Universality and Computational Completeness of Controlled Leftist Insertion-Deletion Systems

Sergiu Ivanov Serghei Verlan

Université Paris-Est Créteil

Université Grenoble-Alpes

February 6, LIFO

$(u, x, v)_{ins}$

$$(u, x, v)_{ins}$$

 $\cdots \mathsf{U} \quad \mathsf{V} \cdots \Longrightarrow \cdots \mathsf{U} \mathsf{X} \mathsf{V} \cdots$

$$(\mathbf{U}, \mathbf{X}, \mathbf{V})_{\text{ins}} \qquad (\mathbf{U}, \mathbf{X}, \mathbf{V})_{\text{del}}$$
$$\cdots \mathbf{u} \ \mathbf{v} \cdots \Longrightarrow \cdots \mathbf{u} \ \mathbf{x} \mathbf{v} \cdots \Longrightarrow \cdots \mathbf{u} \ \mathbf{v} \cdots$$

$$\begin{array}{ccc} (u,x,v)_{ins} & (u,x,v)_{del} \\ \cdots & v \cdots \Longrightarrow \cdots & x v \cdots & \cdots & v \cdots \end{array}$$

 $\cdots \mathsf{u} \ \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{v} \cdots$

 $\cdots \mathsf{u} \ \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{v} \cdots$

 $\cdots \mathsf{u} \ \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{v} \cdots$

System size =
$$(n, m, m'; p, q, q')$$

max insertion
rule size max deletion
rule size

Leftist Insertion-deletion Systems

 $(\mathbf{u}, \mathbf{x}, \lambda)_{ins}$ del

https://openclipart.org/

S. Ivanov, S. Verlan, UPEC, UGA

Universality and Computational Completeness of Controlled Leftist Insertion-Deletion Systems

Leftist Insertion-deletion Systems only left context $(\mathbf{U}, \mathbf{X}, \lambda)_{\text{ins}}$ del one symbol inserted deleted

https://openclipart.org/

S. Ivanov, S. Verlan, UPEC, UGA

Universality and Computational Completeness of Controlled Leftist Insertion-Deletion Systems

Leftist Insertion-deletion Systems only left context $(\mathbf{U}, \mathbf{X}, \lambda)_{ins}$ del inserted one symbol deleted

Facts:

(1, 1, 0; 1, 1, 0)

- ► ∌(ab)*
- generate non-regular context-free languages

https://openclipart.org/

Leftist Insertion-deletion Systems only left context $(\mathsf{U}, \mathsf{X}, \lambda)_{ins}$ del inserted one symbol deleted

Facts:

(1, 1, 0; 1, 1, 0)

- ► ∌(ab)*
- generate non-regular context-free languages

 $(1,m,0;1,q,0), \quad m\cdot q\geq 2$

- generate all REG
- many more Easter

https://openclipart.org/

Regular Contexts

regular expressions for contexts

((ab)⁺, x, (cd)⁺)_{del}

https://openclipart.org/

S. Ivanov, S. Verlan, UPEC, UGA

Universality and Computational Completeness of Controlled Leftist Insertion-Deletion Systems

regular expressions for contexts

((ab)⁺, x, (cd)⁺)_{del}

matches

... abab x cdcd ...

The match need not be greedy.

https://openclipart.org/

S. Ivanov, S. Verlan, UPEC, UGA

Universality and Computational Completeness of Controlled Leftist Insertion-Deletion Systems

Regular Contexts

regular expressions for contexts

((ab)⁺, x, (cd)⁺)_{del}

matches

... abab x cdcd ...

The match need not be greedy.

Size notation: (1, REG, 2; 1, 2, REG)

- regular left insertion contexts
- regular right deletion contexts

https://openclipart.org/

Outline

- 1. Completeness and Universality
- 2. Universality of Leftist Systems
- 3. Completeness of Leftist Systems

Outline

1. Completeness and Universality

2. Universality of Leftist Systems

3. Completeness of Leftist Systems

Class of devices

Turing machines

Class of devices

Computational Completeness and Universality Computational Completeness Turing machines Class of devices

Universality

Universality

 M_0 is universal if it can simulate any other M from the same class.

coding allowed

Turing Machines

We use a special (complete!) subclass:

- no state loops
- either move or write
- no read when move

Context-free string rewriting.

erase on the left

append on the right

Context-free string rewriting.

erase on the left

append on the right

Context-free string rewriting.

erase on the left

append on the right

$$a \rightarrow x y z$$

$$a \rightarrow c d x y z$$

Halt when the string starts with the halting symbol h.

Context-free string rewriting.

erase on the left

append on the right

$$a \rightarrow x y z$$

$$\underline{a }_{2} c d \implies c d x y z$$

Halt when the string starts with the halting symbol h.

2-tag systems are universal.

generate any RE language, modulo a coding

1. Completeness and Universality

2. Universality of Leftist Systems

3. Completeness of Leftist Systems

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?

In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$

Regular contexts can be checked by "small" rules.

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?

In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$

Regular contexts can be checked by "small" rules.

Consider $((ab)^*, c, \lambda)_{ins}$

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules. а Consider $((ab)^*, c, \lambda)_{ins}$ q q_0 b h ... X а a v

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules. а Consider $((ab)^*, c, \lambda)_{ins}$ q q_0 b ... x q₀ a h а V

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules.

Consider $((ab)^*, c, \lambda)_{ins}$

$$\dots x q_0 a q_1 b$$

a y ...

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules.

Consider $((ab)^*, c, \lambda)_{ins}$

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules. а Consider $((ab)^*, c, \lambda)_{ins}$ q_0 q b $(\mathbf{q}_0 \mathbf{a})$ (qi p ^{(q}o[°]cav... ... X

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules. а Consider $((ab)^*, c, \lambda)_{ins}$ q_0 q h (q_{0 a}` (qi b q₀ c a v

only final states insert c

insertion size = (1, 2, 0)

clean-up at any moment

(1, REG, 0; 1, REG, 0) > (1, 2, 0; 1, 1, 0)?In fact, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 2, 0; 1, 1, 0)$ Regular contexts can be checked by "small" rules. а Consider $((ab)^*, c, \lambda)_{ins}$ q_0 q h $(\mathbf{q}_0 \mathbf{a})$ $(\mathbf{q}_1 \mathbf{b})$ [^]qo[°]cay... only final states insert c insertion size = (1, 2, 0)clean-up at any moment Similarly, $(1, \text{REG}, 0; 1, \text{REG}, 0) \sim (1, 1, 0; 1, 2, 0)$

Put insertion/deletion rules on graph edges.

Put insertion/deletion rules on graph edges.

Put insertion/deletion rules on graph edges.

 $A B \implies^{2n} A a^n B b^n$

Strictly increases the power of rules.

word

(1, F	REG, 0; 1, REG, 0) + 0	$GC_2 \sim Ta$	ag Sys	stems	
		anchor		an	chor
	Form of the string:	🖉 a k	bcd		
				control	
-				word	
			1	states	2
_	generate control word				
	insert service symbols	(phase I)			
	erase on the left				
	insert service symbols	(phase II)			
	insert right-hand side				

 $(1, \frac{2}{1}, 0; 1, \frac{1}{2}, 0) + GC_2 \sim Tag Systems$

Simulate the construction for $(1, \text{REG}, 0; 1, \text{REG}, 0) + \text{GC}_2$

by systems of types

- $(1, 2, 0; 1, 1, 0) + GC_2$
- $(1, 1, 0; 1, 2, 0) + GC_2$

 $(1, \frac{2}{1}, 0; 1, \frac{1}{2}, 0) + GC_2 \sim Tag Systems$

Simulate the construction for $(1, \text{REG}, 0; 1, \text{REG}, 0) + \text{GC}_2$

by systems of types

- $(1, 2, 0; 1, 1, 0) + GC_2$
- $(1, 1, 0; 1, 2, 0) + GC_2$

https://openclipart.org/

 $(1, \frac{2}{1}, 0; 1, \frac{1}{2}, 0) + GC_2 \sim Tag Systems$

Simulate the construction for $(1, \text{REG}, 0; 1, \text{REG}, 0) + \text{GC}_2$

by systems of types

• $(1, 1, 0; 1, 2, 0) + GC_2$

This simulation does not work in general:

 $(1, \text{REG}, 0; 1, \text{REG}, 0) + \text{GC} \succ (1, 2, 0; 1, 1, 0) + \text{GC}$ $(1, \text{REG}, 0; 1, \text{REG}, 0) + \text{GC} \succ (1, 1, 0; 1, 2, 0) + \text{GC}$

https://openclipart.org/

Outline

1. Completeness and Universality

2. Universality of Leftist Systems

3. Completeness of Leftist Systems

- group rules into matrices
- all rules in matrices must be applied, in order

$$\left((\mathsf{BT}^*\mathsf{q}_{\mathsf{i}}\mathsf{a},\mathsf{q}_{\mathsf{j}},\lambda)_{\mathsf{ins}}, (\mathsf{BT}^*,\mathsf{q}_{\mathsf{i}},\lambda)_{\mathsf{del}} \right)$$

- group rules into matrices
- all rules in matrices must be applied, in order

$$\left((\mathsf{BT}^*\mathsf{q}_{\mathsf{i}}\mathsf{a},\mathsf{q}_{\mathsf{j}},\lambda)_{\mathsf{ins}}, (\mathsf{BT}^*,\mathsf{q}_{\mathsf{i}},\lambda)_{\mathsf{del}} \right)$$

....q_i a ...

- group rules into matrices
- all rules in matrices must be applied, in order

$$\left(\begin{array}{c} (\mathsf{BT}^* q_i \mathsf{a}, \mathbf{q}_j, \lambda)_{\mathsf{ins}}, & (\mathsf{BT}^*, \mathbf{q}_i, \lambda)_{\mathsf{del}} \end{array} \right) \\ \dots q_i \operatorname{\mathsf{a}} \begin{array}{c} \mathbf{q}_j \\ \dots \end{array} \right)$$

- group rules into matrices
- all rules in matrices must be applied, in order

$$\left(\begin{array}{c} (\mathsf{BT}^* \mathsf{q}_{i}\mathsf{a}, \mathsf{q}_{j}, \lambda)_{ins}, & (\mathsf{BT}^*, \mathsf{q}_{i}, \lambda)_{del} \end{array} \right) \\ \cdots \not q_{i} \mathbf{a} \mathbf{q}_{j} \cdots$$

- group rules into matrices
- all rules in matrices must be applied, in order

$$\left(\begin{array}{c} (\mathsf{BT}^*\mathsf{q}_{i}\mathsf{a},\mathsf{q}_{j},\lambda)_{ins}, \ (\mathsf{BT}^*,\mathsf{q}_{i},\lambda)_{del} \end{array}\right)$$
$$\dots \not q_{i} a q_{j} \dots$$

 $(1, \mathsf{REG}, 0; 1, \mathsf{REG}, 0) + \mathsf{Mat}_2 = \mathsf{RE}$

- generate all recurively enumerable languages
- no coding

#R.F.G

Random Context Insertion-deletion Systems #REG

Add permitting context conditions to rules.

$$\left(\begin{array}{ccc} (\mathsf{BT}^*, \bar{\mathbf{q}}_j, \lambda)_{\text{ins}}, & \{\mathbf{q}_i\}, \{\bar{\mathbf{q}}_j\} \\ \stackrel{\uparrow}{\underset{\text{insert } \bar{\mathbf{q}}_j}{\underset{\text{if } q_i \text{ is present}}{\underset{\text{if } \bar{\mathbf{q}}_i \text{ is absent}}}}\right)$$

Random Context Insertion-deletion Systems #REG

Add permitting context conditions to rules.

$$\left(\begin{array}{ccc} (\mathsf{BT}^*,\bar{\mathbf{q}}_j,\lambda)_{ins} , \{\mathbf{q}_i\}, \{\bar{\mathbf{q}}_j\} \\ & \uparrow & \uparrow \\ & \text{insert } \bar{\mathbf{q}}_j & \text{if } \mathbf{q}_i \text{ is present} \\ & \text{if } \bar{\mathbf{q}}_i \text{ is absent} \end{array}\right)$$

Context conditions give sufficient visibility on the right.

$(1, \mathsf{REG}, 0; 1, \mathsf{REG}, 0) + \mathsf{RC} = \mathsf{RE}$

Random Context Insertion-deletion Systems #REG

Add permitting context conditions to rules.

Context conditions give sufficient visibility on the right.

Graph Controlled Insertion-deletion Systems #REG

$(1, \text{REG}, 0; 1, \text{REG}, 0) + GC_2 \sim \text{Tag Systems}$

universalitycoding

Graph Controlled Insertion-deletion Systems #REG

 $(1, \text{REG}, 0; 1, \text{REG}, 0) + GC_2 \sim \text{Tag Systems}$

universalitycoding

Graph Controlled Insertion-deletion Systems #REG

- $(1, \text{REG}, 0; 1, \text{REG}, 0) + GC_2 \sim \text{Tag Systems}$
 - universalitycoding

Conclusions and Future Work

- Introduced regular contexts.
- Proved universality for regular contexts + graph control.
- Proved universality for $(1, \frac{2}{1}, 0; 1, \frac{1}{2}, 0)$ + graph control.
- Proved computational completeness (RE) of regular contexts + control.

