$ is the empty marking

Reachability set = all states listed in the state graph

Answer: $\{p^2, p^1, p, \lambda\} \leftarrow \lambda$ is the empty marking

Does the choice of the evolution mode matter?

Answer:
$$\{p^k \mid k \in \mathbb{N}, k \ge 2\}$$

Does the choice of the evolution mode matter?

Answer: $\{d^2a, dat, at^2, ft^2\}$

Answer: $\{d^2a, dat, at^2, ft^2\}$

What is the activity/phenomenon this net models?

Answer: $\{d^2a, dat, at^2, ft^2\}$

What is the activity/phenomenon this net models?

Does the choice of the evolution mode matter?

Sidenote: Asyn is Often Used in Modelling

The asynchronous mode well represents arbitrary interleaving of process interactions.

Ensuring a certain behaviour under the asynchronous mode means proper synchronisation.

Reachability is Hard

Reachability is decidable.

 ∃ a Turing machine deciding whether a marking is reachable or not.

Reachability is EXPSPACE-hard.

- A Turing machine needs at least exponential space on the band in order to decide whether a marking is reachable or not.
- Essentially, one needs to look over almost all of the reachability graph.

Coverability: "Lighter" Reachability

Given a marking M, can the net reach a marking M' such that M' covers M?

• M' covers M if all places in M' contain at least as many tokens as in $M(M' \ge M)$.

Markings p_2 and p_3

- are coverable under both syn and asyn
- are not reachable

Is a Marking Coverable?

Which of these markings are coverable: dt, af, df?

Boundedness

A Petri net is bounded if the number of tokens in every place never exceeds a fixed constant.

Unbounded

The number of tokens in the net increases at every step. Unboundedness \implies Cycles?

Do all unbounded Petri nets have cycles?

Unboundedness \implies Cycles?

Do all unbounded Petri nets have cycles?

Unboundedness \implies Cycles?

Do all unbounded Petri nets have cycles?

t produces new tokens all the time.

Is This Net Unbounded? 1/2

Is This Net Unbounded? 1/2

Is This Net Unbounded? 1/2

Answer: Yes

The token may get into p_3 .

Is This Net Unbounded? 2/2

Is This Net Unbounded? 2/2

Is This Net Unbounded? 2/2

No tokens ever get into p_3 .

Liveness

A Petri net is live if, starting from any reachable marking, any transition in the net can be eventually fired.

 $\forall M \in \text{Reachable}(M_0), \forall t \in \text{Transitions},$ $\exists M' \in \text{Reachable}(M)$ such that t is enabled at M'.

Is this net live?

Is this net live?

Deadlocks

Answer: No

Deadlock = a state in which no transitions are enabled. What are the deadlocks of this net?

Summary of Behavioural Properties

- Reachability and coverability
 - Can a given marking be reached/covered?
- Boundedness
 - Is there a fixed upper bound on the number of tokens in all places?
- Liveness and deadlocks
 - Can any transition fire arbitrarily often?

Outline

1. Behavioural Properties

2. Structural Properties

Bipartite Graphs

A graph is bipartite if its vertices can partitioned into two sets U and V such that every edge connects a vertex from Uto a vertex from V (or a vertex from V to a vertex from U).

no edges within U or V

https://en.wikipedia.org/wiki/Bipartite_graph

Bipartite Graphs

A graph is bipartite if its vertices can partitioned into two sets U and V such that every edge connects a vertex from Uto a vertex from V (or a vertex from V to a vertex from U).

no edges within U or V

Petri nets are bipartite graphs.

https://en.wikipedia.org/wiki/Bipartite_graph

Structural Properties

Properties depending only on the graph structure.

- independent of the dynamic states
- ▶ induced by loops, cycles, SCC, etc.

Properties that hold independently of the initial marking.

Traps

Trap = a subset of places S such that all transitions consuming tokens from S also put tokens into S.

Once a trap contains tokens, it will always contain tokens.

Traps do not include transitions.

Where Is the Trap? 1/2

Where Is the Trap? 1/2

Where Is the Trap? 1/2

Answer: $\{p\}$

Sergiu Ivanov, sergiu.ivanov@ibisc.univ-evry.fr

Where Is the Trap? 2/2

 $\bigcirc \begin{array}{ccc} p_1 & p_2 \\ \bigcirc & \bigcirc \end{array}$

https://en.wikipedia.org/wik

Sergiu Ivanov, sergiu.ivanov@ibisc.univ-evry.fr

Where Is the Trap? 2/2

 $\bigcirc \begin{array}{ccc} p_1 & p_2 \\ \bigcirc & \bigcirc \end{array}$

https://en.wikipedia.org/wik

Sergiu Ivanov, sergiu.ivanov@ibisc.univ-evry.fr

Where Is the Trap? 2/2

$\bigcirc \begin{array}{ccc} p_1 & p_2 \\ \bigcirc & \bigcirc \end{array}$

Answer: $\{p_1\}$, $\{p_2\}$, $\{p_1, p_2\}$

The property of being a trap is satisfied vacuously.

https://en.wikipedia.org/wik

Sergiu lvanov, sergiu.ivanov@ibisc.univ-evry.fr

Siphons

Siphon = a subset of places S such that all transitions putting tokens into S also consume tokens from S.

Siphons are duals (the opposite) of traps.

Once a siphon contains no tokens, it will never contain tokens again.

Answer: $\{p_1\}$, $\{p_2\}$, $\{p_1, p_2\}$

Answer: $\{p_1\}$, $\{p_2\}$, $\{p_1, p_2\}$

Can you think of other examples of siphons?

Sergiu lvanov, sergiu.ivanov@ibisc.univ-evry.fr

Petri Nets as Linear Operators

The incidence matrix *M* of a Petri net contains

- one row per place
- one column per transition

Cell (p, t) contains the value by which the number of tokens in p changes when t fires.

$$M = \begin{array}{ccc} t_1 & t_2 \\ \hline p_1 & -1 & 0 \\ p_2 & -1 & 0 \\ p_3 & 1 & 1 \end{array}$$

Petri Nets as Linear Operators: Dynamics

Petri Nets as Linear Operators: Dynamics

Current marking: $p_1^1 p_2^1 p_3^1 \mapsto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ The firing vector: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} - t_1$ fires once, t_2 does not fire

Next marking:

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} + \begin{pmatrix} -1 & 0\\-1 & 0\\1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \begin{pmatrix} -1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$$

Petri Nets \neq Linear Operators

Note: t_2 cannot fire if p_2 is empty.

Cells (p_1, t_2) , (p_2, t_2) both contain 0, but t_2 actually depends on the number of tokens in p_2 !

 Petri nets cannot be completely reduced to linear operators.

Two Matrix-based Structural Properties

Transition invariant = a firing vector F such that $M \cdot F = 0$.

- F describes how to fire transitions such that the contents of the places does not change.
- for any marking!

Place invariant = a vector Y such that $M^T \cdot Y = 0$

 Existence of place invariants with all components non-negative conservation of tokens (like in chemistry).

Structural Properties and Behaviour

Structural properties = strong properties

- derived from the structure of the network
- holding for any possible state

For some types of Petri nets, behavioural properties can be described purely structurally:

- place invariants may describe boundedness
- traps and siphons may describe liveness

Structural properties are easier to handle.

no need to look at the state graph

Summary of Structural Properties

Traps

- Once non-empty, always non-empty.
- Siphons
 - Once empty, always empty.
- Matrix-based
 - Properties of the incidence matrix.