P vs. B

P systems vs. Boolean networks in biological modelling and analysis

Artiom Alhazov, Rudi Freund, Sergiu Ivanov

The E-Moldovan Team

Taming complexity

Biological systems are complex.

Abstract discrete models are

- understandable,
- analysable.

Goal: Tame the complexity by modelling.

Natural computing

Invent models of computing to do better computing.

Modelling and analysis

Formal structures to tame real-world complexity.

I am interested in both.

Formal models and frameworks

reaction systems

Petri nets

cellular automata

linear networks

chemical reaction networks

P systems

$$\begin{array}{c|c}
\hline
a \rightarrow aa & a \rightarrow b \\
a \rightarrow (a, \text{out}) & a \rightarrow cc \\
a & 1 & 0
\end{array}$$

- hierarchy
- parallelism
- communication

- non-determinism
- counting
- competition

Boolean networks

1

$$\begin{cases} \mathbf{x} \leftarrow f_{\mathbf{x}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & \mathbf{x}, \mathbf{y}, \mathbf{z} \in \{0, 1\} \\ \mathbf{y} \leftarrow f_{\mathbf{y}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & f_{\mathbf{x}}, f_{\mathbf{y}}, f_{\mathbf{z}} : \{0, 1\}^3 \rightarrow \{0, 1\} \\ \mathbf{z} \leftarrow f_{\mathbf{z}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \end{cases}$$

no competition
various update modes
finite states

Boolean networks

in modelling and analysis

Not a reduction of P systems to a single problem.

Personal interest in biological complexity.

Why?

P systems are inspired by biology.

P systems are more "natural" than Boolean networks. ??

State of the art: methodology

Publications from 2010 to 2021.

Papers, informal papers, invited talks, abstracts.

- Bibliography of RGNC (Seville),
- Proceedings of BWMC,
- Proceedings of CMC,
- JMC,
- Proceedings of ACMC,
- Other papers I bumped into.

Suggestions, corrections, completions welcome!

State of the art

33 publications

Artiom, Rudi, Sergiu

Compare with Boolean networks

Consider CMSB 2010 to 2021

• Computational Methods for Systems Biology

Papers, invited talks, extended abstracts.

Only one of the conferences.

Many many journal publications.

CMSB 2010-2021

18 publications

Artiom, Rudi, Sergiu

18 > 33

Why?

P systems are inspired by biology.

P systems are more "natural" than Boolean networks. ??

Boolean networks are simpler.

Boolean networks are finite.

Boolean networks are not concurrent.

Boolean networks have less parameters.

Massive advantage of P systems

Flexibility

... and the rich methodology

Artiom, Rudi, Sergiu

Boolean P systems

Boolean P systems $\Pi = (V, R)$ States: $s : V \to \{0, 1\}$ and the corresponding subset Rules: $r : A \to B \mid \varphi$ • $A, B \subseteq V$

• φ a propositional formula over V, the guard

r is applicable to $W \subseteq V$ if $A \subseteq W$ and $\varphi(W)$ Apply *r* to $W \mapsto W \setminus A \cup B$ Apply $\{r_i : A_i \to B_i \mid \varphi_i\}$ to $W \mapsto \left(W \setminus \bigcup_i A_i\right) \cup \bigcup_i B_i$

• set rewriting

no competition

Boolean P systems \supseteq Boolean networks

Let
$$f_{Y}: \{0,1\}^{X} \to \{0,1\}$$
. Simulation:

$$R_{y} = \left\{ \emptyset \to \{y\} \mid f_{y}, \ \{y\} \to \emptyset \mid \neg f_{y} \right\}$$

produce *y* if $f_{y}(W)$ remove *y* if not $f_{y}(W)$

Natural extension to whole networks. Theorem

Evolution, modes, and quasimodes

P systems:

• A mode tells which rules to apply.

Boolean networks:

- A mode tells which variables to update.
 - all variables can be updated at any step
 - no competition

Boolean P systems:

• A quasimode $\widetilde{\mathcal{M}} \subseteq 2^R$ suggests the rules to apply.

The corresponding mode M: $M(W) = \{ \{ r \in m \mid r \text{ applicable to } W \} \mid m \in \widetilde{M} \}$ Controllability of Boolean networks

Control Boolean network

Model diseases, therapies, environment, ...

Boolean P systems for controllability The control is an implicit dynamical system. Heterogeneous structure.

Conclusion and outlook

P systems \sim category theory of computing

- general sometimes hard to grasp
- unifying
 sometimes unclear connections
- multi-paradigm
 lots of variants

... but better: more flexibility!

Many possible applications across domains.