
UNIVERSITÉ PARIS-EST

École doctorale MSTIC

Thèse de doctorat

Pour obtenir le titre de

Docteur de l’Université Paris-Est

Spécialité : Informatique

On the Power and Universality of Biologically-inspired
Models of Computation

défendue par

Sergiu Ivanov

Directeur de thèse : Serghei Verlan

préparée au LACL

Soutenue le 23 juin 2014 devant le jury composé de :

Directeur : Serghei Verlan Université Paris Est Créteil

Rapporteurs : Jérôme Durand-Lose Université d’Orléans
Gheorghe Păun Académie Roumaine
Philippe Schnoebelen CNRS & ENS de Cachan

Examinateurs : Enrico Formenti Université de Nice – Sophia Antipolis
Jean-Louis Giavitto CNRS & IRCAM
Elisabeth Pelz Université Paris Est Créteil

Acknowledgements

It is with enormous pleasure and most wholehearted warmth that I would to thank
all the people who helped and supported me during my work on the present thesis
and without whom this endeavour would have been entirely inconceivable.

I would like to thank before all my supervisor Serghei Verlan who had gone
beyond being an excellent tutor: he became my close working partner and amiable
mentor in scientific and life matters. I can barely imagine the amount of effort he
had invested in setting up the scientific and social backdrop highly propitious for
the emergence of my professional experience, and I am profoundly grateful.

It is my deep sorrow that I cannot meaningfully thank the late professor Yurii
Rogozhin for having laid down the foundations of my career, without me even re-
alising it. The brilliance of professor Rogozhin’s ideas combined with the jovial
and lighthearted manner in which he conveyed them had always impressed me and
I can only hope that my own humble work be accepted as a continuation of his
fundamental contributions.

I am very grateful to my many colleagues whose ideas gave valuable input to my
research and from whom I learned the good practices of scientific work. I would like
to thank Ion Petre for helping me enlarge my scientific horizon by suggesting work
on various highly interesting topics not directly related with the results exposed
in the present thesis. Ion Petre taught me, by his own example, how a team of
researchers was to be managed in order to maximise their productivity.

I would like to address a big and cordial “Danke schön!” to Rudolf Freund, who
has shown me the ways of abstract and very abstract thinking and who taught me
to generalise generously. I owe a hearty “Merci beaucoup !” to Antoine Spicher who,
besides having always provided me highly gourmet food for thought, directly con-
tributed to the constitution of the scientifically social me. I am addressing another
“Merci beaucoup !” to Luidnel Maignan who showed me a marvellous example of
scientific curiosity that I desire to follow. Finally, I say a plain but utterly sincere
“Mulţumesc!” to Cristian Gratie, who retains one of the top places in my rating
of the most cool-headed and composed researchers I have ever had the pleasure of
collaborating with.

I would also like to thank my wonderful friends for their invaluable input and
support. I would like to thank Katya and Daniel for the moments of childish joy
we have spent together, Vladimir for having let me discover the stunning beauty
of the Finnish nature, Ravi for having laughed at my weird jokes and for having
then invented other, even weirder ones. I am profoundly grateful to Quentin for
his patience with my slow digestion of French and for having taught me to put my
tongue out for better social interaction. I would like to thank Prince for the great
pains he had gone to in order to have me feel at home.

i

ii

Finally, I would like to express my profound gratitude to some very special people
whose contribution to the present work is difficult to measure. I would like to thank
Martin for his forbearance to deal with my basic level of French, for his willingness
to share his culture, and for his participation in the many side projects which helped
me contain and contour the ideas appearing in the present thesis. I would have also
liked to express the astronomical degree of my thankfulness to my dear parents who
have very actively supported me during my entire doctoral studies, but the confines
of formality shall leave this desire unaccomplished.

I conclude this section by thanking you, my dear reader, for setting your mental
feet at the boundary of the world of my thesis, and by wishing you a most pleasurable
and sunny journey on the plains of computational completeness and in the forest of
universality.

Abstract

The present thesis considers the problems of computational completeness and uni-
versality for several biologically-inspired models of computation: insertion-deletion
systems, networks of evolutionary processors, and multiset rewriting systems. The
presented results fall into two major categories: study of expressive power of the
operations of insertion and deletion with and without control, and construction of
universal multiset rewriting systems of low descriptional complexity.

Insertion and deletion operations consist in adding or removing a subword from
a given string if this subword is surrounded by some given contexts. The motivation
for studying these operations comes from biology, as well as from linguistics and
the theory of formal languages. In the first part of the present work we focus on
insertion-deletion systems closely related to RNA editing, which essentially consists
in inserting or deleting fragments of RNA molecules. An important feature of RNA
editing is the fact that the locus the operations are carried at is determined by
certain sequences of nucleotides, which are always situated to the same side of the
editing site. In terms of formal insertion and deletion, this phenomenon is modelled
by rules which can only check their context on one side and not on the other. We
show that allowing one-symbol insertion and deletion rules to check a two-symbol
left context enables them to generate all regular languages. Moreover, we prove that
allowing longer insertion and deletion contexts does not increase the computational
power. We further consider insertion-deletion systems with additional control over
rule applications and show that the computational completeness can be achieved by
systems with very small rules.

The motivation for studying insertion-deletion systems also comes from the do-
main of computer security, for the purposes of which a special kind of insertion-
deletion systems called leftist grammars was introduced. In this work we propose a
novel graphical instrument for visual analysis of the dynamics of such systems.

The second part of the present thesis is concerned with the universality problem,
which consists in finding a fixed element able to simulate the work any other com-
puting device. We start by considering networks of evolutionary processors (NEPs),
a computational model inspired by the way genetic information is processed in the
living cell, and construct universal NEPs with very few rules. We then focus on
multiset rewriting systems, which model the chemical processes running in the bio-
logical cell. For historical reasons, we formulate our results in terms of Petri nets.
We construct a series of universal Petri nets and give several techniques for reducing
the numbers of places, transitions, inhibitor arcs, and the maximal transition degree.
Some of these techniques rely on a generalisation of conventional register machines,
proposed in this thesis, which allows multiple register checks and operations to be
performed in a single state transition.

iii

iv

Résumé

L’objectif de cette thèse est d’étudier la puissance d’expression des modèles de calcul
qui ont été inspirés par la biologie. Ces modèles représentent de manière formelle
les points définitoires des phénomènes biologiques et décrivent au niveau abstrait
les interactions entre leurs entités centrales. Nous nous intéressons principalement à
des processus qui ont lieu dans la cellule vivante et nous étudions la complexité des
systèmes formels inspirés par son activité.

Les travaux présentés se divisent en deux parties. Dans la première nous exa-
minons les règles d’insertion et d’effacement — il a été montré que le modèle ayant
des règles qui ne vérifient le contexte que d’un seul côté de l’endroit de modifica-
tion correspond à l’édition que certains protozoaires réalisent sur leur ARN. Nous
étudions également les systèmes d’insertion/effacement munis de mécanismes de
contrôle d’application de règles, ce qui peut représenter les phases des processus
modélisés pendant lesquelles des actions différentes s’effectuent.

Dans la deuxième partie nous nous concentrons sur le problème d’universalité
pour les systèmes de réécriture de multiensembles — des systèmes formels qui per-
mettent de représenter les réactions chimiques. Pour des raisons historiques, nous
décrivons nos résultats sous la forme des réseaux de Petri avec des arcs inhibiteurs,
un modèle équivalent à la réécriture de multiensembles. Afin de construire des ré-
seaux de Petri universels de petite taille, nous décrivons également des machines à
registres universelles avec un petit nombre de registres, ainsi qu’une généralisation
de ce modèle.

Nous rappelons que le problème d’universalité pour une classe de modèles de cal-
cul consiste à trouver un objet, dit universel, qui peut répliquer l’action de n’importe
quel autre objet de cette classe, la simulation pouvant éventuellement se faire à un
codage près. D’une façon plus formelle, si A0 est un élément universel dans la classe
C, alors, pour tout autre élément A ∈ C, il est vrai que A(x) = f

(
A0

(
〈g(A), h(x)〉

))
,

où h est la fonction d’encodage de l’entrée, f est la fonction de décodage de la sortie,
g est la fonction qui énumère les éléments de C (par exemple, l’énumération de Gö-
del), et 〈x, y〉 est une fonction d’appariement, c’est-à-dire une fonction qui associe
un nombre unique à toute paire (x, y). Les fonctions d’encodage et de décodage ne
doivent pas être trop complexes, car sinon tout le travail de simulation pourrait être
fait par ces fonctions et non pas par A0.

Nous précisons la différence entre l’universalité et la complétude computation-
nelle. La complétude computationnelle est la propriété d’une classe vérifiée lorsque
celle-ci contient, pour tout langage récursivement énumérable, un objet qui l’en-
gendre. Une classe vérifiant cette propriété dispose donc d’une puissance d’expression
équivalente à celle des machines de Turing. Puisqu’il existe des machines de Turing
universelles, la complétude computationnelle d’une classe implique aussi l’existence

v

vi

d’un élément universel. L’implication inverse n’est généralement pas vraie : dans
une classe à un seul élément cet élément est universel, alors que la classe elle-même
n’atteint pas nécessairement la complétude computationnelle.

Le mémoire se compose de cinq chapitres. Le premier chapitre décrit l’état de
l’art dans les domaines de référence de la thèse. Le deuxième chapitre recueille les
définitions de base et les notations de la théorie des langages formels. Le troisième
chapitre étudie la puissance d’expression des systèmes d’insertion/effacement avec
tous les contextes du même côté, tout en proposant des outils originaux d’analyse
de leur comportement. Dans le quatrième chapitre il s’agit des machines à registres
universelles, ainsi que d’une généralisation de ce modèle ; nous décrivons des objets
universels dans ces deux classes de modèles de calcul. Finalement, le cinquième
chapitre présente plusieurs réseaux de Petri avec des arcs inhibiteurs universels.

Chapitre 3

Ce chapitre étudie la puissance d’expression des opérations d’insertion et d’efface-
ment sans mécanisme de contrôle. Ces deux opérations agissant sur des chaînes de
caractères sont bien connues pour leur capacité à engendrer des familles de langages
complexes incomparables avec la hiérarchie de Chomsky. De manière intuitive, une
règle d’insertion rajoute une sous-chaîne à une chaîne de caractères dans un contexte
donné. Une règle d’effacement agit de la façon duale : elle supprime une sous-chaîne
d’une chaîne de caractères, dans un contexte donné. L’effet de ces opérations corres-
pond donc aux règles de réécriture de la forme uv → uxv et uxv → uv. Un système
d’insertion/effacement contient un ensemble de règles d’insertion et d’effacement ; il
engendre un langage en appliquant ces règles itérativement à partir d’un ensemble
fini de mots dits axiomes.

La taille d’un système d’insertion/effacement est décrite par le 6-uplet
(m,n, n′; p, q, q′), où les trois premiers composants représentent la longueur maxi-
male de la sous-chaîne insérée et la taille maximale des contextes à gauche et à
droite, alors que les trois derniers composants décrivent les mêmes paramètres pour
les règles d’effacement.

L’inspiration qui a motivé l’introduction de ces opérations vient de la linguis-
tique, car elles semblent modéliser assez précisément les procédés de construction
de phrases dans une langue vivante. Une autre source d’inspiration se place dans le
domaine de la théorie des langages formels : l’insertion et l’effacement peuvent être
vus comme des généralisations de la concaténation et du quotient de langages. De
plus, il a été montré récemment que ces opérations formalisent l’hybridation erronée
des brins d’ADN (mismatched DNA annealing). D’un autre côté, l’édition de l’ARN
(RNA editing) réalisée par certains protozoaires consiste généralement en des ajouts
et des suppressions dans des brins d’ARN. Il est intéressant de noter que l’édition
de l’ARN est guidée par un fragment du brin qui se situe toujours du même côté
de l’endroit modifié. Du point de vue formel, cet effet peut être représenté par un
système d’insertion/effacement dont toutes les règles ont le contexte d’un seul côté.

L’étude des systèmes d’insertion/effacement puise encore son inspiration dans le
domaine de la sécurité informatique. Les grammaires gauches (leftist grammars) sont
l’un des outils théoriques utilisés pour l’étude des interactions entre les entités et
notamment pour l’analyse des propriétés d’accessibilité dans des systèmes informa-
tiques critiques. Ces grammaires contiennent des règles d’insertion et de suppression

vii

de taille (1, 0, 1; 1, 0, 1) ; puisque les règles de cette taille regroupent deux caractères
chacune, elle peuvent représenter des relations binaires.

La puissance d’expression de systèmes d’insertion/effacement a fait l’objet de
nombreuses études. Il a été démontré que les systèmes de tailles assez petites —
(2, 0, 0; 1, 1, 1) et (1, 1, 1; 2, 0, 0), par exemple — engendrent tous les langages ré-
cursivement énumérables. Les systèmes des tailles (2, 0, 0; 3, 0, 0) et (3, 0, 0; 2, 0, 0)
atteignent également la complétude computationnelle. D’un autre côté, il existe des
langages récursivement énumérables que les systèmes des tailles (2, 0, 0; 2, 0, 0) et
(1, 1, 0; 1, 1, 0) (et, par symétrie, les grammaires gauches) ne peuvent pas engen-
drer. On observe que les systèmes de tailles (1, 1, 0; 1, 1, 0) ne sont pas capables
d’engendrer même certains langages rationnels. Toutefois, il existe des langages non
algébriques qui sont engendrés par les systèmes de cette taille.

La section 3.3 se concentre sur les systèmes d’insertion/effacement ayant des
règles qui possèdent uniquement le contexte à gauche et qui n’insèrent et n’effacent
qu’un seul caractère à la fois, c’est-à-dire les systèmes de taille (1, n, 0; 1, q, 0). Nous
considérons d’abord les systèmes de tailles (1, 1, 0; 1, 2, 0) et (1, 2, 0; 1, 1, 0) et nous
montrons qu’ils engendrent tous les langages rationnels. Nous montrons ensuite que
les systèmes de cette taille peuvent engendrer l’intersection du langage produit par
un système de taille (1, 1, 0; 1, 1, 0) avec un langage rationnel. Comme conséquence
nous obtenons que les systèmes de tailles (1, 1, 0; 1, 2, 0) et (1, 2, 0; 1, 1, 0) peuvent
engendrer des langages exponentiels.

Ensuite nous nous intéressons à la relation entre les langages engendrés par les
systèmes de tailles (1, 1, 0; 1, k, 0) et (1, k, 0; 1, 1, 0). Nous démontrons que les familles
de langages correspondantes coïncident ; de plus, elles sont identiques à la famille
engendrée par les systèmes de taille (1, k, 0; 1, k, 0). Finalement, nous prouvons que
tout langage appartenant à cette famille peut être engendré par un système de taille
(1, 1, 0; 1, 2, 0) ou (1, 2, 0; 1, 1, 0). Ce résultat met en évidence la complexité inhérente
des systèmes de cette taille et explique pourquoi l’analyse de leur puissance d’ex-
pression est une tâche complexe. Néanmoins, nous supposons que ces systèmes ne
peuvent pas engendrer tous les langages récursivement énumérables, puisque l’évo-
lution d’un préfixe est indépendante du suffixe qui lui correspond. Autrement dit, la
transmission de l’information dans la chaîne de caractères ne peut se faire que dans
un seul sens : de gauche à droite.

Dans la section 3.4 nous reconsidérons les règles d’insertion et d’effacement de
taille (1, 1, 0; 1, 1, 0). Nous proposons un nouvel outil d’analyse graphique des évolu-
tions de ce type de systèmes : les graphes de dérivation. Nous remarquons d’abord
que toute règle de taille (1, 1, 0) inclut deux symboles. Une dérivation d’une gram-
maire gauche peut donc être vue comme une séquence de paires de symboles repré-
sentant les insertions et les effacements effectués lors de cette dérivation. Le graphe
de cette dérivation est le graphe qui contient toutes ces paires comme arêtes de deux
types : correspondant aux insertions et aux effacements.

Nous remarquons tout de suite que plusieurs dérivations peuvent correspondre au
même graphe, car l’ordre d’application des règles n’est représenté que partiellement
dans celui-ci. Néanmoins, toutes les dérivations qui correspondent à un seul graphe
sont équivalentes, car elles engendrent le même mot. Les graphes de dérivations
permettent ainsi de décrire de façon compacte les classes d’équivalence des dériva-
tions d’un système de taille (1, 1, 0; 1, 1, 0), en mettant de côté les comportements
dynamiques insignifiants.

viii

Comme ils constituent un outil de représentation convenable, les graphes de
dérivation permettent de raisonner davantage sur les interactions locales de carac-
tères. Nous les utilisons pour illustrer plusieurs constructions connues qui décrivent
la puissance d’expression de grammaires gauches, ainsi que pour tirer de nouvelles
conclusions concernant la manière par laquelle ces systèmes engendrent des langages
situés aux niveaux élevés de la hiérarchie de Chomsky.

Chapitre 4

Le quatrième chapitre poursuit l’étude des opérations d’insertion et d’effacement et
considère des systèmes munis de mécanismes de contrôle d’application des règles.
Un mécanisme de contrôle est une façon de spécifier les pré-conditions pour l’appli-
cabilité d’une règle et peut être vu comme une modélisation de phases de vie d’un
organisme biologique, ou tout simplement d’un changement d’activité en fonction
de la période du jour. Dans une perspective théorique, les mécanismes de contrôle
sont un moyen d’augmenter la puissance de calcul d’un système sans changer es-
sentiellement de type de règle utilisé. Les mécanismes de contrôle ont été largement
étudiés dans le cadre de la réécriture formelle contrôlée (regulated rewriting). Dans
ce domaine, on se concentre sur l’augmentation de la puissance d’expression des
règles non contextuelles équipées de contrôle supplémentaire.

L’un des mécanismes de contrôle les plus généraux est le contrôle par graphe
(graph control), qui consiste à étiqueter les règles et à donner ensuite le graphe des
étiquettes définissant l’ordonnancement correct de leurs applications. L’étiquetage
peut ne pas être bijectif ; le cas échéant, les règles peuvent être groupées en ensembles
des règles ayant la même étiquette.

Un autre mécanisme de contrôle bien connu est le contrôle matriciel (matrix
control). Dans le cadre de ce type de contrôle les règles sont réunies en séquences
dites matrices ; appliquer une telle matrice revient à appliquer toutes les règles qu’elle
contient, dans l’ordre précisé. Le contrôle matriciel est un cas particulier du contrôle
par graphe, car celui-ci permet également d’imposer des séquences d’application de
règles.

Un mécanisme de contrôle qui se fonde sur des tests d’occurrence est le contrôle
semi-conditionnel (semi-conditional control). Ce contrôle consiste à rajouter deux
ensembles de mots à chaque règle ; l’un de ces ensembles, appelé le contexte promo-
teur, contient les mots qui doivent être des sous-chaînes de la chaîne de caractères
pour que la règle y soit applicable. De façon symétrique, l’autre ensemble, le contexte
inhibiteur, contient les mots qui ne doivent pas être présents dans la chaîne pour
que la règle y soit applicable.

Un cas particulier du contrôle semi-conditionnel est le contrôle par contextes
aléatoires (random context control). Les systèmes avec des contextes aléatoires sont
des systèmes avec du contrôle semi-conditionnel dans lesquels les contextes promo-
teurs et inhibiteurs contiennent des caractères à part, et non pas des mots.

Le mécanisme de contrôle par graphe a été adapté pour les systèmes d’inser-
tion/effacement et il a été montré que les systèmes de taille (1, 1, 0; 1, 1, 0) engendrent
tous les langages récursivement énumérables avec quatre étiquettes (groupes de
règles) seulement. Les systèmes d’insertion/effacement avec le mécanisme de contrôle
matriciel ont été étudiés aussi ; il a été prouvé que les systèmes matriciels de petites
tailles ((1, 1, 0; 1, 1, 0), par exemple) atteignent la complétude computationnelle.

ix

Dans la section 4.2 nous revoyons le contrôle par graphe pour les systèmes d’in-
sertion/effacement de tailles (1, 1, 0; 1, 2, 0) et (1, 2, 0; 1, 1, 0) et nous montrons que
trois étiquettes suffisent pour engendrer tous les langages récursivement énumé-
rables. Nous rappelons que nous utilisons un étiquetage non bijectif, donc chaque
étiquette correspond à un groupe de règles.

Dans la section 4.3 nous adaptons le contrôle semi-conditionnel aux systèmes
d’insertion/effacement et nous montrons que ce mécanisme augmente considérable-
ment leur puissance d’expression. Nous montrons notamment que tous les langages
récursivement énumérables peuvent être engendrés par des systèmes ayant des règles
de taille (1, 0, 0; 1, 0, 0). Bien que les insertions et les effacements dans ce genre de
systèmes puissent intervenir à n’importe quelle position dans la chaîne, les contextes
promoteurs et inhibiteurs peuvent être utilisés pour rejeter les cas où l’opération ne
s’est pas produite au bon endroit. Nous montrons également que la présence de
règles d’effacement est nécessaire pour atteindre la complétude computationnelle,
car la famille des langages engendrés par les systèmes d’insertion/effacement semi-
conditionnels de taille (1, 0, 0; 0, 0, 0), c’est-à-dire sans règles d’effacement, est incluse
dans la famille de langages contextuels.

Finalement, dans la section 4.4 nous adaptons le contrôle par contextes aléa-
toires aux systèmes d’insertion/effacement et nous montrons que la puissance d’ex-
pression de ces systèmes est augmentée. Nous prouvons que les systèmes de taille
(2, 0, 0; 1, 1, 0) munis de ce type de contrôle engendrent tous les langages récursive-
ment énumérables. En revanche, il existe des langages rationnels que les systèmes de
taille symétrique (1, 1, 0; 2, 0, 0), et même plus généralement de taille (1, 1, 0; p, 1, 1),
ne peuvent pas engendrer. Le fait que les systèmes de tailles (2, 0, 0; 1, 1, 0) et
(1, 1, 0; 2, 0, 0) munis de contrôle par contextes aléatoires n’atteignent pas la com-
plétude computationnelle simultanément est assez remarquable, car dans tous les
cas connus les familles symétriques possèdent les mêmes propriétés par rapport à la
complétude computationnelle.

Vers la fin du chapitre, dans la section 4.5, nous considérons un modèle de calcul
très semblable aux systèmes d’insertion/effacement avec un mécanisme de contrôle
distribué : les réseaux de processeurs évolutionnaires (networks of evolutionary pro-
cessors). Un tel réseau consiste en des unités de calcul élémentaires (processeurs évo-
lutionnaires) pouvant effectuer des insertions, des effacements et des substitutions
d’un seul caractère, sans contexte. Les processeurs alternent entre des phases de cal-
cul et des phases de communication. Lors d’une phase de calcul chaque processeur
modifie les chaînes de caractères qu’il contient ; pendant une phase de communica-
tion les chaînes sont redistribuées entre les processeurs. Un processeur évolutionnaire
possède un filtre à l’entrée et en sortie ; toute chaîne destinée à un processeur mais
qui ne passe pas son filtre d’entrée sera rejetée. Les chaînes produites par un proces-
seur et ne passant pas le filtre de sortie seront bloquées à l’intérieur du processeur
pour un traitement ultérieur. Les réseaux de processeurs évolutionnaires sont un
modèle de calcul inspiré par l’activité des organites d’une cellule biologique et par
la collaboration des cellules d’un tissu ; ce modèle peut être vu comme une mise en
réseau des systèmes de Lindenmayer simples.

La complétude computationnelle des réseaux de processeurs évolutionnaires de
différentes topologies a été prouvée dès leur introduction. De plus, il a été montré
que ces réseaux peuvent résoudre des problèmes NP-complets en temps linéaire.

Dans la section 4.5 de ce manuscrit nous nous intéressons aux réseaux univer-

x

sels, c’est-à-dire aux réseaux qui peuvent simuler n’importe quel autre réseau. Nous
construisons des réseaux universels à 4, 5 ou 7 règles seulement, selon la fonction de
codage. Notre résultat montre que le degré de finesse auquel les filtres peuvent
contrôler l’application de règles d’insertion, d’effacement et de substitution très
simples est assez élevé.

Chapitre 5

Dans le cinquième chapitre de ce manuscrit nous considérons le problème de l’univer-
salité pour les machines à registres. Une telle machine est composée d’un ensemble
fixe de registres et d’un programme fini dont les instructions peuvent accéder aux
registres par leurs noms. Les registres contiennent des valeurs entières non négatives
et non bornées. Plusieurs types d’instructions peuvent être considérés, mais dans
la plupart des cas ce sont soit des opérations simples sur les registres, comme l’in-
crément ou le décrément, soit des vérifications de conditions, comme le test d’un
registre à zéro.

Le concept de registre est apparu après l’invention des machines de Turing uni-
verselles à deux symboles, dont un symbole vide. Ces machines manipulant des
blocs de symboles non vides séparés par des symboles vides, il est possible de les
voir comme traitant des nombres et non pas des chaînes de caractères.

Malgré le lien fort entre les machines de Turing et les machines à registres, le
problème de l’universalité a été beaucoup moins abordé pour celles-ci. En effet,
l’existence des machines à registres universelles a été montrée par Marvin Minsky
dans le travail où il les a introduites, alors que les machines universelles concrètes
n’ont été construites qu’en 1996 par Ivan Korec. Dans son travail, Korec s’est proposé
de réduire le nombre d’états des machines à registres universelles, et il en a décrit
plusieurs, utilisant de différents types d’instruction.

Il existe deux motivations principales pour la recherche des petites machines
à registres universelles. D’un côté, ces machines mettent en évidence les caractéris-
tiques nécessaires pour atteindre la complétude computationnelle, puisque les petites
machines universelles le font avec peu de redondance. D’un autre côté, simuler les
machines à registres est souvent la méthode la plus directe pour montrer la com-
plétude computationnelle d’une classe de machines qui manipulent des vecteurs de
nombres. Par conséquent, fournir de petites machines à registres universelles permet
de trouver de petits éléments universels dans ces autres classes aussi.

Dans la section 5.2 nous continuons la recherche des petites machines à registres
universelles et nous nous concentrons sur la minimisation du nombre de registres.
Bien que Marvin Minsky ait proposé une technique de simulation d’une machine à
un nombre arbitraire de registres par une machine à deux registres seulement, nous
n’avons pas trouvé de description concrète de telles machines dans la littérature.
Nous utilisons donc l’approche proposée par Minsky afin de simuler les machines
à registres décrites par Korec et de construire ainsi une machine universelle à trois
registres, dont un servant au stockage de l’entrée et de la sortie, et une machine
universelle à deux registres dont l’entrée et la sortie sont encodées exponentiellement.

Un des avantages des machines à registres et des machines de Turing est la sim-
plicité des instructions qu’elles peuvent avoir. Cela rend leur simulation plus simple
en utilisant des moyens minimaux. Néanmoins, il arrive souvent que les outils dispo-
nibles pour la simulation soient plus expressifs et soient capables de simuler plusieurs

xi

instructions à la fois. Ceci est bien le cas des règles de réécriture de multiensembles
et des réseaux de Petri qui permettent de simuler les incréments de plusieurs re-
gistres en un seul pas d’évolution. N’étant pas gênant un soi, ce phénomène devient
un problème lorsque l’on est à la recherche de petits éléments universels et que
l’on considère d’autres modèles de calcul dont les unités d’activité atomiques sont
plus expressives que les instructions des machines à registres. Il arrive souvent que
les techniques de simulation optimisée soient similaires pour des modèles de calcul
différents, ce qui met en évidence une redondance descriptive importante.

Dans la section 5.1 nous proposons une généralisation de machines à registres
dont le but est de fournir un langage de description des opérations plus puissant. Une
machine à registres généralisée est essentiellement un multigraphe dont les nœuds
sont les états et dont les arêtes sont annotées des opérations et des conditions de
franchissement. Une telle arête peut être franchie seulement si toutes les conditions
qui y sont associées sont vraies ; le franchissement d’une arête entraîne l’exécution
de toutes les opérations associées. Les arêtes des machines à registres généralisées
sont ainsi fortement similaires aux transitions des réseaux de Petri et aux règles de
réécriture de multiensembles.

Les machines à registres habituelles sont elles aussi souvent conçues comme des
graphes d’états, mais comme dans ce modèle de calcul la correspondance entre les
états et les opérations est biunivoque, ce sont toujours les nœuds du graphe qui sont
annotés des conditions et des opérations. Il est néanmoins clair que toute machine
à registres habituelle est une machine à registres généralisée. L’inverse n’est pas
vrai puisqu’une machine à registres généralisée peut vérifier plusieurs conditions et
effectuer plusieurs opérations en un seul pas.

Grâce à la possibilité d’associer plus d’une opération ou d’un test à une arête, il
est souvent possible de construire une machine à registres généralisée qui fait le même
calcul qu’une machine à registres habituelle, mais en utilisant moins d’états. Par
exemple, plusieurs incréments qui auraient nécessité plusieurs états dans le modèle
classique peuvent être exécutes par une seule arête généralisée. Dans la section 5.1
de ce mémoire nous définissons de façon formelle les cas dans lesquels il est possible
d’éliminer des états en plaçant les opérations qui leur correspondent sur une seule
arête. Nous allons ensuite construire des machines à registres généralisées universelles
ayant sept états seulement, dont l’état d’arrêt.

Chapitre 6

Le sixième chapitre de ce manuscrit contient l’étude du problème de l’universalité
pour des systèmes de réécriture de multiensembles. Un multiensemble est une collec-
tion non ordonnée d’objets qui admet des répétitions ; les multiensembles sont donc
une généralisation des ensembles.

Nous remarquons tout de suite qu’un multiensemble peut être représenté par un
vecteur d’entiers naturels dont le n-ième composant est la multiplicité du n-ième
symbole de l’alphabet. D’un autre côté, une configuration d’une machine à registres
est représentée également par un vecteur d’entiers non négatifs. Une règle de ré-
écriture de multiensembles correspond dans ce cas à une suite de décréments et
d’incréments des registres. Cependant, les règles de réécriture de multiensembles ne
sont pas capables de vérifier l’absence d’un symbole, ce qui correspondrait à la véri-
fication du fait que la valeur d’un registre soit zéro. Un des moyens d’augmenter la

xii

puissance de calcul de la réécriture de multiensembles est de rajouter aux règles un
ensemble d’objets dits inhibiteurs, dont aucun ne doit apparaître dans un multien-
semble pour que la règle y soit applicable. Cette extension permet de simuler un test
de registre à zéro et rend la puissance d’expression de la réécriture de multiensembles
équivalente à celle de machines à registres.

Dans ce chapitre nous présentons les systèmes de réécriture de multiensembles
universels sous la forme des réseaux de Petri avec des arcs inhibiteurs. Un réseau
de Petri est un multigraphe qui contient deux types de nœuds : les places et les
transitions. Les places peuvent contenir des jetons ; un arc allant d’une place P
vers une transition T indique que T consomme un jeton de P au déclenchement.
Symétriquement, un arc allant de T vers une place Q indique que T rajoute un
jeton à Q au déclenchement. L’état d’un réseau de Petri est généralement décrit
par une fonction, dite marquage, qui associe à chaque place le nombre de jetons
qu’elle contient ; l’état d’un réseau est donc un multiensemble et les transition sont
des règles de réécriture de multiensembles.

Les réseaux de Petri, de même que les systèmes de réécriture de multiensembles
sans inhibiteurs, ont le problème d’accessibilité décidable. Une extension qui permet
d’étendre la puissance d’expression des réseaux de Petri consiste à rajouter des
arcs inhibiteurs. Un tel arc entre une place et une transition empêche celle-ci de
se déclencher lorsque la place est vide. Graphiquement les arcs inhibiteurs sont
représentés par un cercle du côté de la transition.

Nous remarquons qu’il existe d’autre modèles de calcul qui s’inscrivent dans la
même famille que les machines à registres, les systèmes de réécriture de multien-
sembles et les réseaux de Petri. Les systèmes d’addition de vecteurs (vector addition
systems) sont un exemple d’un tel modèle. Ces systèmes évoluent en additionnant
des vecteurs d’un ensemble fini, dits vecteurs d’addition (addition vectors), à un vec-
teur de départ. Un vecteur d’addition w peut être appliqué à un vecteur x seulement
si tous les composants du vecteur x+w sont non négatifs. Un vecteur d’addition cor-
respond ainsi à une règle de réécriture de multiensembles dont les membres gauche
et droit contiennent des symboles différents, ou à une transition de réseaux de Petri
qui ne remet jamais de jetons dans une place de laquelle elle en consomme.

Nous construisons de petits réseaux de Petri universels avec des arcs inhibiteurs.
Nous définissons la taille d’un réseau comme un vecteur comprenant le nombre
de places, de transitions, d’arcs inhibiteurs, ainsi que le nombre maximal d’arcs
incidents à une transition (le degré maximal de transitions). Nous proposons ensuite
des techniques de minimisation de chacun de ces paramètres, tout en mettant en
évidence certains compromis.

Dans la section 6.2 nous décrivons l’une des façons les plus directes de construire
un réseau de Petri universel par simulation d’une machine à registres universelle.
Malgré la simplicité de l’approche, les réseaux obtenus par cette voie ont des transi-
tions du degré minimal ; nous montrons que les réseaux de Petri avec des transitions
de degré encore plus petit ne possèdent pas la complétude computationnelle.

La section 6.3 porte sur la minimisation du nombre de transitions dans les réseaux
de Petri universels. Nous construisons des réseaux simulant les machines à registres
généralisées, ce qui permet d’atteindre la complétude computationnelle avec moins
de transitions que dans le cas des simulations des machines à registres habituelles.
Nous proposons ensuite une technique de codage binaire des états de la machine
simulée, ce qui réduit le nombre de places dans les réseaux universels, tout en gardant

xiii

faible le nombre de transitions.
Dans la section 6.4 nous attaquons le problème de minimisation du nombre

de places et nous montrons deux méthodes différentes de simuler n’importe quelle
machine à registres avec un réseau de Petri ayant quatre places seulement. Une
place supplémentaire est nécessaire si le codage de l’entrée et le décodage de la
sortie se fait par le réseau lui-même. Les réseaux obtenus par la première méthode
sont non déterministes, alors que ceux obtenus par la deuxième sont déterministes si
la machine simulée l’est. Toutefois, ceux-ci utilisent des transitions d’un degré plus
important que les réseaux construits d’après la première méthode.

Finalement, la section 6.5 est dédiée à la minimisation du nombre d’arcs inhi-
biteurs. Nous proposons une méthode de simulation de machines à registres qui ne
nécessite qu’un seul arc inhibiteur par registre. Nous appliquons cette approche à
la simulation des machines universelles à deux registres et nous arrivons à des ré-
seaux de Petri universels avec deux arcs inhibiteurs seulement, ce qui est le nombre
minimal d’arcs inhibiteurs nécessaire pour la complétude computationnelle — il a
été montré que le problème d’accessibilité pour les réseaux de Petri avec un seul arc
inhibiteur est décidable.

xiv

Contents

Introduction 1

1 State of the Art 5
1.1 Insertion-deletion Systems . 5
1.2 Networks of Evolutionary Processors 16
1.3 Universal Petri Nets . 17

2 Preliminaries 25
2.1 Formal Languages . 25
2.2 Computing Devices . 28
2.3 Computational Completeness and Universality 29

3 One-sided Insertion-deletion Systems 33
3.1 Definitions . 33
3.2 Systems of Size (1, 1, 0; 1, 1, 0) and Leftist Grammars 36
3.3 Systems of Sizes (1,m, 0; 1, q, 0) . 39
3.4 Derivation Graphs . 48

4 Insertion-deletion Systems with Control 61
4.1 Definitions . 61
4.2 Graph-controlled Insertion-deletion Systems 66
4.3 Semi-conditional Insertion-deletion Systems 71
4.4 Random Context Insertion-deletion Systems 79
4.5 Small Universal NEPs . 86

5 Small Universal Register Machines 93
5.1 Generalised Register Machines . 93
5.2 Universal 2- and 3-Register Machines 98

6 Small Universal Petri Nets 101
6.1 Definitions . 101
6.2 Minimising the Transition Degree . 103
6.3 Minimising the Number of Transitions 104

xv

xvi CONTENTS

6.4 Minimising the Number of Places . 106
6.5 Minimising the Number of Inhibitor Arcs 109
6.6 Final Remarks . 110

Conclusions 113

Bibliography 115

Appendix 127

Introduction

Models of computation, as well as the theory of computation and formal languages
which is built around them, could seem to be too abstract to ever have any influence
on the study and manipulation of any real-life situations. Nevertheless, it is often by
sublimation of empirical experience into formal knowledge that impressive advances
in the understanding of natural phenomena are achieved. Meaningfully plodding
through profuse, but not immediately categorised, data about the world requires
solid theoretical background if a complete picture is to be drawn. This is when
the theory of computation and formal languages come into play, along with other
abstract domains, and help detect and isolate the core components of the complex
systems under study.

At the bases of formal examination of computation lie the Turing machine and
a series of devices equivalent in power, such as formal grammars, partial recursive
functions, or lambda calculus. These constructions contour the outer bounds of what
can be computed without resorting to infinite resources with immediate availability
and originate in endeavours to comprehend the foundations of mathematics and
the functioning of the human brain. Besides being a deep introspection exercise, the
research into the formal notion of computation did help found the domain of practical
computer science, which is now a ubiquitous, universal, and largely irreplaceable
tool preferred by engineers, scientists, and casual users alike. In other words, some
abstract considerations ended up shaping the world as we know it today in some
rather concrete ways.

While it is true that, historically, the principal applications of the theory of com-
putation and formal languages lie within or are at least connected with computer
science, in the recent years these domains started offering curious and useful in-
sights in biology and related disciplines. The advent of natural computing towards
the end of the twentieth century established solid links between some biological
phenomena and the formal notion of computing. Notably, the famous experiment
by Leonard Adleman described in [1], pointed out that some of the transforma-
tions DNA molecules may undergo can be interpreted as computation. This inge-
nious experimental setup essentially created the whole new field of DNA computing,
whose main goal is using biological molecules as a direct substrate for computation
(see [103] for an overview).

One of the explanations of the possibility of using DNA molecules as support for
computing is in the fact that the theory of computation extensively uses the formal
language theory. On the one hand, the two Watson-Crick base-pairs building up the
DNA allow an easy interpretation of these molecules as formal strings, so biological
systems can be seen as systems manipulating strings. On the other hand, the theory
of computation naturally considers string-based representations of problems and

1

2 INTRODUCTION

data, which means that biological systems can actually be seen as computing devices.
An important difference between biological systems and formal models is that

the majority of classical models of computing are inherently modular, on many lev-
els. For example, a Turing machine has a separate program, a tape for storing and
manipulating data. Furthermore, its tape consists of singular cells, its program –
of atomic instructions. Biological processes, on the other hand, do not usually lend
themselves to such clear structurisation easily: even DNA molecules which are often
conceived as read-only and almost invariable information, interact rather actively
with other entities in the cell and, in some organisms, undergo numerous modifica-
tions. Because of the fundamental dissimilarity between the character of models of
computation and biological systems, the computational approach to biology starts
by pointing out how to split the system into components and how to formally in-
terpret their actions as steps of computation. Often, and especially in the case of
processes involving genetic information, modelling based on formal languages is pre-
ferred, because formal grammars have remarkably few structural elements – the rules
and the manipulated string – but are still, in their most general form, equivalent
in power to Turing machines. For example, the work [115] analyses the expressive
power of the operation of splicing seen as an operation on strings, while [107] focuses
on the process of gene assembly happening in certain bacteria.

Establishing the parallel between Turing machines and a subsystem of the living
cell, or any other biological structure, has two broad types of consequences. On
the one hand, it immediately reveals that the complexity of the subsystem under
study is rather elevated and that the majority of questions concerning its dynamic
behaviour are not solvable with a conventional computing device. This opens up a
whole new perspective on the biological systems, which is unifying and generalising
in the sense that it treats them as systems transforming information, and then gives
levers to estimating the complexity of the transformations. On the other hand,
stating that some of the operations a biological system carries out are sufficiently
complete to simulate a Turing machine, makes it possible to consider (may it be
mostly theoretically at present) biological computers, that is, biological systems
programmed to solve some concrete problems.

In this thesis we contribute to both facets of cognition the computational ap-
proach to biology opens up. In the first part, we focus on the operations of insertion
and deletion, which were originally introduced with linguistic and formal-language
motivation, but were then discovered to have numerous counterparts in the world
of DNA and RNA manipulation. In the most general case, these two operations
insert or delete substrings of a string if the insertion or deletion sites are delimited
by some fixed contexts. In this work we specifically consider one-sided versions of
these operations, in which the insertion or deletion may only depend either on left
or right context of the site, but not both. This restriction corresponds directly to
how the process of editing of RNA strands is organised, and thus presents interest
for understanding the complexity of these manipulations of RNA. We show that
one-sided insertion and deletion are quite sophisticated, even if only one symbol
is allowed to be inserted or deleted at a time. We do conjecture though that this
sophistication is still not enough to achieve the power of Turing machines.

We also discuss insertion and deletion operations endowed with additional con-
trol, which reflects the fact that the cell may change between different states and
thus perform different sets of transformations on DNA or RNA strands. We show

INTRODUCTION 3

that adding control almost always boosts the power of very small insertion and
deletion rules to computational completeness.

The second part of the thesis is concerned with the synthetic perspectives induced
by the computational approach to biology, and focuses on universality. A universal
element in a class of computing devices is a device which can simulate any other
device of this class. We consider the problem of constructing universal computing
devices which should also admit compact description. Giving such a device in a
class of models of computing inspired by some biological phenomena essentially lays
the foundations of using the corresponding biological systems as computers. Indeed,
small and universal devices point out, in a way, the amount of complexity a concrete
biological system must achieve in order to be able to reproduce any computation of
a Turing machine. We pick the class of Petri nets with inhibitor arcs to showcase our
constructions, but the obtained results are directly translatable to multiset rewriting
systems, and, in particular, to membrane systems, designed to follow the structure
of the living cells.

Our universality constructions are loosely based on universal register machines,
and we exploit the connection between these computing devices and Petri nets in the
reverse direction, too: we introduce generalised register machines which essentially
allow more complex operations during a state change, to match the expressiveness
of Petri net transitions. We also describe small universal constructions in this new
class of computing devices.

Outline

Chapter 1

This chapter provides a overview of the domains this thesis falls within. It first
recalls the historic evolution of insertion and deletion as formal operations, and
then discusses two different biological motivations for study of these operations:
mismatched annealing of DNA strands and RNA editing. The second part of this
chapter recalls the origins of Petri nets and some results on reachability, and hence
expressive power, of basic Petri nets and Petri nets with inhibitor arcs. A tight
connection with register machines and multiset rewriting systems is also pointed out.

Chapter 2

This chapter recalls some of the standard definitions from the theory of formal lan-
guages and computation. It briefly discusses formal grammars, finite automata,
Turing machines, register machines, as well as the notions of computational com-
pleteness and universality.

Chapter 3

This chapter studies the expressive power of insertion-deletion systems in which all
rules insert or erase exactly one symbol, and should also verify the context on one
side of the site only. It is shown that, when at least insertion or deletion rules are
allowed to use two-symbol contexts, the resulting insertion-deletion systems generate
all regular languages. Furthermore, we show that further increasing the lengths of
the contexts does not increase the computational power. Finally, we introduce

4 INTRODUCTION

a novel tool for visual analysis of the derivations of one-sided insertion-deletion
systems with contexts of length 1.

Chapter 4

This chapter focuses on insertion-deletion systems equipped with additional control.
Three control mechanisms are considered, and in all cases computational complete-
ness is shown for very small rule sizes. The second part of this chapter is concerned
with networks of evolutionary processors, and gives two universal networks with 4, 5,
and 7 rules only. The results shown in this chapter are based on the works [57, 58, 59].

Chapter 5

In this chapter we consider the questions of universality for register machines. In the
first part of this chapter a generalisation of the conventional model is introduced,
in which multiple register tests and operations can be performed in a single state
change. We then give a concrete universal generalised register machine with 7 states
only. In the second part of this chapter we recall Marvin Minsky’s exponential sim-
ulation technique [92], allowing machines with arbitrarily registers to be simulated
by machines with two registers. We then apply this approach to actually construct
universal 3- and 2-register machines. We remark that we did not find any similar
explicit constructions in the literature on register machines. The results from this
chapter are based on [55, 56].

Chapter 6

This chapter discusses universal devices in the class of Petri nets with inhibitor arcs.
We define the size of such a Petri net as a tuple comprising the number of places,
transitions, inhibitor arcs, and the maximal transition degree, and then describe
techniques for minimising each of these parameters. Some of these techniques allow
attaining the theoretical minimum required for universality. The results from this
chapter are based on [55, 56] as well.

Chapter 1

State of the Art

This chapter provides a brief overview of the domain of the present thesis, giving a
historical outline and relating the results from the following chapters to the research
conducted previously. In Section 1.1 we discuss the operations of insertion and
deletion in a historical perspective, Section 1.2 considers networks of evolutionary
processors, while Section 1.3 focuses on Petri nets and register machines, but also
touches upon the questions of computational completeness and universality.

1.1 Insertion-deletion Systems

Insertion and deletion are one of the simplest and yet powerful operations on strings
studied in the theory of formal languages. Quite intuitively, inserting a substring
z in between x and y in the string αxyβ results in αxzyβ. Dually, deleting the
substring z from αxzyβ produces the string αxyβ.

The history of insertion starts in 1969 with Solomon Marcus’s seminal paper on
contextual grammars [82], in which he introduced a new type of generative devices
not directly compatible with the Chomsky hierarchy. Contextual grammars start
with a set of words over an alphabet V and generate languages by iteratively adjoin-
ing contexts to these words. A context is a pair (u, v) of words over V and adjoining
it to a word x yields the word uxv.

One can immediately see that the context-free language {anbn | n ∈ N} can
be easily generated by a contextual grammar. The power of contextual grammars
does not extend beyond context-free languages, however [82, Proposition 7]. More-
over, not all context-free languages or even regular languages can be generated by
contextual grammars [82, Propositions 8 and 9].

The article [8] extends the construct of contextual grammar by adding control
over the words a context C = (u, v) can be adjoined to by associating with it a
language of allowed words (selectors) D. Then, the word uxv can be obtained from
x only if x ∈ D. Furthermore, the authors introduce internal derivations, in which
contexts are not necessarily adjoined to the ends: whenever x belongs to the set of
selectors of the context C = (u, v), C can be adjoined to x within the string αxβ,
yielding αuxvβ. Accordingly, the original derivation mode in which contexts are ad-
joined to the ends of the string is referred to as external. Just as external derivations,
internal derivations generate families of languages fully contained in the class of con-
text sensitive languages and incomparable with context-free languages [85]. Yet the
degree to which contextual languages are context sensitive seems to be sufficient to

5

6 CHAPTER 1. STATE OF THE ART

capture some fundamental structures in natural languages [83, Introduction].
In [45], a counterpart of Marcus’s contextual grammars – semicontextual gram-

mars – is introduced. The working principle of such grammars is insertion of a
substring in a given context, rather than adjoining a context to a substring. Thus,
a semicontextual grammar contains rules of the form xy → xzy, which effectively
result in the insertion of the substring z in between x and y in the string αxyβ.
The work [81] studies the expressive power of semicontextual grammars with addi-
tional control mechanisms and highlights a series of interesting relationships between
various classes of grammars obtained in this way, including a number of infinite hi-
erarchies.

The first mention of insertion under this name is usually attributed to David
Haussler, who introduced this operation as a generalisation of Kleene’s concatena-
tion [69] in his doctoral thesis [50]. Indeed, insertion can be seen as concatenation,
which is not restricted to happening at the ends of strings. In his paper [51], Haus-
sler shows that insertion systems are able to generate non-regular Dyck languages,
and proves that regularity of an insertion language is undecidable.

Although deletion seems to be quite a natural counterpart of insertion, it was
first introduced several years later in Lila Kari’s paper [110], in an attempt to bring
over the basic operations of arithmetic to formal languages. Deletion is defined as
a generalisation of the quotient operation, in a way which parallels the definition of
insertion as a generalisation of concatenation. Kari continued the study of insertion
and deletion in her doctoral thesis [65], where she described variants of the two
operations, including parallel versions, and investigated their computational power.

The work [66] is one of the first to introduce the now wide-used notations for
insertion-deletion systems. Namely, an insertion-deletion system is defined as the
tuple (V, T,A, I,D), where V is the alphabet, T ⊆ V is the alphabet of terminal
symbols, A is the finite set of axioms, I is the set of insertion rules, and D is the
set of deletion rules. The sets of rules contain triples of the form (u, x, v), where
u and v are the left and right contexts respectively, while x is the substring to be
inserted or deleted. For convenience, the notation (u, x, v) ∈ I is often replaced by
(u, x, v)ins, and (u, x, v) ∈ D by (u, x, v)del.

Throughout this thesis we will usually specify the maximal allowed lengths of all
components of insertion and deletion rules directly to define a family of insertion-
deletion systems of the same expressive power. Thus, we will say that the size of
an insertion-deletion system with the set of insertion rules I and the set of deletion
rules D is (n,m,m′; p, q, q′), where

n = max{|x| : (u, x, v) ∈ I}, p = max{|x| : (u, x, v) ∈ D},
m = max{|u| : (u, x, v) ∈ I}, q = max{|u| : (u, x, v) ∈ D},
m′ = max{|v| : (u, x, v) ∈ I}, q′ = max{|v| : (u, x, v) ∈ D}.

The paper [66] also points out an exciting new motivation for the study of in-
sertion and deletion operations: DNA computing or, even more generally, molecular
computing – domains vividly illustrated by Leonard Adleman in his seminal re-
port about solving the Hamiltonian path problem with DNA molecules [1]. The
authors of [66] highlight the fact that insertion and deletion suffice for modelling
DNA computation and, moreover, that actually performing the operations on real
DNA molecules is quite doable in laboratory conditions. The cited article shows
that insertion-deletion systems with rather strong restrictions on size are capable

1.1. INSERTION-DELETION SYSTEMS 7

of characterising the whole family of recursively enumerable languages and are thus
comparable in power to Turing machines.

The theoretically-conceived way of performing computations on DNA molecules
is by mismatched annealing, which is essentially mismatched gluing of DNA strands
resulting in omissions or additions of DNA fragments [103]. In normal conditions,
DNA comes in two strands, each of which is composed out of four types of nu-
cleotides: adenine, guanine, thymine, and cytosine, often abbreviated as A, G, T ,
and C, respectively. The nucleotides A and T exhibit electrostatic attraction to
each other and are referred to as complementary. Similarly, G and C form another
complementary pair of nucleotides. The entire sequences of nucleotides in the two
strands of a DNA molecule are complementary, and it is the attraction between
nucleotides that keeps the two strands together.

The attractive force between complementary nucleotides is relatively weak, how-
ever, and can be broken by special proteins (enzymes) preparing the DNA molecule
for reading the genetic information, or even by heating, resulting in single separate
strands of DNA. Annealing is the process in which such single strands reconnect
to complementary strands, or even form the necessary complementary strand out
of the nucleotides available around. Mismatched annealing, on the other hand, is
a theorised process during which two not fully complementary strands do connect
in complementary positions, a situation which can be subsequently used to induce
insertions or deletions of subsequences of nucleotides. The stages of mismatched
DNA annealing are shown in Figure 1.1.

A A

C

T

G

T

C T T A A

(a)

A A

C

T

G

T

C T T A A

(b)

A A C T G T

C T T A A

(c)

G A A C T G T T

C T T G A C A A

(d)

Figure 1.1: The stages of mismatched DNA annealing: (a) formation of complementary nucleotide
pairs, (b) cleaving of the shorter strand, (c) unfolding of the longer strand, (d) addition of missing
nucleotides to both strands.

Consider the two strands of DNA shown in Figure 1.1a. They could form the
nucleotide pairs A− T , A− T , and T − A, as shown in the figure. One could then
cleave the second (lower) strand (Figure 1.1b) and unfold the first (upper) strand
open (Figure 1.1c). The gap in the second strand could then be filled in with the
nucleotides corresponding to the triple CTG on the first strand, and the first strand
itself would be completed to match the nucleotide sequence on the second strand.
After separating the resulting two strands by heating the solution, one could obtain
a new lower strand which corresponds to the original strand with the subsequence

8 CHAPTER 1. STATE OF THE ART

GAC inserted between T and A. On the other hand, the new upper strand will
correspond to the original upper strand with a G inserted at its beginning and a T
at its end.

By a similar theoretical process one could achieve deletion of subsequences of
nucleotides. In this case, it would be the upper strand shown on Figure 1.1a that
would be cleft between A and C, and between G and the second T . This would
effectively lead to cutting out of the subsequence CTG.

Interestingly, a process which is closely related to the theoretically conjectured
mismatched annealing was discovered for RNA molecules in 1993 [12]. This pro-
cess, referred to as RNA editing, deviates from the central dogma of molecular
biology that information from the DNA is solely instanced onto RNA molecules,
which then serve as matrices for protein production. The editing concerns messen-
ger RNA molecules (mRNA), which carry a replica of the genetic information, and
is performed according to the pattern given by a guide RNA molecule (gRNA).

Similarly to DNA, RNA molecules are built up out of four nucleotides, three of
which are the same as the ones appearing in DNA: adenine, cytosine, and guanine,
and one which is different: uracil, denoted by U . Similarly to thymine (T), uracil
exhibits affinity for adenine, and thus the nucleotides forming the RNA can also
be grouped into two complementary pairs: A and U , and C and G. As different
from DNA molecules, RNA usually comes in singular strands which are more active
chemically.

Even though RNA editing is based on the same principle as DNA annealing:
electrostatic attraction between complementary nucleotides, the phases and the re-
sult of the process do differ. One difference is that, in RNA editing, only mRNA is
modified, while gRNA is left intact. Another important specificity of RNA editing
is that only sequences of uracil (denoted by U) can be inserted or added to the
modified mRNA molecule.

A high-level overview of the phases of RNA editing is shown in Figure 1.2.
The process starts with the attaching of a guide RNA to the messenger RNA to be
modified. This system of two molecules is then wrapped by a protein complex which
cuts open the mRNA, unfolds the gRNA molecule, and then inserts instances of U

A A

U

U

U

T

C T T A A

Anchor
gRNA

mRNA

(a)

A A

U

U

U

T

C T T A A

(b)

A A U U U T

C T T A A

(c)

A A U U U T

C T T U U U A A

(d)

Figure 1.2: The stages of RNA editing: (a) attachment of gRNA (top) to mRNA (bottom), (b)
cleaving of mRNA, (c) unfolding of mRNA, (d) addition of U to mRNA.

1.1. INSERTION-DELETION SYSTEMS 9

into mRNA to match the corresponding sequence on the guide. Deletion of uracil
segments can be performed symmetrically: if, for example, the mRNA has the form
ACGUUGA, “applying” the guide CGGA will result in erasing of the two instances
of uracil in the original mRNA. Once again, remark that gRNA is not modified in
the process, as different from mismatched DNA annealing, where the shorter strand
is completed to match the length of its complement.

RNA editing alters the genetic information after it has been read from the DNA,
but before it is implemented in proteins, which opens up interesting perspectives.
In fact, it may be that RNA editing is a better substrate for biological in vitro
computations [112]. This motivated the extension of the formalism of insertion-
deletion systems to model the function of gRNA molecules in [17]. Guided insertion-
deletion systems, introduced in this work, start their computations with an initial
string, but also with a language of control words, called guides. All operations the
system performs must be paralleled by the corresponding operation on one of the
guides. The paper [13] focuses on guided insertions and shows that the families of
languages generated by systems with such rules contain the regular languages, but
are essentially incomparable with the other levels of the Chomsky hierarchy.

Further study of the mechanism of guides was conducted in [124], where it was
shown that, for a fixed set of guides, guided insertion-deletion systems can generate
strings which are exponential in size with respect to the initial words (axioms). The
author further considers guided insertion-deletion systems as language transformers,
and shows that, if the language of the axioms is regular (respectively context-free),
the language generated by the system is not necessarily regular (respectively context-
free).

The article [30] goes back to the biological origins of the model and points out
that a single guide RNA molecule does not necessarily induce only an insertion or
only a deletion. For example, a gRNA molecule ACUUUG could also induce the
transformation of GUAUCUGG into GUACUUUGG, thereby erasing one uracil
molecule between A and C, and also adding two between C and G.

A remarkable feature of gRNA molecules is that they have a distinguished part,
the anchor, which is always situated to the same side of the section actually leading
to modifications of the mRNA [11, p. 223]. For example, in Figure 1.2, the anchor is
represented by two molecules of adenine (A) at the left end of the gRNA molecule.
In a formal representation by insertion and deletion, this feature would be best
modelled by rules which are only allowed to have a context on one of the sides,
but not both. Such models are referred to as one-sided insertion-deletion systems
(e.g. [73]), and Chapter 3 of the present work focuses on the analysis of such systems
having rules of small size.

Abundant biological and linguistic motivation (e.g. [73]) for the operations of
insertion and deletion lead to a thorough study of their expressive power. A sum-
mary of some important results relating the languages generated or recognised by
pure insertion and pure deletion systems to well-known classes of languages is given
in Table 1.1.

It turns out, for example, that any recursively enumerable language can be ob-
tained by applying an inverse morphism and a weak coding to an insertion language
(Table 1.1, line 1), and that insertion rules of maximal size (3, 7, 6) suffice to this
end. The main idea of the paper [86] is that symbols which are meant to be erased
can instead be marked by inserting a flag next to it. Then, the inverse morphism

10 CHAPTER 1. STATE OF THE ART

Table 1.1: A summary of results about pure insertion and pure deletion systems. The notation wc
stands for “weak coding”, im for “inverse morphism”, proj for “projection”, ∩Dyck for “intersection
with a Dyck language”, ∩loc2 for “intersection with a strictly 2-testable language, and ∩REG for
“intersection with a regular language”.

Size Power Ingredients Reference
1 (3, 7, 6; 0, 0, 0) = RE wc, im [86, Theorem 1]
2 (3, 3, 3; 0, 0, 0) = RE wc, im [67, Theorem 6]
3 (3, 0, 0; 0, 0, 0) = RE proj, ∩Dyck [102, Theorem 1]
4 (3, 3, 3; 0, 0, 0) = RE proj, ∩loc2 [43, Theorem 7]
5 (2, 0, 0; 0, 0, 0) = CF proj, ∩loc2 [43, Theorem 5]
6 (1, 1, 1; 0, 0, 0) = CF proj, ∩loc2 [44, Theorem 8]
7 iterated deletion = RE ∩REG, proj [31, Theorem 1]

will be used to replace each such group with a special symbol, which will be sub-
sequently removed by the weak coding. The work [67] (Table 1.1, line 2) improves
on the previous result by showing that insertion systems of size at most (3, 3, 3) are
sufficient to characterise all recursively enumerable languages in the same way.

The article [102] (Table 1.1, line 3) gives yet another characterisation of re-
cursively enumerable languages by insertion systems. The authors show that any
such language can be obtained by intersecting the language generated by context-
free insertion rules (i.e. rules without context) of size at most (3, 0, 0) with a Dyck
language.

This line of research was continued in the work [43], where the author gives a
new characterisation of recursively enumerable languages by insertion systems of
size (3, 3, 3; 0, 0, 0), intersection with a strictly 2-testable language, and a projection
(Table 1.1, line 4). Strictly 2-testable languages are a subset of regular languages
for which the membership of a word w can be decided by looking at its subwords
of length 2. The paper [43] also gives characterisations of context-free and regular
languages using insertion systems. In particular, it shows that context-free two-
symbol insertion rules together with intersection with a strictly 2-testable language
and a projection characterise CF (Table 1.1, line 5). In another work [44], the same
author shows that insertion systems with rules of size (1, 1, 1; 0, 0, 0) combined with
the same ingredients characterise the family of context-free languages, too (Table 1.1,
line 6).

Due to symmetry between insertion and deletion, any characterisation of RE
by insertion languages can be directly transformed into a characterisation of RE by
deletion languages. The paper [31] (Table 1.1, line 7) takes a different approach and
shows how this family of languages can be characterised by iterating a variant of
deletion which corresponds to removal of substrings of a certain form from all words
of a language [65, 110].

While insertion and deletion are quite powerful operations on their own, using
both in a single system yields a more versatile instrument. Table 1.2 gives a summary
of results on the computational power of such combined insertion-deletion systems.
Lines 1, 2, and 3 of Table 1.2 summarise some of the results of [84], which show
that context-free insertion-deletion systems with small-size rules without contexts
are able to generate the family of recursively enumerable languages. Such systems
can directly simulate the application of an arbitrary rewriting rule R : u → v by
inserting vR and by then erasing Ru, where R is a special non-terminal symbol.

1.1. INSERTION-DELETION SYSTEMS 11

This result is also optimal in the context-free case, because systems where both
insertion and deletion rules are limited to inserting or erasing at most two symbols
at a time are not computationally complete, and moreover every such system can be
simulated by a context-free pure insertion system of weight 2 [116]. Furthermore,
the paper [116] considers context-free insertion-deletion systems in which insertions
of arbitrarily long strings are allowed, but all deletion rules are restricted to erasing
at most one symbol, and shows that such systems can only generate context-free
languages [116, Theorem 4.1]. Systems with symmetric restrictions, i.e. systems in
which deletion rules can erase arbitrarily many symbols at a time, but in which only
one symbol can be inserted in a step, are even less powerful: they can only generate
some regular languages [116, Theorem 4.2].

Small context-free insertion and deletion rules are equivalent in power to arbi-
trary rewriting grammars, which intuitively suggests that using contexts may allow
achieving computational completeness with even smaller sizes of inserted and deleted
strings. Indeed, insertion-deletion systems in which at most one symbol is allowed in
all components of the rules generate all recursively enumerable languages (Table 1.2,
line 9). Moreover, as shown in [73, Theorem 4.3.2] and [74, Theorem 3], context-free
deletion rules with insertion rules of size (1, 1, 1) and the symmetric variant are both
computationally complete (lines 8 and 7 of Table 1.2).

Table 1.2: A summary of results on the power of insertion and deletion operations

Size Power Reference
1 (3, 0, 0; 3, 0, 0) = RE [84, Corollary 2]
2 (3, 0, 0; 2, 0, 0) = RE [84, Theorem 3]
3 (2, 0, 0; 3, 0, 0) = RE [84, Theorem 3]
4 (2, 0, 0; 2, 0, 0) (CF [116, Theorem 3.5]
5 (m, 0, 0; 1, 0, 0) (CF [116, Theorem 4.1]
6 (1, 0, 0; p, 0, 0) (REG [116, Theorem 4.1]
7 (1, 1, 1; 2, 0, 0) = RE [73, Theorem 4.3.2]
8 (2, 0, 0; 1, 1, 1) = RE [74, Theorem 3]
9 (1, 1, 1; 1, 1, 0) = RE [113, Theorem 2]

In what follows we will look more attentively into the types of insertion-deletion
systems which we study in Chapters 3 and 4, and will give a detailed overview of
the known results.

One-sided Insertion-deletion Systems. The article [87] introduces a restric-
tion on the complexity of the contexts of insertion and deletion rules: one-sided
contexts. An insertion-deletion system of size (n,m,m′; p, q, q′) is said to be with
one-sided contexts (or just one-sided) if eitherm+m′ > 0 andm·m′ = 0, or q+q′ > 0
and q · q′ = 0, or both. In other words, in one-sided insertion-deletion systems the
rules are only allowed to have a context on one side, but not on the other. In [87]
it is shown that this restriction does not considerably impair the generative power,
and systems of sizes shown in lines 1–3 of Table 1.3 are computationally complete.
Theorem 7 of [87] also shows that insertion-deletion systems of size (1, 1, 1; 1, 1, 0)
are not computationally complete, and in fact are not even able to generate the
context-free language {anbn | n > 0}.

The paper [76] considers the cases symmetric to the ones shown in [87] (lines 6–9

12 CHAPTER 1. STATE OF THE ART

vs. lines 1–4 of Table 1.3). It turns out that, at least for the considered families,
swapping the sizes of insertion and deletion rules does not affect the property of being
or not computationally complete, which is rather curious given that the proofs only
share the general approach of simulating other computationally complete insertion-
deletion systems. Remarkably, while both families of systems of size (1, 1, 1; 1, 1, 0)
and (1, 1, 0; 1, 1, 1) are not computationally completely, the proofs of the two facts
give little insight into the relationship between their power. Thus, while systems
of size (1, 1, 1; 1, 1, 0) are shown to be incapable of generating the language {anbn |
n > 0}, Theorem 8 of [76] proves that systems of size (1, 1, 0; 1, 1, 1) cannot generate
even the regular language (ba)+.

For further reference, we cite the doctoral thesis [73] and the habilitation the-
sis [117], which give a thorough overview of the results on one-sided insertion-deletion
systems (and on insertion-deletion systems in general) which had been achieved
by 2011.

Table 1.3: A summary of results about one-sided insertion-deletion systems

Size Power Reference
1 (1, 1, 2; 1, 1, 0) = RE [87, Theorem 3]
2 (2, 0, 2; 1, 1, 0) = RE [87, Theorem 4]
3 (2, 0, 1; 2, 0, 0) = RE [87, Theorem 5]
4 (1, 1, 1; 1, 1, 0) (RE [87, Theorem 7]
5 (2, 0, 0; 1, 1, 1) = RE [76, Theorem 3]
6 (1, 1, 0; 1, 1, 2) = RE [76, Theorem 4]
7 (1, 1, 0; 2, 0, 2) = RE [76, Theorem 5]
8 (2, 0, 0; 2, 0, 1) = RE [76, Theorem 6]
9 (1, 1, 0; 1, 1, 1) (RE [76, Theorem 7]

In Chapter 3 of the present work we discuss one-sided insertion-deletion systems
of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) and show that these systems can generate
all regular languages. We then prove that swapping insertion and deletion sizes
in such systems does not change the expressive power, and thus the families of
languages generated by systems of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) are equal.
Finally, we show that considering longer left contexts for insertion and deletion
does not change the expressive power either, because all of the language generated
by systems of size (1,m, 0; 1, q, 0) can also be generated by both systems of size
(1, 1, 0; 1, 2, 0) and of size (1, 2, 0; 1, 1, 0).

Even though one-sided insertion-deletion systems were originally introduced with
the mainly theoretical goal of exploring the generative power of the two operations,
several other important sources of motivation were found for one-sided contexts.
One of them is the fact that, as we have already stated above, guide RNA molecules
start their action by “checking” a certain section of messenger RNA, which is always
located on the same side of the region to be modified. Another source of motivation
originates from computer security, from protection systems and trust management
problems [93]. In the setup of these problems, the description of possible interactions
between a series of objects is given, and the goal is to verify that undesired sequences
of actions may not happen. A particular case is the accessibility problem, which deals
with a graph of objects with edges encoding the relation “has access to”, together with
a set of operations reflecting the intuitive properties of this relation. The question

1.1. INSERTION-DELETION SYSTEMS 13

is whether performing a sequence of such operations on a given accessibility graph
can lead to some objects getting illegal access to other objects.

Before addressing the general accessibility problem, Section 2 of [93] defines a
restriction of it and shows that solving the restricted variant is equivalent to deciding
the membership of a word in the language recognised by a certain type of grammars
introduced in the same paper and referred to as leftist grammars. A leftist grammar
contains two types of rules: delete rules ab→ b and insert rules c→ dc. A derivation
of a leftist grammar is a sequence of applications of insert and delete rules, starting
with the initial word of the form wx, where w is a string and x is a symbol. A word
w belongs to the language recognised by a leftist grammar if the one-symbol string
x can be derived from wx.

Because of the employed rule types, leftist grammars are clearly one-sided insertion-
deletion-like systems, because symbols are always inserted or deleted on the left
(which explains the name “leftist”). A single big divergence from the classical def-
inition of an insertion-deletion systems is the direction of the derivation. While
conventional insertion-deletion systems start from an axiom and generate words,
leftist grammars rather function in a recognising mode. This difference can be
easily overcome though by swapping rule types (i.e. transforming an insertion rule
(λ, x, y)ins into the deletion rule (λ, x, y)del and vice versa) and by considering all the
words which can then be derived from x. The insertion-deletion system obtained
in this way will be of size (1, 0, 1; 1, 0, 1). For historical reasons, when interpret-
ing leftist grammars as insertion-deletion systems, we will also prefer swapping left
and right contexts, thus transforming the rules of the form (λ, x, y)t into (y, x, λ)t,
t ∈ {ins, del}. By this procedure, we establish a direct correspondence between
leftist grammars and insertion-deletion systems of size (1, 1, 0; 1, 1, 0).

Besides introducing leftist grammars as a tool for addressing accessibility issues,
the work [93] discusses the membership problem for these grammars and shows that
it is decidable [93, Theorem 3.1]. The authors give a constructive proof by providing
an algorithm for deciding the membership of a word in the language recognised by
a leftist grammar.

The paper [64] establishes a series of correspondences between arbitrary and
restricted versions of leftist grammars, and the levels of the Chomsky hierarchy. One
of the most interesting results of this work is that leftist grammars can recognise non-
context-free languages [64, Theorem 6]. The proof is constructive and shows a rather
sophisticated grammar which, essentially, recognises the language {(a1a0)m(F0F1)n |
n ≥ 22m−2}. This result is particularly interesting given that insertion-deletion
systems of size (1, 1, 0; 1, 1, 0), and hence leftist grammars, cannot generate some
very simple regular languages like (ab)+.

The paper [62] continues the quest for a better apprehension of time complexity
of the membership problem for leftist grammars and gives a lower bound: deciding
the membership for this class of recognising devices is PSPACE-hard. In the proof
of the main result (Theorem 2 and Corollary 1) the author gives a polynomial-
time equivalence of the membership problems for leftist grammars and for linear-
bounded automata. In a later article [63], the same author shows that membership
problem for leftist grammars is not primitive recursive. A constructive proof is
given: the paper describes a leftist grammar indirectly computing a function related
to Ackermann’s function, which dominates any primitive recursive function.

A novel take on leftist grammars was adopted in [21]. The authors remark

14 CHAPTER 1. STATE OF THE ART

that earlier results concerned with the complexity of membership relied on very
sophisticated constructions, which were apparently based on modular approaches,
but ultimately appeared as a very complex whole. In their work, they define leftist
transformers which represent generalised leftist grammars transforming languages.
The paper also defines how and when such transformers can be composed, and
uses the compositional approach to model 3SAT and to thus show that bounded
reachability is NP-complete for leftist grammars.

In Section 3.4 of this thesis we introduce a graphical instrument for visual
analysis of derivations of leftist grammars and insertion-deletion systems of size
(1, 1, 0; 1, 1, 0): derivation graphs. We then use this tool to illustrate some of the
constructions from [62, 63, 64]. It turns out that graphical representation of deriva-
tions gives interesting insight into the interactions between the rules, and also allows
formulating certain local properties clearly and concisely. Furthermore, derivation
graphs help perform non-trivial reasoning and adjustment of the rules to assure that
the insertion-deletion system has the required behaviour.

Controlled Insertion-deletion Systems. Even though insertion-deletion sys-
tems alone are powerful enough to generate all recursively enumerable languages,
adding some control over how such rules are applied presents interest in view of fur-
ther reduction of minimal rule size required for computational completeness. Often
considered control mechanisms for insertion-deletion systems are graph control, in
which rules are assigned labels (states) prescribing the possible sequences of appli-
cation, and P systems.

P systems, or membrane systems, are a biologically inspired model of computing
originally introduced by Gheorghe Păun in [99] with focus on the compartmentalised
structure of the living cell and on the membranes that separate the compartments.
The cell is represented by a hierarchical structure of regions containing multisets
of objects and multiset rewriting rules. Many variations to the basic model are
possible, of which the greater part can be captured by the general formalism of
networks of cells [41]. One of such variations are insertion-deletion P systems, in
which regions contain strings and insertion-deletion rules capable of moving strings
across the membrane structure. Because grouping rules by membranes can be seen
as assigning labels to rules, insertion-deletion P systems can be seen as a variant of
graph-controlled insertion-deletion systems, in which the graph of labels is a tree.

Rather unsurprisingly, adding graph control strictly increases the expressive
power of insertion and deletion rules. Thus, the article [3] shows that graph-
controlled insertion-deletion systems of size (2, 0, 0; 1, 1, 0), (1, 1, 0; 2, 0, 0), and
(1, 1, 0; 1, 1, 0) are computationally complete, while standalone insertion-deletion
systems of the same sizes are not. Moreover, only five labels arranged in a linear
control graph are necessary to achieve the same power as that of arbitrary grammars.
Interestingly, graph-controlled insertion-deletion systems of size (2, 0, 0; 2, 0, 0) are
still not computationally complete, and cannot even generate the regular language
a∗b, because no control over the location of insertion and deletion sites can be exer-
cised [75, Theorem 17].

It turns out that graph control plus some simple ingredients can substantially
boost the power even of insertion and deletion of minimal size, (1, 0, 0; 1, 0, 0). The
work [4] shows that graph-controlled insertion-deletion systems with rules of this
size and priority of deletion over insertion can generate Parikh images of recursively

1.1. INSERTION-DELETION SYSTEMS 15

enumerable languages. Priority of deletion is a necessary prerequisite, since graph-
controlled insertion-deletion systems of size (1, 0, 0; 1, 0, 0) without priorities only
generate Parikh images of matrix languages [4, Theorem 1].

Another classical control mechanism in the theory of formal languages which was
also considered for insertion-deletion systems is matrix control. In matrix controlled
insertion-deletion systems, introduced in [97], the rules are grouped into ordered
sequences, called matrices. A matrix can be applied to a string w if all of its rules
can be applied to w, in order. It turns out that insertion and deletion rules of sizes
(1, 1, 0; 1, 1, 0) and (1, 1, 0; 1, 0, 1) achieve computational completeness with matrices
containing at most three rules (Theorems 2 and 3 of [97]), while uncontrolled versions
of such systems are not computationally complete (e.g. [73, Section 4.5]). Moreover,
even systems of sizes (1, 0, 0; 1, 1, 1) and (1, 1, 1; 1, 0, 0) can generate all recursively
enumerable languages, but with larger matrices of length at most eight (Theorems 5
and 6 of [97]). Finally, the authors of [97] also show that already matrices containing
at most two rules suffice to boost the power of insertion-deletion systems of sizes
(1, 1, 0; 2, 0, 0) and (2, 0, 0; 1, 1, 0) to computational completeness.

Remark that matrix control can be seen as a weaker form of graph control. This
means in particular that matrix insertion-deletion systems of size (2, 0, 0; 2, 0, 0) are
not computationally complete, because the corresponding graph-controlled variants
are not either [75].

In Chapter 4 we focus on one-sided insertion-deletion systems equipped with
additional control mechanisms imported from the theory of formal languages and
investigate their computing power. In Section 4.2 we reconsider the fact that
graph-controlled insertion-deletion systems with 5 labels and with rules of size
(1, 1, 0; 1, 1, 0) are computationally complete, and point out two symmetric trade-
offs between the size of one-sided rules and the number of labels: we show that,
with rules of size (1, 1, 0; 1, 2, 0) or (1, 2, 0; 1, 1, 0), computational completeness can
be achieved using 3 labels only.

We then consider semi-conditional control, in which case two sets of words E
and F , the permitting and the forbidding context conditions respectively, are as-
signed to the rules. A rule may be applicable to a string w if all elements of E
are subwords of w, and none of the elements of F are subwords of w. The pair
(i, j) is called the degree of a semi-conditional insertion-deletion system Γ, where
i is the maximal length of a word in a permitting context of Γ and j is the max-
imal length of a word in a forbidding context of Γ. We prove that context-free
semi-conditional insertion-deletion systems of size (1, 0, 0; 1, 0, 0) and degree (2, 2)
are computationally complete; moreover, we show that this result is optimal in rule
size, because semi-conditional insertion-deletion systems of the same degree and of
size (1, 0, 0; 0, 0, 0) generate a subset of context-sensitive languages.

In Section 4.4 we investigate a weaker control mechanism: random context con-
trol. A random context insertion-deletion system is a semi-conditional insertion-
deletion system of degree at most (1, 1). We show that such systems with rules of
size (2, 0, 0; 1, 1, 0) are able to generate all recursively enumerable languages. We
also point out a remarkable asymmetry of random context control with respect to
swapping the sizes of insertion and deletion: we prove that random-context systems
of size (1, 1, 0; 2, 0, 0) and, more generally, of size (1, 1, 0; p, 1, 1), are not computa-
tionally complete. This is a clear deviation from the tendency to symmetry with
respect to size swapping observable in Table 1.3.

16 CHAPTER 1. STATE OF THE ART

The results on semi-conditional and random context insertion-deletion systems
were published in [58], while those on insertion-deletion P systems in [59].

1.2 Networks of Evolutionary Processors

Networks of evolutionary processors (NEPs) are a computing device consisting of
some simple string processors connected in a network. Table 1.4 describes the com-
putational power of NEPs with various ingredients.

Table 1.4: A summary of results about NEPs. The notations ins, del, and subs stand for “insertion”,
“deletion”, and “substitution”, respectively; insR and delR refer to insertions and deletions at the
right end of the string; rc and reg stand for “random context” and “regular”, respectively; “fast NP”
stands for “solves NP-complete problems in linear time”.

Rules Filters Semantics Power Reference
1 0L X copy = EXT0L [25, Theorem 4.1]
2 insR, delR, subs rc move fast NP [18, Theorem 1]
3 ins, del, subs reg move = RE [19, Theorem 1]
4 ins, del, subs rc move 3 Labc, 63 a∗b∗ [19, Theorem 4]
5 splicing rc move = RE [22, Lemma 1]

The history of NEPs starts with the introduction of networks of parallel language
processors in [25]. These networks represent collections of 0L Lindenmayer systems
(language processors), each equipped with input and output filters. The filters may
be random context, specifying which symbols the string must or must not contain,
or regular, specifying which form the string must or must not have. The processors
contain sets of strings which evolve according to the corresponding 0L rules during
rewriting steps. During communication steps, every processor broadcasts a copy
of those strings which pass its output filter and, from all the strings broadcast by
the other processors, takes in those which pass its input filter (copy semantics). A
computation of a network of language processors alternates between communication
steps and rewriting steps, and the result is taken to be the language of strings
appearing in a designated output node. Networks of language processors with filters
of type X (random context or regular) are equivalent in power to conditional ET0L
systems relying on conditions of the same type X [25, Theorem 4.1].

The work [18] simplifies the operations which can be carried out by a single
processor to one-symbol insertion λ → b, deletion a → λ, and substitution a → b,
each processor being only allowed to contain rules of the same type. Moreover,
insertions and deletions must happen at the right end of the string. Language
processors which such simple operations are called evolutionary processors, because
one-symbol modifications of strings can be seen as corresponding to point mutations
in DNA. Furthermore, a different communication semantics is considered: the strings
are not copied around, but are moved instead (move semantics). Thus, if a string
passes the output filter of a processor N , it is sent out and removed from N . As
simple as they are, such networks are capable of solving some intractable problems
efficiently. The paper [18] constructs a network solving an instance of the bounded
Post correspondence problem (bounded PCP), known to be NP-complete, in linear
time.

The article [19] considers yet another variation to NEPs, in which insertions

1.3. UNIVERSAL PETRI NETS 17

and deletions may happen anywhere in the string. A fixed communication graph
is also introduced, giving the topology of interconnections between the processors
of the network; the strings emitted by a processor will thus only reach the nodes
it is connected to, instead of being broadcast to all nodes. The authors then show
that the generative power of such NEPs equipped with regular filters instead of
random context filters is equal to that of arbitrary grammars, and that computa-
tional completeness can be achieved with five nodes already and with a complete
communication graph [19, Theorem 1].

The work [19] also considers networks of evolutionary processors with random
context filters and gives a partial characterisation of their power by showing how
such a NEP can generate the non-context-free language Labc = {w ∈ {a, b, c}∗ |
|w|a = |w|b = |w|c}, where |w|x is the number of occurrences of x in the string
w. Yet, even the regular language a∗b∗ cannot be generated by such NEPs because
random context filters cannot be used to check the local structure of a string and
cannot thus have any control over the sites insertions happen at [19, Theorem 4].

The article [5] improves on the result from [19] by showing how NEPs with
only four nodes can generate all recursively enumerable languages. The paper also
considers a convenient extension of NEPs, called mixed NEPs (mNEPs), in which
a processor is not limited to performing only one type of operation. In the case
of mixed NEPs, considerable computational power can already be achieved with
one node: Theorem 1 of [5] shows that, by picking only the terminal strings from
the language generated by a one-node mNEP, one can obtain any given recursively
enumerable language [5, Theorem 1]. Therefore, adding one more node which will
only accept strings of terminals thereby filtering out the intermediate sentential
forms makes it possible to achieve computational completeness with a two-node
mixed NEP [5, Corollary 2].

In [22], evolutionary processors carrying out the splicing operation are consid-
ered. A splicing rule over the alphabet V is the quadruple r : (u1, u2;u3, u4) of
strings over V . Applying r to a pair of strings (x1u1u2x2, y1u3u4y2) results in the
pair (x1u1u4y2, y1u3u2x2). Lemma 1 of [22] shows that networks of evolutionary pro-
cessors with such splicing rules and random context filters achieve computational
completeness with two nodes only.

In Section 4.5 of the present work we explore the possibilities of constructing
small universal networks of evolutionary processors, targeting the reduction of the
number of rules. We show that there exists a universal mixed NEP which generates
all recursively enumerable sets of numbers with only 4 rules, and a universal mixed
NEP which generates all recursively enumerable languages with 7 rules. These
results were published in [57].

1.3 Universal Petri Nets

Petri nets are a modelling language originally introduced by Carl Adam Petri in
1966 in his doctoral thesis [98]. A distinctive feature of Petri nets as compared to
other modelling languages is a simple and intuitive graphical representation, which
explains in part the considerable amount of attention Petri nets have received ever
since their introduction [95, 105, 121]. Petri nets have been especially attractive to
researchers focusing on parallel and concurrent systems [26, 105].

A Petri net is usually defined as a tuple N = (P, T,W,M0), where P is the set of

18 CHAPTER 1. STATE OF THE ART

places possibly containing tokens, T is the set of transitions, W describes how arcs
connect places to transitions, and M0 is a vector giving the initial contents of the
places. Arcs are only allowed to connect places to transitions, i.e. the underlying
multigraph of the Petri net is bipartite. Graphically, places are represented as hollow
circles, tokens as small bullets, transitions as filled rectangles or squares, and arcs as
arrows. A configuration of a Petri net, i.e. the vectorM giving the number of tokens
in each place of the net, is called a marking of the net. Thus M0 is also referred to
as the initial marking.

Consider, for example, the Petri net shown in Figure 1.3. The places of this
net are P = {Q0, Q1, Q2, R1, R2} and the transitions are T = {T1, T2}. Place Q0

contains two tokens, and R2 contains one token.

Q1

T1 Q0

R1

R2 T2 Q2

3

2

Figure 1.3: A Petri net with an inhibitor arc

Petri nets evolve by sequentially firing transitions. When a transition T fires,
it consumes tokens from all the places P for which there is an arc from P to T ,
and adds tokens to all the places Q for which there is an arc from T to Q. Each
arc corresponds to the production or consumption of single token, but multiple arcs
are allowed between a place and a transition. For example, when transition T2

in Figure 1.3 fires, it will consume two tokens from place Q0 and one token from
place R2, and will add one token to place Q2. If the places the transition is supposed
to consume tokens from do not have enough tokens for the transition to fire, the
transition is not enabled and cannot fire. For example, if place R2 contained only
one token instead of two, transition T2 would not be enabled.

Sometimes the kind of net we define here is referred to as “place-transition net”
or “PT net”, while the term “Petri net” is used to refer to the class of PT nets which
are not allowed to contain more than one token in a place [42]. In this work, we will
use all three terms interchangeably.

A model which is very close to Petri nets are vector addition systems (often
abbreviated as VAS), originally introduced in [68]. A VAS of dimension n ∈ N is
defined to be the pair (w0,W), where w0 ∈ Nn is the start vector, and W is a finite
set of vectors from Zn, called addition vectors [36, 121]. An addition vector w ∈W
is said to be enabled in a vector x ∈ Nn if x + w ∈ Nn, i.e. all the components
of the vector x + w are non-negative. A VAS evolves from the start vector w0 by
sequentially iterating the addition of vectors from W .

Vector addition systems are very similar to Petri nets, because a configuration
of a Petri net is described by a vector (the marking), and the transitions add to
or subtract values from the components of this vector. The translation of Petri
net transitions to addition vectors is not immediate in the general case, however,
as addition vectors cannot adequately capture self-loops, i.e. situations in which a

1.3. UNIVERSAL PETRI NETS 19

transition T and a place P are connected by two arcs going in opposite directions.
Nevertheless self-loops can be pretty straightforwardly avoided by decomposing the
place P into two places and the transition T into two transitions and carrying out
the action of the original transition T in two steps [48, Figure 3]. The paper [48] also
gives additional details to the correspondence between VAS and Petri nets (which
are referred to as “generalised Petri nets”).

A model which at first looks quite different from vector addition systems and
Petri nets, but is easily shown to be in the same family, is multiset rewriting sys-
tems. A multiset is essentially an unordered container with repetitions of elements.
A multiset rewriting rule w → v substitutes the submultiset w for the submulti-
set v. (see Section 2.1 for a formal definition). Because a multiset can be seen as a
numeric function associating the number of repetitions (multiplicities) to elements,
any marking of a Petri net can be interpreted as a multiset over the alphabet of its
places, in other words, as a function which associates to each place the number of
tokens it contains. Furthermore, the semantics of multiset rewriting rules and Petri
net transitions are the same: symbols (tokens) are first removed, then added. This
similarity renders translations between the two models straightforward.

A lot of effort has gone into the analysis of properties of Petri nets, and some of
them, like boundedness [68] and reachability [88], were proved to be decidable. While
this is often very useful and makes it possible to algorithmically deduce important
information about the modelled system, it also limits the class of systems which can
be modelled by Petri nets [2]. As an example, the work [80] focuses on the class of
functions which can be weakly computed by Petri nets (and hence VAS and VASS),
i.e. functions f : N → N for which there exists a Petri net N such that, for any
n ∈ N, there exists a computation of N with input n and output f(n), and, for
any computation with input n, the output r satisfies r ≤ f(n). The authors of [80]
show that such weakly computable functions cannot be sublinear, which means, for
example, that the square root or the logarithm are not weakly computable.

To overcome intrinsic modelling limitations, a number of extensions were intro-
duced to Petri nets. One of them is called “coloured Petri nets” and consists, in its
simplest form, in assigning “colours” to individual tokens. Then, transitions are only
able to fire when the places they are to consume tokens from have tokens of certain
colours and in certain quantities. Coloured Petri nets were originally introduced
in [60], and the author immediately remarks that just allowing different species of
tokens does not augment modelling power, because, essentially, a place containing
one red token and two blue tokens can be seen as two places containing one and two
uncoloured tokens [60, p. 22]. However, more recent definitions of coloured Petri nets
include the possibility of assigning conditions (guards) to transitions [61, 77], which
allow a more fine-grained control over the circumstances under which transitions
may fire, and thus boost the expressive power of these devices to computational
completeness (because guards can be used to simulate inhibitor arcs).

Another extension introduced in the doctoral thesis [49] is the so-called priori-
tised Petri net, in which the transitions are equipped with a partial order (<), and,
when two transitions T1 and T2 are enabled for a given marking of the net, T2 is
allowed to fire only if T1 6< T2. A thorough analysis of the properties of prioritised
Petri nets is conducted in [10].

An extension which does not immediately seem to lead to undecidability of
reachability is reset arcs. If a transition T is connected to a place P by a reset arc,

20 CHAPTER 1. STATE OF THE ART

P will be emptied whenever T fires. It turns out that reachability is undecidable for
Petri nets with such arcs [7]. Moreover, boundedness for such nets is not decidable
either: the work [32], for example, proves this fact by showing how to construct a
Petri net with reset arcs which is bounded if and only if the register machine it is
related to is bounded.

A yet another extension of Petri nets are the inhibitor arcs, originally suggested
in [95]. If an inhibitor arc connects place P to transition T , then T may only
be enabled when P is empty. Graphically inhibitor arcs are represented by a small
hollow circle in place of a normal arrowhead. For example, transition T1 in Figure 1.3
is connected to place R2 with an inhibitor arc, which means that T1 cannot fire in the
marking shown in the figure, even though all other conditions for T1 to be enabled
are satisfied (i.e. place Q0 contains enough tokens). Inhibitor arcs boost the power
of Petri nets to computational completeness, because such nets can simulate register
machines (e.g. [106]).

It follows from the equivalence of VAS and Petri nets that the two models have
the same limitations; indeed, the set of vectors a VAS can generate is decidable [88].
Therefore, somewhat in parallel to extensions of Petri nets, several variations to
the VAS model were considered. One of the simplest extensions are vector addition
systems with states (VASS) introduced in [52], which add finite state control to
VAS. It turns out that adding states to vector addition systems is only a matter of
convenience and does not increase the computing power. Indeed, [52, Lemma 2.1]
shows that any n-dimensional VASS can be simulated by a (n+3)-dimensional VAS.
The proof idea consists in storing numbers coding the current state of the simulated
VASS in the three additional components and using them to guide the application
of addition vectors.

Another extension considered for VAS is the possibility of testing certain vector
components for zero. In a VAS with zero tests (a VAS0), each addition vector w
is assigned a (possibly empty) set of indices of the components of x which should
be zero for w to be applicable to x. Such zero tests are the exact counterpart of
inhibitor arcs in Petri nets. The paper [14] studies some important properties of
vector addition systems with one zero test only. Other properties of these systems
can be directly derived from the results formulated in the language of Petri nets
with inhibitor arcs (e.g. [106]).

Just as in the case of Petri nets and VAS, multiset rewriting systems can be
augmented with the possibility of testing for “zero”, i.e. requiring that certain ele-
ments should not be present in the multiset. Similarly to VAS0, a set of inhibitors
F is associated with every multiset rewriting rule, which is sometimes written as
w → v|¬F . Such a rule can only be applied to a multiset x if w is a submultiset of
x and, additionally, none of the objects from the set F appear in x. Furthermore,
inhibitors may be taken to be multisets instead of sets. A rule w → v|¬z with such
a multiset inhibitor z can be applied to x if w is a submultiset of x and z is not a
submultiset of x. In Petri nets, multiset inhibitors would correspond to “inhibitor”
arcs testing that a certain place contains more than a fixed number of tokens. The
paper [15] discusses the idea of inhibitors and some other extensions to multiset
rewriting rules in the context of P systems.

In many P system variants, and especially in those in which the membrane
structure is fixed throughout the whole computation, the hierarchical disposition
of regions can be discarded by attaching region labels to objects and transforming

1.3. UNIVERSAL PETRI NETS 21

region-specific actions into label-specific ones, in particular sending objects across
membranes can be modelled by rewriting the labels on objects [39]. Such a flattening
of the membrane structure effectively reduces the corresponding P system models to
multiset rewriting, which means that many results can be freely brought over from
one of these models to the other, but also translated to Petri nets and VAS.

We have already seen that multiset rewriting systems are very closely related to
Petri nets and vector addition systems. The same conclusion can be drawn about
the relationship of P systems to the latter two models, but with an important notice.
While in Petri nets and VAS sequential semantics is often preferred, in P systems
maximal parallelism is more frequently found. A number of different evolution modes
were also considered for P systems, among which the minimal parallelism (at least
one rule, if possible, must be applied in each region [23]), the asynchronous mode
(no restrictions on the rule choice is imposed [34]), the clock-free mode (rules are
assigned random real-valued duration [20]), etc. Furthermore, a considerable number
of extensions (ingredients) have been proposed for P systems [35, 104], among which
P systems with active membranes, whose membrane structure may be modified by
rules [100]. A formal framework capturing many of these ingredients is given in [41].
These observations lead to the conclusion that, in the area of P systems, the focus
is principally on studying the computational power of variations to the basic model,
while in the case of Petri nets more attention is given to applications to modelling
distributed systems. VAS on the other hand have served as a convenient alternative
representation of Petri nets for studying some formal properties like reachability or
boundedness [72, 79, 88, 121].

We will conclude the series of introduced models with register machines. Register
machines spun off the famous Turing machines introduced by Alan Turing in [114].
In his paper [118], Hao Wang showed that it is possible to formulate an even simpler
computing model by reducing the tape alphabet to two symbols (including the blank
symbol) and relying only on four instructions: move head left, move head right, mark
the current cell, and conditional jump, depending on whether the cell the head is
currently on is empty or not. In [90], Marvin Minsky essentially cut the tape of
Wang’s machine into two by proposing a Turing machine with two completely blank
tapes, except for the left end markers, and with heads which cannot modify the
contents of the cells. The two heads of Minsky’s two-tape Turing machines can
be effectively used as counters: moving the head corresponds to incrementing or
decrementing the counter, while sensing the left end corresponds to zero test.

A different, though ultimately equivalent, approach was taken by ZdzislawMelzak
in [89] and Joachim Lambek in [78]. Their constructions are based on a finite set
of distinguishable locations (holes) and an infinite supply of indistinguishable coun-
ters (pebbles). Melzak used relatively complex instructions; for example, he allowed
subtraction and addition of any number of pebbles. Lambek, on the other hand,
simplified the instruction set to atomic increments and decrements with zero test,
which reminds Minsky’s machines.

A yet another way to introduce register machines comes from the generalisation
of push-down automata to machines with multiple stacks [9]. This point of view
allows defining a register machine as a language-accepting device (sometimes also
called a counter automaton) whose push-down stores may only contain one type
of symbol. Since two stacks suffice for achieving the recognising power of Turing
machines [9, 92], considering restricted versions of such multi-push-down devices is

22 CHAPTER 1. STATE OF THE ART

of interest. Thus in [47] two such restrictions are discussed. The stronger of them,
blindness, allows the registers to contain negative integers, but no information as
to their contents is made accessible to the machine. A blind counter automaton
accepts the input string if, when it reaches its right end, all of its counters are
zero. The other restricted construction, the partially blind counter automaton, is a
blind counter automaton whose registers are not allowed to contain negative values.
Thus a partially blind counter automaton has somewhat more information about the
contents of its registers: it knows they always contain non-negative numbers. It was
shown in [47] that blind counter automata are strictly less powerful than partially
blind ones, which in their turn are strictly less powerful than Turing machines.

A modern definition of a register machine (as found, for example, in [71]), in-
cludes a set of registers, a set of states (or instruction labels), and a set of in-
structions associated with each state. The most widely used are the increment and
the decrement-and-zero-test instructions. Sometimes the latter instruction type is
decomposed into separate decrement instruction and zero test instruction [71].

Although the historical origins of register machines are completely distinct from
those of Petri nets, VAS, or multiset rewriting systems, all these four models are
fundamentally similar: indeed, the registers of a register machine can be seen as
forming a vector of non-negative integers. Any instruction of a register machine
can be easily simulated by a Petri net transition with inhibitor arcs, or a multiset
rewriting rule with inhibitors. The converse statement is true modulo “state expan-
sion”: a register machine can simulate a Petri net transition (respectively, a multiset
rewriting rule) using a sequence of instructions whose cumulative effect corresponds
to the action of the transition (respectively, multiset rewriting rule).

Even though the usual semantics of both register machines and Petri nets is
sequential, register machines are most often defined as deterministic devices, as
different from Petri nets which do not usually prohibit non-deterministic choice. To
achieve non-determinism nevertheless, some authors (e.g. [36]) define two possible
exit states for an increment instruction, allowing the machine to chooses between
them non-deterministically.

One can relate counter automata as language-recognising devices to register ma-
chines as number-manipulating devices by restricting the former to one-letter lan-
guages and treating the number of symbols on the input tape as the input value in a
specially designated register. Under such a convention, Petri nets without inhibitor
arcs and multiset rewriting systems without inhibitors correspond to partially blind
counter automata.

An important question in the study of register machines is universality. A register
machine is called universal, if, given the code of any other register machineM , it can
reproduce the output of M for any of its inputs. The problem of universality was
originally posed by Alan Turing himself for Turing machines in [114]. Later, in [111],
Claude Shannon launched the quest for the smallest possible Turing machine which
would still retain universality. In his article, Shannon actually constructs a two-
state universal Turing machine. A series of important results in this direction were
obtained later [91, 108, 119].

Even though register machines are computational devices which branched di-
rectly out of Turing machines, and in spite of the fact that their computational
completeness was shown at the moment of introduction [78, 89, 92], a lot less re-
search has gone into finding small and universal representatives of this class until

1.3. UNIVERSAL PETRI NETS 23

recently. In [71], Ivan Korec constructed a series of such small universal register
machines, including one with only 8 registers and 22 commands.

Because of the strong connection between register machines and P systems, most
of the important universality results in the latter domain were obtained by relating
certain P system models to Korec’s universal register machines. For example, in [24],
the authors construct three universal P systems by simulating Korec’s machines,
and highlight a trade-off between the maximal number of objects a rule is allowed
to involve and the total number of rules. An enhancement is suggested in [40],
where an even smaller universal P system is described. Another universality result,
this time formulated in terms of multiset rewriting, is given in [6]. In this paper,
a number of atomic minimisation strategies are introduced, which are then used to
construct a universal multiset rewriting system with 23 rules only.

In Petri nets with inhibitor arcs, the first universality construction was carried
out by Dmitry Zaitsev in [122]. This paper describes a universal Petri net with
inhibitor arcs, which directly simulates any given Petri net (with inhibitor arcs).
The author devises a way to encode the structure of the simulated net into a number
and then describes the simulation algorithm, which is subsequently implemented in
the universal Petri net. This construction uses 500 places and as many transitions.

Later, the same author builds a much smaller universal Petri net with 14 places
and 29 transitions [123]. The new net simulates a universal Turing machine instead
of directly reproducing the activity of an arbitrary Petri net. The described universal
net uses inhibitor arcs, but also implicitly assumes a total order of priorities on
transitions [123, p. 2].

In Chapter 6, we continue the research of universality of Petri nets with in-
hibitor arcs by relating universal Petri nets to universal register machines, instead
of simulating other nets directly or relying on Turing machines. To capture the
differences in structural complexity between the described universal Petri nets, we
define a measure of size of a Petri net as a 4-tuple including the number of places,
transitions, inhibitor arcs, and the maximal transition degree. We then give a series
of strategies for reducing each of the size parameters, as well as characterisations of
concrete universal Petri nets.

To this end, in Chapter 5, we introduce generalised register machines, which can
be seen as bridging register machines and Petri nets. Essentially, such generalised
constructs represent graphs of states, with multiple conditions and operations on
registers attached to the edges. An arc of this graph can therefore check whether a
register is empty or not, as well as increment or decrement a register. Because such
an arc can perform several register checks or operations at once, generalised register
machines achieve universality with less states than conventional register machines.
We describe universal generalised register machines with seven states only, and then
show Petri nets simulating them.

We then show that further room for improvement exists in non-deterministic
simulation approaches and describe a non-deterministic simulation strategy which
allows cutting down dramatically on the number of places of the simulating Petri
net. In fact, only as many places are required to reproduce the activity of any
register machine as there are registers, plus two additional places. We then show
how the same reduction of the number of places can be achieved without obliterating
the determinism inherited from Korec’s machines [71].

We remark that the Petri nets we describe in Sections 6.2 and 6.5 achieve univer-

24 CHAPTER 1. STATE OF THE ART

sality with the minimal possible values for the transition degree and the number of
inhibitor arcs. We also conjecture that the values for other size parameters achieved
by the Petri nets from the other subsections cannot be significantly improved upon
because of inherent limitations of the model.

The work on deterministic universal Petri nets was published as [56], while the
questions concerning non-determinism were treated in [55]. Chapters 5 and 6 sum-
marise and improve upon the results presented in the mentioned publications.

Chapter 2

Preliminaries

In this chapter, some basic definitions and notations used throughout the thesis
are given. Section 2.1 provides the basics of the terminology from the domain
of formal languages, Section 2.2 discusses finite automata, register machines, and
Turing machines, while Section 2.3 recalls the notions of computational completeness
and universality.

2.1 Formal Languages

We denote the set of natural numbers by N and the set of non-zero natural numbers
by N+ = N \ {0}. The empty set is written as ∅. The set of all subsets of X is
denoted by 2X . The number of elements in X (cardinality) will be written as |X|.

Any non-empty finite set of symbols V is called an alphabet. A finite word over
V is any finite sequence of symbols from V . The length of a word is written as
|w|; the notation |w|a refers to the number of occurrences of the symbol a in w.
The set of all words over V of length n is denoted by V n. By definition, the only
word of zero length is the empty word λ: V 0 = {λ}. The set of all finite words
over V is denoted by V ∗ = ∪n∈NV n, and the set of non-empty finite words by
V + = ∪n∈N+V n = V \ {λ}. Any subset of V ∗ is called a language over V . We will
sometimes identify a singleton language L = {w} ⊆ V ∗ with its only representative.

The reverse of the word w = x1 . . . xn is rev(w) = xn . . . x1. The reverse of the
language L is naturally defined as rev(L) = {xn . . . x1 | x1 . . . xn ∈ L}.

The shuffle product of two words over V is defined as the set of all possible
ways of interleaving their letters (rifle shuffling them). Formally, for w, v ∈ V ∗ and
a, b ∈ V , the operation (�) is defined inductively as follows:

λ � v = {v},
w � λ = {w},
wa � vb = {ua | u ∈ w� vb} ∪ {zb | z ∈ wa� v}.

Thus, a�x = {ax, xa}, a�xy = {axy, xay, xya}, and ab�xy = {abxy, axby, xaby,
xayb, axyb, xyab}. The shuffle operation can be naturally extended to languages:
given L1, L2 ⊆ V ∗, we define

L1 � L2 =
⋃

w1∈L1
w2∈L2

w1 � w2.

25

26 CHAPTER 2. PRELIMINARIES

For an alphabet V = {a1, . . . , ak} and a word w ∈ V ∗, the vector of natural
numbers Ps(w) = (|w|a1 , . . . , |w|ak) ∈ Nk is called the Parikh vector of w. Given a
language L ∈ V ∗, the Parikh image of L is defined as Ps(L) = {Ps(w) | w ∈ L}.
For a family of languages X , its Parikh image is defined as PsX = {Ps(L) | L ∈ X}.

A language of vectors of natural numbers L ⊆ Nn is called linear, if there exists
such a finite subset B (Nn that every element of L can be represented as a linear
combination of the elements from B:

L =
{∑
b∈B

kbb | kb ∈ N
}
.

A language L ⊆ Nn is called semilinear if it is a finite union of linear languages.
Given two finite alphabets V and U , a mapping h : V → U∗, extended to

h : V ∗ → U∗ by h(λ) = λ and h(wv) = h(w)h(v), w, v ∈ V ∗, is called a morphism.
If h(a) 6= λ, for all a ∈ V , h is a λ-free morphism. If |h(a)| = 1, for all a ∈ V ,
h is called a coding; if |h(a)| ≤ 1, for all a ∈ V , h is called a weak coding. The
morphism h : V ∪ U → V such that h(a) = a for a ∈ V and h(b) = λ for b ∈ U is
called a projection of V ∪ U on V . Given a morphism h : V ∗ → U∗, the mapping
h−1 : U∗ → 2V

∗
, defined as h−1(w) = {v ∈ V ∗ | w = h(v)} is called the inverse of h.

Given an alphabet V = {a1, . . . , ak}, a mapping w : V → N is called a multiset
over V . The value w(a), for a ∈ V , is the multiplicity of a in w. The size of w is
the sum of all multiplicities of elements in w: |w| =

∑
a∈V w(a). The support of w

is the set of elements which appear in it: supp(w) = {a ∈ V | w(a) > 0}. Note that
any set can be seen as a multiset in which all the elements have multiplicity 1.

A finite multiset w over the alphabet V is often represented as the string
a
w(a1)
1 . . . a

w(ak)
k . For this reason, we will often abuse notation and use V ∗ to re-

fer to the set of all finite multisets over V , and V + to refer to the set of all finite
non-empty multisets over V .

A multiset w1 over an alphabet V is a submultiset of another multiset w2 over
the same alphabet, written as w1 ≤ w2, if w1(a) ≤ w2(a), for all a ∈ V . The union of
w1 and w2 is the multiset w = w1 +w2 with the property that w(a) = w1(a)+w2(a),
for all a ∈ V . If w1 ≤ w2, the difference of w2 and w1 is the multiset w = w2 − w1

with the property that w(a) = w2(a)− w1(a), for all a ∈ V .
A sequential multiset rewriting system is the three-tuple γ = (O, T,w0, P), where

O is an alphabet, T ⊆ O is the terminal alphabet, w0 ∈ O∗ is the initial multiset,
and P is a set of multiset rewriting rules of the form w → v, with w ∈ O+ and
v ∈ O∗. A rule r : w → v is applicable to a multiset x ∈ O∗ if w ≤ v. An
application of this rule to x yields the new multiset y = x − w + v; this fact is
denoted by x r⇒γ y. In general, the multiset x is said to derive y, written as x⇒γ y,
if there exists such a rule r ∈ P that x ⇒γ y. The notation (⇒∗γ) refers to the
reflexive and transitive closure of (⇒γ). The language of multisets generated by γ
is defined as L(γ) = {w ∈ T ∗ | w0 ⇒∗γ w}.

A string rewriting grammar is a construct G = (N,T, S, P), where N is the
alphabet of non-terminal symbols, T is the alphabet of terminal symbols, S is the
axiom, and P is a set of string rewriting rules of the form α→ β, where α ∈ (N∪T)+

and β ∈ (N ∪ T)∗. A string wαv is said to derive wβv by the rewriting rule α→ β,
which is denoted by wαv ⇒ wβv. The language generated by G is defined by
L(G) = {w ∈ T ∗ | S ⇒ w∗}, where (⇒∗) is the reflexive and transitive closure
of (⇒).

2.1. FORMAL LANGUAGES 27

If no restrictions are imposed on the rules in P , G is called is type-0 grammar;
the family of languages generated by such grammars is called recursively enumerable
languages and is denoted by RE. Grammars with non-retracting rules, i.e. rules
α→ β, where |α| ≤ |β|, are called type-1 or context-sensitive grammars; the family
of languages generated by such grammars is called context-sensitive languages, and
is denoted by CS. Grammars with rules of the form A → β, with A ∈ N and
β ∈ (N ∪T)∗, are called context-free; the family of languages they generate is called
context-free languages and is denoted by CF . Finally, grammars with rules of the
form A→ bB, where A ∈ N , B ∈ N ∪{λ}, and b ∈ T , are called regular grammars;
the languages they generate are called regular, denoted by REG.

A special subfamily of context-free grammars are semilinear grammars, in which
all rules have the form A → uBv, with u, v ∈ T ∗, A ∈ N , and B ∈ N ∪ {λ}. The
family of languages generated by such grammars is called semilinear languages and
is denoted by SLIN . It is well-known that REG (SLIN (CF , but PsREG =
PsSLIN = PsCF [104, 109].

A type-0 grammar G = (N,T, S, P) is said to be in Geffert normal form [46], if
its alphabet of non-terminals N is defined as N = {S,A,B,C,D}, T is a terminal
alphabet, and P only contains context-free rules S → uSv, with u ∈ {A,C}+ and
v ∈ (T ∪ {B,D})+, as well as S → λ, and two (non-context-free) erasing rules
AB → λ and CD → λ.

According to [46], the generation of a string using a grammar in Geffert normal
form is performed in two stages. During the first stage, only context-free rules
S → uSv can be applied; this follows from the fact that u ∈ {A,C}+ and v ∈
({B,D}∪T)+. During the second stage, only non-context-free rules can be applied,
because the symbol S is no longer present in the string. The transition between
the stages is done by the rule S → λ (in [46] a set of rules of the form S → uv is
used instead, leading to an equivalent result). Note that the symbols A,B,C,D are
treated like terminals during the first stage and so each rule S → uSv is, in a sense,
“linear”.

It is possible to decompose the context-free rules of a grammar in Geffert normal
form into rules with right-hand sides containing at most two symbols: the result of an
application of a rule r : S → a1 . . . an S b1 . . . bm can be reproduced by the following
shorter rules:

S → a1X
(r)
1 , X

(r)
i−1 → aiX

(r)
i , 2 ≤ i ≤ n,

X(r)
n → Y (r)

m bm, Y
(r)
j+1 → Y

(r)
j bj , 2 ≤ j ≤ m− 1,

Y
(r)

2 → Sb1.

Thus, for any type-0 grammar G = (N,T, S, P), it is possible to construct an
equivalent grammar Gnf = (Nnf , T, S, Pnf), where N = N ′ ∪ N ′′, N ′ ∩ N ′′ = ∅,
N ′′ = {A,B,C,D}, N ′ contains S and the symbols X(r)

i and Y (r)
j for each rule of

G, and P contains rules of the following four forms:

– X → bY , with X,Y ∈ N ′, X 6= Y , b ∈ N ′′,
– X → Y b, with X,Y ∈ N ′, X 6= Y , b ∈ N ′′ ∪ T ,
– UV → λ, with (U, V) ∈ {(A,B), (C,D)},
– S → λ.

The grammar Gnf is said to be in special Geffert normal form. Remark that even

28 CHAPTER 2. PRELIMINARIES

the deletion rule S → λ could be avoided in Gnf by considering rules of the form
Y

(r)
2 → b1.

2.2 Computing Devices

A finite automaton is the tuple A = (Q,Σ, δ, q0, F), where Q is a finite set of states,
Σ is an alphabet of symbols, δ : Q×Σ→ 2Q is the transition function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states. A configuration of A is the tuple
(q, w), where s ∈ Q and w ∈ Σ∗. A transition of A is guided by δ: if p ∈ δ(q, a), then
(q, ax) ` (p, x). The reflexive and transitive closure of the relation (`) is denoted
by (`∗). A word is w accepted A if (q0, w) `∗ (qf , λ), where qf ∈ F is a final state.
Thus the language accepted by A is defined as L(A) = {w ∈ V ∗ | (q0, w) `∗ (qf , λ)}.
Finite automata accept exactly the class of regular languages.

A Turing machine is the construct T = (Q,Σ, a0, q0, F, δ), where Q is a finite set
of states, Σ is the tape alphabet, a0 ∈ Σ is the blank symbol, q0 is the initial state,
F ⊆ Q is the set of final (halting) states, and δ is a transition function. A way
of defining the transition function is by listing tuples of the form (qi, ak, qj , al, D),
which are interpreted as follows: if the head of T being in state qi is scanning a cell
which contains ak, then the contents of the scanned cell is replaced by al, the head
moves to the left (D = L) or to the right (D = R) and the state of the machine
changes to qj . We only consider deterministic non-stationary Turing machines in
this thesis, i.e. deterministic machines which move their head at every step of the
computation; it is known that these devices are computationally complete [108].

A configuration of T in which the machine is in state q, the contents of the tape
is w1aw2, where w1, w2 ∈ Σ∗ and a ∈ Σ, and the head is positioned on a, can be
represented as the string w1qaw2. In the initial configuration of a Turing machine,
the input occupies a finite region of the tape. The situation in which the tape is
empty is represented by the string qa0 (a0 is the blank symbol). When T is in the
configuration w1qiak and the definition of δ contains a tuple (qi, ak, qj , al, R), then
the machine transitions into state w1alqja0, that is a new empty tape cell is “added”.
The case in which the machine is on the leftmost non-empty cell of the tape and
needs to move to the left is treated similarly. A halting configuration of a Turing
machine is a configuration in which no transition rule is defined for the current state
q ∈ F and the symbol a the head is positioned upon.

A computation of a Turing machine T on the input word w is a sequence of
configurations C = (Ci)0≤i≤t, where C0 = q0w0 is the initial configuration and w0 ∈
Σ∗ is the input word, Ct = w1qfw2 is a halting configuration, and Ci ` Ci+1, for all
1 ≤ i < t. Since we only discuss deterministic Turing machines, the computation C is
entirely determined by the initial configuration C0. We denote the fact that T halts
with the word w1w2 on the tape when it starts with the input w0 by T (w0) = w1w2.
This notation is naturally extended to non-deterministic Turing machines by taking
T (w0) to be the set of all possible tape contents in halting configurations of T in
computations starting with w0.

A (deterministic) register machine is defined as a 5-tuple M = (Q,R, q0, qf , P),
where Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state, and P is a set of instructions of the following
three forms:

2.3. COMPUTATIONAL COMPLETENESS AND UNIVERSALITY 29

– (increment) (p,A(i), q), where p, q ∈ Q, Ri ∈ R: being in state p, increment
register Ri and go to state q;

– (zero-check-and-decrement) (p, S(i), q, s), where p, q, s ∈ Q,Ri ∈ R: being in
state p, try decrementing register Ri and go to q if successful or to s otherwise;

– (stop) (qf , Stop): halt the execution; may only be associated with the final
state qf .

In some sources (e.g., [55, 56, 71]), the increment is written as RiP , and the zero-
check-and-decrement instruction as RiZM . The work [71] also uses other instruction
types, like a separate decrement (p,RiM, q), which corresponds to (p, S(i), q, q), or
a separate zero-check (p,Ri, q, s), which works like zero-check-and-decrement, but
does not modify the register: it corresponds to the pair of instructions (p, S(i), q′, s)
and (q′, A(i), q).

Register machines are often represented graphically in flowchart notation; in this
case the instructions checking a condition on a register are drawn as diamonds, while
non-conditional instructions as rectangles. An example of such a graphical repre-
sentation is shown in Figure 2.1. This figure reproduces the machine U22 from [71]
and uses conventional instruction names.

A configuration of a register machine is given by (q, n1, . . . , nk), where q ∈ Q and
ni ∈ N, 1 ≤ i ≤ k, describe the current state of the machine as well as the contents
of all of its registers. A transition of the register machine consists in updating
or checking the value of a register according to an instruction of one of the types
above and in changing the current state to another one. We say that the machine
stops if it reaches the state qf . We say that M computes a value y ∈ N on the
input x1, . . . , xn, xi ∈ N, 1 ≤ i ≤ n ≤ k, if, starting from the initial configuration
(q0, x1, . . . , xn, 0, . . . , 0), it reaches the final configuration (qf , y, 0, . . . , 0).

2.3 Computational Completeness and Universality

Consider a class of number-generating devices CN and a class of string-generating
devices CS . For an element A ∈ CN , we will denote the set of numbers produced by
A by N(A). Similarly, for an element B ∈ CS , we will denote the language generated
by B by L(B). CN is called computationally complete if, for every recursively enu-
merable subset of natural numbers X ∈ N, there exists an element AX ∈ CN such
that X = N(AX). CS is called computationally complete if, for every recursively
enumerable language Y there exists an element BY ∈ CS such that L(BY) = Y .

We denote the fact that a number-manipulating computing deviceMN produces
the outputs from the set Nx ⊆ N for the input vector x ∈ Nk, k ∈ N, by MN (x) =
Nx. Similarly, the fact that a string-manipulating computing device M produces
the output language Lx for the input word x will be denoted by M(x) = Lx.

An element A0 ∈ C, for a class of computing devices C, is called (weakly) uni-
versal if it is capable of simulating any other device A in C using an appropriate
encoding. More precisely, if A(x) = y, then A(x) = f(A0(g(A), h(x))), where h
and f are the encoding and decoding functions respectively, and g is the function
assigning numbers to devices in C, according to some fixed enumeration (e.g. Gödel
numbering). The encoding and decoding functions should not be too complicated,
otherwise the universal element would be trivial. For example, if f is partial re-
cursive, the entire simulation could be done by f and not by M0. It is commonly

30 CHAPTER 2. PRELIMINARIES

Figure 2.1: The flowchart of the strongly universal machine U22. The symbol “z” indicates the
transitions which happen when the checked register is zero.

admitted that recursive functions can be used for encoding and decoding. In the case
of register machines, for example, the typically used functions are f(x) = log2(x)
and h(x) = 2x. If the functions f and h are identities, the element A0 is called
strongly universal.

In our definition, the universal element A0 appears to use two input values, while
the other devices of C use only one. This is mainly a matter of notation, however,
because any pair of numbers or strings can be encoded in a single number or a single
string respectively, by using a pairing function. To stress this fact, we could rewrite
the definition of universality for A0 in this way: A(x) = f(A0(〈 g(A), h(x) 〉)), where
〈a, b〉 is the pairing function.

The classes of register machines and Turing machines are known to contain
universal elements [92, 111], and the same is true for any computationally complete
class of computing devices. The converse is not true, because any singleton class
of computing devices trivially contains a universal element, but is not necessarily
computationally complete.

In this work we will rely heavily on universal register machines constructed by
Ivan Korec in [71]. The flowchart of the strongly universal register machine with 22

2.3. COMPUTATIONAL COMPLETENESS AND UNIVERSALITY 31

commands is shown in Figure 2.1; its complete program follows.

(q1, R1ZM, q3, q6) (q3, R7P, q1) (q4, R5ZM, q6, q7)
(q6, R6P, q4) (q7, R6ZM, q9, q4) (q9, R5P, q10)
(q10, R7ZM, q12, q13) (q12, R1P, q7) (q13, R6ZM, q33, q1)
(q33, R6P, q14) (q14, R4ZM, q1, q16) (q16, R5ZM, q18, q23)
(q18, R5ZM, q20, q27) (q20, R5ZM, q22, q30) (q22, R4P, q16)
(q23, R2ZM, q32, q25) (q25, R0ZM, q1, q32) (q27, R3ZM, q32, q1)
(q29, R0P, q1) (q30, R2P, q31) (q31, R3P, q32)
(q32, R4ZM, q1, qf) (qf , STOP)

32 CHAPTER 2. PRELIMINARIES

Chapter 3

One-sided Insertion-deletion
Systems

In this chapter we focus on the operations of insertion and deletion and, in particu-
lar, on one-sided versions of these operations with small context. In Section 3.2 we
consider leftist systems and formally show how they are related to insertion-deletion
systems of size (1, 1, 0; 1, 1, 0). Then, in Section 3.3, we first remind the proof of the
fact that systems of this size are not computationally complete and then show that
systems with slightly bigger contexts – of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) –
can generate all regular languages, and even some non-context-free ones. Further-
more, we prove that considering longer left contexts does not increase the expressive
power of the insertion-deletion systems.

In Section 3.4, we introduce a novel approach to dynamic analysis of the deriva-
tions of systems of size (1, 1, 0; 1, 1, 0) – derivation graphs – and show how it can
be used to better understand the functioning of leftist grammars generating non-
semilinear languages. We also give some ideas of how this tool could be extended
to deal with larger deletion contexts.

3.1 Definitions

In this section we will formally introduce insertion-deletion systems and leftist gram-
mars, as well as some related notions, such as leftmost and greedy derivations.

An insertion-deletion system is a construct Γ = (V, T,A, I,D), where V is an
alphabet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is a set of axioms, and I and
D are finite sets of triples of the form (u, α, v), with u, α, v ∈ V ∗ and α 6= λ.
The symbols from V \ T are called non-terminal symbols. The triples in I are
called insertion rules, and those in D are called deletion rules. Instead of writing
(u, α, v) ∈ I or (u, α, v) ∈ D, we will often prefer the notations (u, α, v)ins and
(u, α, v)del respectively.

An application of the insertion rule ri : (u, α, v)ins to a string of the form
yu vz, y, z ∈ V ∗, yields yuα vz. Symmetrically, an application of the deletion
rule rd : (u, α, v)del to the string yuα vz yields yu vz. Thus, the semantics of the
insertion rule ri corresponds to that of the rewriting rule uv → uαv, while the
semantics of the deletion rule rd to that of the rewriting rule uαv → uv.

By acting on strings, the insertion and deletion rules of Γ give rise to two relations
on words: “derives by insertion rule ri” (

ri⇒ins) ⊆ V ∗ × V ∗ and “derives by deletion

33

34 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

rule rd” (
rd⇒del) ⊆ V ∗ × V ∗. Thus, for ri we can write yu vz

ri⇒ yuα vz, and for
rd we can write yuα vz

rd⇒ yu vz. We will often use the following less fine-grained
relations:

(⇒ins) =
⋃
r∈I

(
r⇒ins), (⇒del) =

⋃
r∈D

(
r⇒del), and (⇒) = (⇒ins ∪ ⇒del).

We will also use the notation (⇒∗) to refer to the reflexive and transitive closure of
(⇒). We will sometimes use the notation (⇒Γ) to explicitly refer to the insertion-
deletion system Γ whose rules induce the “derives” relation.

A derivation of the insertion-deletion system Γ is a sequence of consecutive in-
sertion or deletion steps: w1 ⇒ w2 ⇒ . . .⇒ wn. Each word wi, 1 ≤ i ≤ n, is called
a sentential form of this derivation. The language generated by Γ is defined in the
following way:

L(Γ) = {w ∈ T ∗ | w0 ⇒∗ w,w0 ∈ A}.

The descriptional complexity of Γ is given by the vector (n,m,m′; p, q, q′), called
size, with components given by the following:

n = max{|α| : (u, α, v) ∈ I}, p = max{|α| : (u, α, v) ∈ D},
m = max{|u| : (u, α, v) ∈ I}, q = max{|u| : (u, α, v) ∈ D},
m′ = max{|v| : (u, α, v) ∈ I}, q′ = max{|v| : (u, α, v) ∈ D}.

We use the notation INSm,m
′

n DELq,q
′

p to refer to the family of languages generated
by insertion-deletion systems of size (n,m,m′; p, q, q′). An insertion-deletion system
is called one-sided if either m+m′ > 0 and m ·m′ = 0, or q + q′ > 0 and q · q′ = 0,
or both.

We immediately remark that, according to Corollary 3.3.2, an insertion-deletion
system of a given size can be considered to be of any other larger size.

Consider a one-sided insertion rule r : (u, α, λ)ins, u 6= λ, and the insertion
derivation step a yuz r⇒ yuαz. We will call the substring u of yuz the active context
in this step and will sometimes underline it for readability: yuz r⇒ yuαz. The active
context for a deletion derivation step is defined symmetrically. We will often abuse
terminology and say that u inserted (respectively, deleted) α, instead of saying that
r inserted (respectively, deleted) α.

Example 3.1.1. Consider the insertion-deletion system Γ = (V, T,A, I,D) defined
as follows:

V = {a, b, Sa, Sb},
T = {a, b},
A = {SaSb},
I = {(Sa, a, λ)ins, (Sb, b, λ)ins},
D = {(λ, Sa, λ)del, (λ, Sb, λ)del}.

The size of Γ is (1, 1, 0; 1, 0, 0) and it is a one-sided insertion-deletion system. The
symbols Sa and Sb insert the terminals a and b respectively, until erased. Given
that the only axiom of Γ is SaSb, this means that L(Γ) = a∗b∗. The following is an
example of a terminal derivation of Γ:

SaSb ⇒ SaaSb ⇒ SaaSbb⇒ aSbb⇒ ab.

3.1. DEFINITIONS 35

A leftist grammar is a triple G = (V,R, x), where V is a finite alphabet, x ∈ V
is the final symbol, and R is a set of rewriting rules of the following two types:
insertion rules a → ba and deletion rules cd → d, a, b, c, d ∈ V . A string w ∈ V ∗ is
said to derive v ∈ V ∗ if either w = yaz, v = ybaz, and ri : a → ba ∈ R (written as
w

ri⇒ v), or w = ycdz, v = ydz, and rd : cd → d ∈ R (written as w
rd⇒ v). Without

losing generality, we can suppose that the set R does not contain rules erasing or
inserting x, that is {a→ xa, xa→ a} 6⊆ R [64, Proposition 3].

Similarly to the case of insertion-deletion systems, we define (⇒) =
⋃
r∈P (

r⇒),
and use (⇒∗) to refer to the reflexive and transitive closure of (⇒). A derivation
of a leftist grammar is a sequence of derivation steps w1x ⇒ w2x ⇒ . . . ⇒ wnx,
where wi ∈ V ∗, 1 ≤ i ≤ n. The language L(G) recognised by the leftist grammar
G = (V,R, x) is

L(G) = {w ∈ V ∗ | wx⇒∗ x}.

We will denote the family of languages recognised by leftist grammars by LFT .

Example 3.1.2. Consider the leftist grammar G = (V,R, x) defined as follows:

V = {a, b, x}, R = {ab→ b, bx→ x}.

In this grammar, b can erase any number of a’s to the left of it, and x can erase any
number of b’s. Therefore, the language recognised by this grammar is L(G) = (a∗b)∗.

Note that, even though the definition of a leftist grammar parallels the definition
of a string rewriting grammar, the former is not a special case of the latter because
of the way in which the recognised language is defined. Still, leftist grammars are
closely related to string rewriting devices, and namely to one-sided insertion-deletion
systems of sizes (1, 1, 0; 1, 1, 0) and (1, 0, 1; 1, 0, 1). The relationship between the two
computing devices is formally captured in Section 3.2.

Similarly to insertion-deletion systems, we say that, in the derivation step yaz r⇒
ybaz, for r : a → ba, the letter a is the active context; we will often underline it
for readability: yaz r⇒ ybaz. The active context for a leftist deletion rule is defined
symmetrically.

Consider a one-sided insertion-deletion system Γ of size (1, 1, 0; 1, 1, 0) and a
derivation C : w1 ⇒ w2 ⇒ . . . ⇒ wn of it. C is called leftmost if the leftmost
possible context is active in any derivation step. Formally, C is leftmost if, in any
derivation step wi = uay ⇒ wi+1 with the active context a, no rule of Γ is applicable
to u. Similarly, C is called rightmost, if the rightmost possible context is active in
any derivation step, i.e. no rule of Γ is applicable to y.

A symbol is useful in C if it belongs either to w1 or wn, or if it inserts or deletes a
useful symbol. The definition is well founded, because in insertion-deletion systems
of size (1, 1, 0; 1, 1, 0), symbols only insert or delete other symbols on one side only,
so the relation “inserts-or-deletes” is acyclic [21]. A derivation is pure if all symbols
appearing in it are useful.

The derivation C is eager if, informally, deletions occur as soon as possible.
Formally, C is not eager if it contains a sentential form wi, 1 ≤ i < n, such that a
deletion rule is applicable to wi, but the rule applied in the derivation step wi ⇒ wi+1

is an insertion rule.
We define leftmost, rightmost, pure, and eager derivations for insertion-deletion

systems of size (1, 0, 1; 1, 0, 1) and for leftist grammars in the same manner.

36 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

A derivation of an insertion-deletion system of size (1, 1, 0; 1, 1, 0) is greedy if it
is rightmost, pure, and eager. A derivation of an insertion-deletion system of size
(1, 0, 1; 1, 0, 1) or a leftist grammar is greedy if it is leftmost, pure, and eager.

Example 3.1.3. Consider the insertion-deletion system Γ = (V, T,A, I,D) defined
as follows:

V = {S,A, a},
T = {a},
A = {aS},
I = {(S, A, λ)ins, (A, a, λ)ins},
D = {(S, A, λ)del, (a, S, λ)del, (a, A, λ)del}.

The derivation C1 : aS ⇒ aSA ⇒ aSAa ⇒ aSa ⇒ aa is a rightmost derivation.
The derivation C2 : aS ⇒ a is a leftmost derivation, and the only leftmost derivation
possible in Γ. The derivations C1 and C2 are also pure, while the derivation C3 :
aS ⇒ aSA ⇒ aS ⇒ a is not, because A is not useful. The derivation C1 is also
eager, and thus greedy, while the derivation C4 : aS ⇒ aSA⇒ aSAa⇒ aSAAa⇒
aSAaAa ⇒ aSAaa ⇒ aAaa ⇒ aaa is pure, rightmost, but not eager, because the
first instance of A to be inserted could have been deleted by S before the insertion of
the second A.

3.2 Systems of Size (1, 1, 0; 1, 1, 0) and Leftist Grammars

In this section we discuss the relationship between leftist grammars and one-sided
insertion-deletion systems of sizes (1, 0, 1; 1, 0, 1) and (1, 1, 0; 1, 1, 0). Even though
the difference between the rules of a leftist grammar and those of an insertion-
deletion system is purely syntactical – the rules a → ba and cd → d have exactly
the same semantics as the rules (λ, b, a)ins and (λ, c, d)del – the languages associated
with these devices are defined differently, which induces a number of important
divergences. Firstly, the direction of derivation is flipped: while leftist grammars
start with a word and erase it completely, insertion-deletion systems start with an
axiom and generate a word. Secondly, the last sentential form of any valid derivation
of a leftist grammar should be x, while an insertion-deletion system can start its
derivation with any element of a finite set of axioms. Thus, leftist grammars work
in recognising mode, while insertion-deletion systems operate in generating mode.
This means, in particular, that taking the words satisfying a certain property as
initial words for a leftist grammar (as done in [62], for example) corresponds in
insertion-deletion systems to intersection of the generated language with a different
language with given properties.

The following statement shows formally how a leftist grammar can be trans-
formed into an equivalent insertion-deletion system generating the language recog-
nised by the leftist grammar.

Proposition 3.2.1. Consider the leftist grammar G = (V,R, x) and construct the
insertion-deletion system Γ = (V, T,A, I,D ∪ Dx) of size (1, 0, 1; 1, 0, 1) with T =
V \ {x}, A = {x}, and the set of rules defined in the following way:

I = {(λ, c, d)ins | cd→ d ∈ R},
D = {(λ, b, a)del | a→ ba ∈ R},
Dx = {(λ, x, λ)del}.

3.2. SYSTEMS OF SIZE (1, 1, 0; 1, 1, 0) AND LEFTIST GRAMMARS 37

We claim that L(G) = L(Γ).

Proof. Consider the following derivation of G:

C : wx⇒∗G wix
r⇒G wjx⇒∗G x,

where w,wi, wj ∈ V ∗. Then, by construction, wjx
r′⇒Γ wix, where r′ = (λ, c, d)ins

if r = cd → d, and r′ = (λ, b, a)del if r = a → ba. By applying this observation to
every step of C, we conclude that x⇒∗Γ wx, and since wx⇒Γ w by the context-free
rule (λ, x, λ)del, we conclude that x⇒∗Γ w. Therefore L(G) ⊆ L(Γ).

To prove the converse inclusion, remark that all derivations of Γ are of the
following form:

x⇒∗Γ wix⇒Γ wi ⇒∗Γ w,

with wi, w ∈ V ∗. The subderivation wi ⇒∗Γ w of Γ can be stepwise translated into
the derivation wx ⇒∗G wix of G in which no rules employing x are applied. On
the other hand, x ⇒∗Γ wix can directly be translated into wix ⇒∗G x. Therefore
wx ⇒∗G wix ⇒∗G x and w ∈ L(G). This means that L(Γ) ⊆ L(G) which concludes
the proof.

It is turns out, quite unsurprisingly, that the class of languages generated by
insertion-deletion systems of size (1, 0, 1; 1, 0, 1) is larger than that recognised by
leftist grammars.

Proposition 3.2.2. INS0,1
1 DEL0,1

1 \ LFT 6= ∅

Proof. Consider the insertion-deletion system Γ = (V, V,A, I,∅) with rules of size
(1, 1, 0; 1, 1, 0) defined as follows:

V = {a, b}, A = {a, b}, I = {(λ, a, a)ins, (λ, b, b)ins}.

The language generated by this system is L(Γ) = a∗ ∪ b∗, and a∗ ∪ b∗ /∈ LFT .
Indeed, suppose that there exists a leftist grammar G such that L(G) = a∗∪ b∗, and
consider two derivations C1 : anx ⇒∗G x and C2 : bmx ⇒∗G x, for some n,m ∈ N.
But then we can construct the derivation C12 : anbmx ⇒∗G x by first applying the
rule applications of C2 and then those of C1. This implies that anbm ∈ L(G), which
is contradiction.

The following statement brings together the conclusions of the previous two
propositions.

Corollary 3.2.3. LFT (INS0,1
1 DEL0,1

1 = {rev(L) | L ∈ INS1,0
1 DEL1,0

1 }.

Even though there exist insertion-deletion systems of size (1, 0, 1; 1, 0, 1) which
generate languages that no leftist grammar can recognise, for some of the insertion-
deletion systems of this size equivalent leftist grammars can be constructed in a
rather straightforward manner. The following statement describes precisely which
insertion-deletion systems of size (1, 0, 1; 1, 0, 1) have this property.

Proposition 3.2.4. Consider the insertion-deletion system Γ = (V, T,A, I,D) of
size (1, 0, 1; 1, 0, 1) such that T = V \ {x}, A = {x}, D = D′ ∪ {(λ, x, λ)del},

38 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

and I ∪ D′ contains no context-free rules, nor rules inserting or deleting x. Let
G = (V,R, x) be the leftist grammar with the following set of rules

R = {cd→ d | (λ, c, d)ins ∈ I} ∪ {a→ ba | (λ, b, a)del ∈ D′}.

Then L(Γ) = L(G).

Proof. Since Γ has no context-free insertion rules, no symbols can be inserted to the
right of x, which means that any derivation of Γ has the form

C : x⇒∗Γ wix⇒Γ wi ⇒∗Γ w,

where wi, w ∈ V ∗. But then, by the construction of R, it is possible to use the
same approach as in the proof of Proposition 3.2.1 and stepwise translate C into
wx ⇒G x, therefore L(Γ) ⊆ L(G). The converse inclusion follows from a direct
stepwise translation of any derivation wx ⇒G x into x ⇒∗Γ wx and from the fact
that wx⇒Γ w.

For historical reasons, we prefer using rules of size (1, 1, 0; 1, 1, 0) instead of
(1, 0, 1; 1, 0, 1) in the rest of this work. The languages generated by insertion-deletion
systems of the former size are the reverse of those generated by insertion-deletion
systems of the latter size. We will call the family of insertion-deletion systems with
the properties described in the above proposition, but with the contexts on the left,
leftist insertion-deletion system.

We can now aggregate the statements of Propositions 3.2.1 and 3.2.4 into a single
corollary which formally shows which families of insertion-deletion systems exactly
correspond to leftist grammars.

Corollary 3.2.5. For every leftist grammar G there exists a leftist insertion-deletion
system Γ such that L(G) = rev(L(Γ)), and conversely, for every leftist insertion-
deletion system Γ there exists a leftist grammar G such that L(Γ) = rev(L(G)).

Remark that leftist insertion-deletion systems are only one of the subfamilies
of insertion-deletion systems of size (1, 1, 0; 1, 1, 0) which are equivalent in power to
leftist grammars (modulo a reverse operation). For example, lifting the restriction
that all rules must use a non-empty context yields an equivalent computing device.
Indeed, according to [87, Lemma 2] (recalled in this thesis as Lemma 3.3.1), the
effect of context-free rules can be reproduced by replacing them with rules using
any symbol of the alphabet as a context, and by adding a marker symbol to the left
end of the string. In the case of leftist insertion-deletion systems, x readily serves as
such a marker, which means that context-free operations can be directly simulated.

We will now recall an important statement about greedy derivations, which are a
very useful instrument for the analysis of behaviour of leftist grammars: as is shown
in [62, Theorem 1] and then generalised in [21, Proposition 3.1], any derivation
C : w1 ⇒ w2 ⇒ . . . ⇒ wn of a leftist grammar has an equivalent greedy derivation
w1 ⇒∗ wn. The generalised proposition does not require that wn = x or that any
sentential form of the derivation contain an x at all, which means that the statement
can be directly translated to insertion-deletion systems of size (1, 1, 0; 1, 1, 0) by
simply flipping the positions of the contexts.

Proposition 3.2.6 ([21, Proposition 3.1]). Given an insertion-deletion system Γ =
(V, T,A, I,D) of size (1, 1, 0; 1, 1, 0), and any derivation C : w1 ⇒ w2 ⇒ . . . ⇒ wn

3.3. SYSTEMS OF SIZES (1,M, 0; 1, Q, 0) 39

(not necessarily terminal), there exists an equivalent derivation C ′ : w1 ⇒ w′2 ⇒
. . .⇒ wn which is greedy (rightmost, pure, and eager).

3.3 Systems of Sizes (1,m, 0; 1, q, 0)

In this section we remind that insertion-deletion systems of size (1, 1, 0; 1, 1, 0) (and
thus leftist grammars) are not computationally complete and cannot generate even
some simple regular languages. We will show, on the other hand, that allowing
slightly larger contexts either for insertions or deletions and considering rules of
size (1, 1, 0; 1, 2, 0) or (1, 2, 0; 1, 1, 0) is enough to generate all regular languages, and
therefore renders such systems more difficult to reason about. A summary of the
results presented in this section is given in Table 3.1 on page 48. In this table, L2k

stands for {(F1F0)n(a1a0)m | n ≥ 22m−2}, where m,n ∈ N and k ≥ 2.
We start by reminding that any insertion-deletion system can be brought into a

normal form in which all rules, but two, correspond exactly to the total size of the
system.

Lemma 3.3.1 ([73, Lemma 4.2.1]). For any insertion-deletion system Γ =
(V, T,A, I,D) of size (n,m,m′; p, q, q′) it is possible to construct the padded
insertion-deletion system Γp = (V ∪ {X,Y }, T, Ap, Ip, Dp ∪ D′p) of the same size
with the following properties:

– L(Γ) = L(Γp),

– D′p = {(λ, X, λ)del, (λ, Y, λ)del},

– for any insertion rule (u, α, v)ins ∈ Ip, |α| = n, |u| = m, and |v| = m′, and

– for any deletion rule (u, α, v)del ∈ Dp, |α| = p, |u| = q, and |v| = q′.

Proof sketch. The idea of the proof is based on the fact that shorter contexts, in-
serted or deleted strings, and, correspondingly, the axioms, can be padded by in-
stances of X and Y , which are eventually erased by the rules from D′p.

We will first define the function padding a string w to a given length k with the
symbol U :

padU (w, k) = w� {U}k
.− |w|,

where k .− |w| = max(k − |w|, 0). The insertion rules of Γp can now be given as
Ip = I ′p ∪ I ′′p , with

I ′p = { (z1, xY
k, z2)ins | (a, x, b)ins ∈ I, z1 ∈ padX(a,m),

z2 ∈ padY (b,m′), k = n
.− |x| },

I ′′p = { (z1, Y n, z2)ins | z1 ∈ (V ∪ {X,Y })m, z2 ∈ (V ∪ {X,Y })m′}.

The set I ′p essentially contains the padded versions of insertion rules from Γ, while
the rules from I ′′p add padding to the string itself whenever necessary. The deletion
rules are defined similarly:

Dp = { (z1, d, z2)del | (a, x, b)del ∈ D, z1 ∈ padX(a, q),
z2 ∈ padY (b, q′), d ∈ padY (x, p)}.

40 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

Finally, we pad the axioms of Γ:

Ap = {XiwY tY j | w ∈ A, i = max(m, q), j = max(m′, q′), t = max(n, p)
.− |w|}.

All the rules of Γp, except those in D′p, are exactly of the size (n,m,m′; p, q, q′)
and are defined in such a way that the padding symbols X and Y are “transparent”:
any derivation of Γp can be transformed into a derivation of Γ by “discarding” the
padding. On the other hand, since the counterparts of all rules of Γ exist in Γp as
well, any derivation of Γ can be simulated by Γp.

The practical implication of the previous statement to the case of insertion-
deletion systems of sizes (1, 1, 0; 1, 1, 0), (1, 1, 0; 1, 2, 0), and (1, 2, 0; 1, 1, 0) is that we
can consider without losing generality that all rules are of the same size. Further-
more, the same technique can be used to pad any insertion-deletion system to any
given larger size.

Corollary 3.3.2. INSm,m
′

n DELq,q
′

p ⊆ INSx,x′y DELz,z
′

t , form ≤ x, m′ ≤ x′, n ≤ y,
and q ≤ z, q′ ≤ z′, p ≤ t.

Next, we quote the result stating that one can safely assume that terminal sym-
bols are never deleted in a derivation of an insertion-deletion system.

Lemma 3.3.3 ([73, Lemma 4.2.2]). For any insertion-deletion system Γ =
(V, T,A, I,D) it is possible to construct an equivalent insertion-deletion system
Γ′ = (V ′, T, A′, I ′, D′) of the same size such that L(Γ) = L(Γ′) and Γ′ does not
contain any rules deleting terminal symbols.

Proof. Let V ′ = V ∪ {Nx | x ∈ T} and consider the mappings f : V → V ′ given by
f(x) = Nx if x ∈ T and f(x) = x if x ∈ V \ T , as well as id : V → V ′, id(x) = x,
for any x ∈ V . We now define the function F : V → 2(V ′)∗ as

F (x1 . . . xn) = {g(x1) . . . g(xn) | g ∈ {f, id}}.

F (w) is the set of words obtained from w by replacing some (or none) of the terminals
in w by the corresponding non-terminals of the form Nx. We apply F to the axioms
and insertion rules of Γ to obtain A′ = {w′ | w ∈ A,w′ ∈ F (w)} and

I ′ = {(a′, x′, b′)ins | (a, x, b)ins ∈ I, a′ ∈ F (a), b′ ∈ F (b), x′ ∈ F (x)}.

We cannot construct D′ in exactly the same way, because we need to avoid the rules
erasing terminals. Therefore, instead of applying F to deleted strings, we will use
the morphism induced by the mapping f :

D′ = {(a′, x′, b′)del | (a, x, b)del ∈ I, a′ ∈ F (a), b′ ∈ F (b), x′ = f(x)}.

It follows from the way in which the rules of Γ′ are defined that any derivation
of Γ′ can be transformed into a derivation of Γ by substituting the symbols Nx in
every sentential form for the corresponding terminal x. On the other hand, any
derivation of Γ can be transformed into a derivation of Γ′ by replacing insertions of
terminals that are eventually deleted by insertions of the corresponding symbols of
the Nx family. We conclude therefore that L(Γ′) = L(Γ).

3.3. SYSTEMS OF SIZES (1,M, 0; 1, Q, 0) 41

We now remind that insertion-deletion systems of size (1, 1, 0; 1, 1, 0) cannot
generate the regular language (ba)+.

Theorem 3.3.4 ([76, Theorem 8]). (ba)+ ∈ REG \ INS1,0
1 DEL1,0

1 .

Proof. Suppose that there exists an insertion-deletion system Γ of size (1, 1, 0; 1, 1, 0)
such that L(Γ) = (ba)+. Since Γ has a finite number of axioms, there must exist a
derivation of Γ in which a letter a is inserted:

w ⇒∗ w1zw2 ⇒ w1zaw2 ⇒∗ αbaβ ∈ (ba)+,

where w ∈ A, w1, w2, α, β ∈ V ∗, and z ∈ V . It follows from the size of Γ that
w1z ⇒∗ αb and that w2 ⇒∗ β. But then we can insert the highlighted instance of a
twice and get the following terminal derivation of Γ:

w ⇒∗ w1zw2 ⇒ w1zaw2 ⇒ w1zaaw2 ⇒∗ αbaaβ /∈ (ba)+,

which is a contradiction and concludes the proof.

Although insertion-deletion systems of size (1, 1, 0; 1, 1, 0) cannot generate some
simple regular languages, even pure insertion systems with insertion rules of size
(1, 1, 0) are capable of producing non-regular context-free languages.

Example 3.3.5 ([117, Example 2.4.1]). Consider the insertion-deletion system Γ =
(T, T, {a}, I,∅), with T = {a, b, c, d} and

I = {(a, b, λ)ins, (b, c, λ)ins, (c, d, λ)ins, (d, a, λ)ins}.

One of the possible derivations of Γ looks as follows (we underline the active con-
texts):

C : a⇒ ab⇒ abb⇒ abcb⇒ abccb⇒ abcdcb⇒ abcddcb⇒ abcdadcb.

Remark that similar rule applications will have to be carried out in any derivation
of a word ending in dcb. Γ can also generate words ending in (dcb)∗ by carrying
out the rule applications from C near the rightmost instance of a, but the insertion
of each subword dcb of the suffix will require the insertion of at least an instance
of each of the symbols a, b, c, and d, in this order, in the prefix of the string. On
the other hand, multiple repetitions of the word abcd can be generated in the prefix
without adding any words dcb to the suffix. In other words, L(Γ) ∩ (abcd)∗(dcb)∗ =
{(abcd)m(dcb)n | m ≥ n}. Given that this language is context-free and that context-
free languages are closed under intersection with regular languages, this means that
L(Γ) is a context-free language as well.

The argument in the proof of Theorem 3.3.4 points out that terminal symbols
hinder any transmission of information along the string, and so extra insertions
cannot be detected. The following theorem shows that allowing insertion contexts
of length 2 suffices to enable at least some information to get across.

Theorem 3.3.6. REG ⊆ INS2,0
1 DEL1,0

1 .

42 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

Proof. Consider an arbitrary finite automaton FA = (Q,T, q0, F, δ). We define the
insertion-deletion system Γ = (V, T,A, I,D) in the following way:

V = {Qi | qi ∈ Q} ∪ {B,E} ∪ T,
A = {Q0BE},
I = {(B, a, λ)ins | a ∈ T}
∪ {(Qia, Qj , λ)ins | qj ∈ δ(qi, a)},

D = {(Qf , E, λ)del | qf ∈ F} ∪ {(λ, B, λ)del}
∪ {(λ, Qi, λ)del | qi ∈ Q}.

The system works in two phases. In the first phase, B inserts a string of terminals,
resulting in a word of the form Q0BT

∗E. The second phase starts with a deletion
of B, which results in a string of the form Q0T

∗E and effectively disables all rules
inserting terminals. The only rules applicable from now on are those inserting
and erasing the state symbols Qi. If Qi is to the left of such a terminal a that
δ(qi, a) 6= ∅, then a new state symbol Qj , qj ∈ δ(qi, a), can be inserted. A chain
of these insertions starts with Q0 and continues while possible or until the end of
the string is reached. If the state symbol inserted after the last terminal is a Qf ,
qf ∈ F , then the end marker E can be erased. This eventually results in a terminal
string, after all state symbols are deleted by context-free rules. The deletion of E is
therefore only possible if the terminals inserted by B in the first phase form a word
accepted by FA, which means that L(Γ) = L(FA).

It turns out that insertion-deletion systems of symmetric size, (1, 2, 0; 1, 1, 0), are
also capable of simulating any finite automaton. We will prove this fact by using
a similar approach: we will use deletions with two-symbol contexts to verify that a
correct trajectory of a finite automaton was generated.

Theorem 3.3.7. REG ⊆ INS1,0
1 DEL2,0

1 .

Proof. Consider an arbitrary finite automaton FA = (Q,T, q0, F, δ). We define the
insertion-deletion system Γ = (V, T,A, I,D) in the following way:

V = {Qi | qi ∈ Q} ∪ {A,B,E} ∪ T,
A = {ABE},
I = {(B, Qi, λ)ins | qi ∈ Q}
∪ {(B, a, λ)ins | a ∈ T},

D = {(Qf , E, λ)del | qf ∈ F}
∪ {(Qia, Qj , λ)del | qj ∈ δ(qi, a)}
∪ {(A, B, λ)del, (A, Q0, λ)del, (λ, A, λ)del}.

We claim that the only way for Γ to generate a terminal string is to correctly
simulate a trajectory of FA. Indeed, in order to erase E, B has to insert at least
one Qf , for qf ∈ F . Then, for any Qj , j > 0, to be erased, there must be such a
subword Qia to its left that qj ∈ δ(qi, a). Note that, while several instances of a state
symbol Qj can be inserted one next to the other, the contexts of deletion rules assure
that there is exactly one instance of a terminal symbol between two state symbols.
Since Q0 is the only state symbol whose deletion does not depend on other state
symbols, B is guaranteed to insert a sequence of the form Q∗0ai0Q

∗
i1ai1 . . . Q

∗
inainQ

∗
f

which corresponds to a trajectory of FA accepting the word ai0ai1 . . . ain , because
otherwise A will not be able to erase the leftmost state symbol Qj .

3.3. SYSTEMS OF SIZES (1,M, 0; 1, Q, 0) 43

We finish the proof by pointing out that, if A or B is deleted before a complete
trajectory of the automaton is generated, some of the state symbols will never be
erased. Therefore, deleting A or B too early yields derivations which do not produce
terminal strings.

Theorem 6 of [64] shows such an insertion-deletion system Γ of size (1, 1, 0; 1, 1, 0)
that L(Γ)∩(F1F0)+(a1a0)+ = L2k = {(F1F0)n(a1a0)m | n ≥ 22m−2}, which trivially
implies that systems in which contexts of length 2 are allowed can generate non-
context-free languages as well. It turns out, however, that such systems can generate
the language L2k directly, without any additional control. We start by showing how
the normal form for insertion-deletion systems induced by Lemmas 3.3.1 and 3.3.3
can be further refined for rules of size (1, 1, 0; 1, 1, 0) by requiring that no terminal
inserts or deletes any symbols.

Lemma 3.3.8. For an arbitrary insertion-deletion system Γ = (V, T,A, I,D) of size
(1, 1, 0; 1, 1, 0) there exists an equivalent system Γ′ = (V ′, T, A′, I ′, D′) of the same
size such that L(Γ′) = L(Γ) and no insertion rule of Γ is of the form (a, x, λ)ins,
with a ∈ T , x ∈ V .

Proof. We define the alphabet of Γ′ to contain additional non-terminal symbols per
each terminal: V ′ = V ∪{Na, N

′
a}. The new set of axioms is defined as A′ = {h(w0) |

w0 ∈ A}, where h : V ′ → V ′ is a morphism given by the following:

h(x) =

{
xN ′x, if x ∈ T,
x, otherwise.

We will use the notation IT to refer to those insertion rules of Γ which have a
terminal symbol in their context: IT = {(a, x, λ)ins ∈ I | a ∈ T, x ∈ V }. The
insertion and deletion rules of Γ′ are

I ′ = {(Na, x, λ)ins, (N
′
a, x, λ)ins | (a, x, λ)ins ∈ I}

∪ {(x, Na, λ)ins | (x, a, λ)ins ∈ I}
∪ I \ IT ,

D′ = {(Na, x, λ)del, (N
′
a, x, λ)del | (a, x, λ)del ∈ D}

∪ {(a, Na, λ)del, (a, N
′
a, λ)del | a ∈ T}

∪ D.

Remember that it is with no loss of generality that we can consider that Γ does not
ever delete terminal symbols [73, Lemma 4.2.2].

Γ′ directly simulates a derivation of Γ by applying the rule (x, Na, λ)ins right
before any application of the rule (x, a, λ)ins, and by replacing all insertions and
deletions happening in the context of a by insertions and deletions happening in the
context of the corresponding Na or N ′a. At the very end, the rules (a, Na, λ)del and
(a, N ′a, λ)del are applied to finalise the clean-up of the string.

To see how Γ can simulate any derivation of Γ′, remark that, to be erased, a
symbol Na requires the presence of a to its left, and consider the derivation

C : wv ⇒ wNav ⇒∗ w′aNav
′ ⇒ w′av′,

where w, v, w′, v′ ∈ V ∗. Because all contexts are of length at most 1 and are all
to the left, it holds that Nav ⇒∗ Nav

′, and w ⇒∗ w′a. But then it is possible to

44 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

reorder C in the following way:

wv ⇒ wNav ⇒∗ w′aNav ⇒∗ w′aNav
′ ⇒ w′av′.

Therefore, it suffices to consider those derivations of Γ′ in which all symbols Na carry
out operations only when there is a symbol a to the left of them. Remember also
that, by the construction of Γ′, all symbols N ′a, are guaranteed to always be located
immediately to the right of an instance of a, too. This means that, to simulate any
derivation of Γ′, Γ would just need to directly repeat applications of the rules which
do not involve symbols Na and N ′a, and perform the operations happening in the
context of Na or N ′a in the context of the corresponding instances of a.

We have therefore established that any terminal derivation of Γ can be simulated
by Γ′ and conversely, which implies that L(Γ) = L(Γ′) and proves the statement of
the lemma.

The previous lemma together with Lemma 3.3.3 effectively state that, in the
case of insertion-deletion systems of size (1, 1, 0; 1, 1, 0), any contiguous region of
terminals is guaranteed to never change. This allows us to formulate the following
lower bound for the power of systems of size (1, 1, 0; 1, 2, 0).

Theorem 3.3.9. Consider an insertion-deletion system Γ1 of size (1, 1, 0; 1, 1, 0)
and a regular language L. Then there exists an insertion-deletion system Γ2 of size
(1, 1, 0; 1, 2, 0) such that L(Γ2) = L(Γ1) ∩ L.

Proof. Consider an insertion-deletion system Γ1 = (V, T,A, I,D) with rules of size
(1, 1, 0; 1, 1, 0) and the finite automaton FA = (Q,T, q0, F, δ) recognising the lan-
guage L. Without losing generality, we may suppose that Γ1 has no context-free rules
(Lemma 3.3.1), never deletes terminals (Lemma 3.3.3), and never inserts anything
in the context of a terminal (Lemma 3.3.8). We will construct the insertion-deletion
system Γ2 = (V2, T, A2, I2, D2) in the following way:

V2 = {Qi | qi ∈ Q} ∪ {B,E} ∪ V,
A2 = {BQ0w0E | w0 ∈ A},
I2 = {(a, Qi, λ)ins | a ∈ T, qi ∈ Q} ∪ I,
D2 = {(Qia, Qj , λ)del | qj ∈ δ(qi, a)}
∪ {(Qf , E, λ)del | qf ∈ F}
∪ {(B, Q0, λ)del, (λ, B, λ)del} ∪D.

A terminal derivation of Γ2 consists of two phases. In the first phase the rules
from I ∪ D are applied, possibly resulting in a word of the form BQ0wE, where
w ∈ T ∗. In the second phase, every terminal inserts a state symbol, and the deletion
rules of the form (Qia, Qj , λ)del check that a trajectory of FA is correctly simulated.
The rules of the form (Qf , E, λ)del and (B, Q0, λ)del assure that complete accepting
trajectories of FA are generated (cf. the proof of Theorem 3.3.7).

To see that Γ2 cannot essentially deviate from this evolution scheme, consider
the word wQju, in which w ∈ V ∗2 and u ∈ T ∗. According to our initial assumptions
about Γ1, the only symbols that may be inserted in u are state symbols Qi. However,
since these symbols do not insert anything, they will only eventually get erased
without influencing the form of the terminal word u. Remark now that the only
way to erase E is to insert Qf to the left of it. We can now inductively apply

3.3. SYSTEMS OF SIZES (1,M, 0; 1, Q, 0) 45

our observation about the words of the form wQju to conclude that, whenever Γ2

succeeds in erasing all non-terminal symbols, the resulting terminal word belongs to
the language recognised by the finite automaton FA.

The following statement can now be directly deduced from [64, Theorem 6].

Corollary 3.3.10. L2k = {(F1F0)n(a1a0)m | n ≥ 22m−2} ∈ INS1,0
1 DEL2,0

1 .

The proofs above give the intuitive impression that every contraption devised
for insertion-deletion systems of size (1, 1, 0; 1, 2, 0) can be translated in a rather
straightforward manner to systems of size (1, 2, 0; 1, 1, 0). In fact, this statement is
true even in a much more general one-sided case.

Lemma 3.3.11. INSk,01 DELk,01 ⊆ INSk,01 DEL1,0
1 , k ≥ 1.

Proof. Consider an insertion-deletion system Γ = (V, T,A, I,D) with rules of size
(1, k, 0; 1, k, 0). We construct the insertion-deletion system Γ = (V ′, T, A, I ′, D′) of
size (1, k, 0; 1, 1, 0) in the following way:

V ′ = {Xr | r ∈ D} ∪ V,
I ′ = {(u, Xr, λ)ins | r : (u, x, λ)del ∈ D} ∪ I,
D′ = {(Xr, x, λ)del, (t, Xr, λ)del | r : (u, x, λ)del ∈ D,u = u′t}.

We immediately see that L(Γ) ⊆ L(Γ′), because any derivation step wi
r⇒Γ wi+1

for r ∈ I can be directly reproduced in Γ′, while a step with r = (u, x, λ)del can be
simulated in three steps of Γ′ (the active contexts are underlined):

w′iuxw
′′
i ⇒Γ′ w

′
iuXrxw

′′
i ⇒Γ′ w

′
iuXrw

′′
i ⇒Γ′ w

′
iuw

′′
i ,

To see that L(Γ′) ⊆ L(Γ), consider the derivation

w1uv1 ⇒ w1uXrv1 ⇒∗ w2Xrxv2,

where w1, v1, w2, v2 ∈ V ∗. Remember that one may require, without losing gener-
ality, that all rules in Γ have contexts of length exactly k. This, together with the
fact that Xr is not included in the context of any insertion rule, implies that x can
appear to the right of Xr in w2Xrxv2 only if it was already there in w1uXrv1; in
other words, v1 = xv′1. But then, to simulate a derivation of Γ′, Γ has to directly
reproduce the applications of the rules not involving Xr, and, instead of carrying
out deletions in the context of Xr, perform them in the context of u directly. This
means that any terminal word produced by Γ′ can be also produced by Γ, which
concludes the proof.

The following lemma captures a similar inclusion for rules of size (1, 1, 0; 1, k, 0).

Lemma 3.3.12. INSk,01 DELk,01 ⊆ INS1,0
1 DELk,01 , k ≥ 1.

Proof. Consider an insertion-deletion system Γ = (V, T,A, I,D) with rules of size
(1, k, 0; 1, k, 0). We construct the system Γ′ = (V ′, T, A, I ′, D′) of size (1, 1, 0; 1, k, 0)
in the following way:

V ′ = {Xr | r ∈ I} ∪ V,
I ′ = {(t, Xr, λ)ins, (Xr, x, λ)ins | r : (u, x, λ)ins ∈ I, u = u′t},
D′ = {(u, Xr, λ)del | r : (u, x, λ)ins ∈ I} ∪D.

46 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

It is immediately clear that L(Γ) ⊆ L(Γ′), because all the rules from D are included
in D′ and the application of a rule r = (u, x, λ)ins ∈ I can be simulated as follows:

wuv ⇒Γ′ wuXrv ⇒Γ′ wuXrxv ⇒Γ′ wuxv.

Consider now the following derivation of Γ′:

C : w1tv1 ⇒Γ′ w1tXrv1 ⇒∗Γ′ w2Xrv2 ⇒Γ′ w2Xrxv2 ⇒∗Γ′ w3uXrv3 ⇒Γ w3uv3,

where wi, vi ∈ V ∗, 1 ≤ i ≤ 3, and w2Xrv2 is the first sentential form in which Xr in-
serts an x. In this derivation the applications of the rules (t, Xr, λ)ins, (Xr, x, λ)ins,
and (u, Xr, λ)del are interleaved with other operations. Yet, since Xr only appears
in two other rules of Γ′ and because all rules in Γ′ only have left contexts, the fol-
lowing hold: w1t⇒∗ w2 ⇒∗ w3u, v1 ⇒∗ v2, and Xrxv2 ⇒∗ Xrv3. Therefore, C can
be reordered as follows:

w1tv1 ⇒∗ w3uv2 ⇒ w3uXrv2 ⇒ w3uXrxv2 ⇒∗ w3uXrv3 ⇒ w3uv3.

The possibility of such a reordering of any derivation involving Xr and the fact
that this symbol can only be erased in the context of a substring u leads us to
the conclusion that any such derivation can be reproduced in Γ by performing the
insertions of x directly in the context of the corresponding substring u, and by
carrying over the applications of other rules. This indicates that L(Γ′) ⊆ L(Γ) and
concludes the proof.

Lemmas 3.3.11 and 3.3.12 immediately imply the following statement.

Theorem 3.3.13. INS1,0
1 DELk,01 = INSk,01 DEL1,0

1 = INSk,01 DELk,01 , k ≥ 1.

Combined with Corollary 3.3.10 stating that insertion-deletion systems of size
(1, 1, 0; 1, 2, 0) can generate non-context-free languages, this theorem implies that
the same is true for insertion-deletion systems of size (1, 2, 0; 1, 1, 0).

Corollary 3.3.14. L2k = {(F1F0)n(a1a0)m | n ≥ 22m−2} ∈ INS2,0
1 DEL1,0

1 .

Contrary to what one might expect, increasing the length of the left context in
one-sided one-symbol insertion and deletion rules beyond 2 does not add expressive
power. To prove this statement, we will first show that insertion-deletion systems
of size (1, k, 0; 1, k, 0) can simulate systems of size (1, k, 0; 1, k+ 1, 0), for k ≥ 2, and
will then inductively apply this observation.

Lemma 3.3.15. INSk,01 DELk+1,0
1 ⊆ INSk,01 DELk,01 , k ≥ 2.

Proof. Consider the insertion-deletion system Γ = (V, T,A, I,D) with rules of size
(1, k, 0; 1, k + 1, 0). One can require without losing generality that all deletion con-
texts in Γ are exactly of size k + 1 and all insertion contexts are of size k. We will
construct the system Γ′ = (V ′, T, A, I ′, D′) of size (1, k, 0; 1, k, 0) in the following
way:

V ′ = {Xr | r ∈ D} ∪ V,
I ′ = {(u, Xr, λ)ins | r : (ux, t, λ)del ∈ D} ∪ I,
D′ = {(u, Xr, λ)del, (Xrx, t, λ)del | r : (ux, t, λ)del ∈ D},

3.3. SYSTEMS OF SIZES (1,M, 0; 1, Q, 0) 47

where u ∈ V k and x ∈ V . L(Γ) ⊆ L(Γ′) because Γ′ can directly reproduce any
application of an insertion rule from I, while any application of a deletion rule
(ux, t, λ)del ∈ D can be simulated as follows:

w uxt v ⇒ w uXrxt v ⇒ w uXrxv ⇒ w ux v.

Remark now that, since Xr inserts no symbols, whenever it is inserted, the
symbol x must already be present to the right of the insertion site. Moreover, the
same is true for the erased instance of t, because we require that all insertion rules
in Γ have contexts of length k ≥ 2, and, on the other hand, Xr does not appear
in the context of any insertion rule and can only participate in the deletion of t.
Therefore any derivation of Γ′ in which Xr is inserted and triggers the deletion of
at least a t has the following form:

C : w1 uxt v1 ⇒ w1 uXrxt v1 ⇒∗ w2Xrxt v2

⇒ w2Xrx v2 ⇒∗ w3 uXrx v3 ⇒ w3 ux v3.

But then, because of the fact that the rules of Γ′ are one-sided and that Xr only
appears in the context of one rule, we know that w1u ⇒∗ w2 ⇒∗ w3u, Xrxt v1 ⇒∗
Xrxt v2, and Xrx v2 ⇒∗ Xrx v3. With this in mind, one can reorder C in the
following way:

w1 uxt v1 ⇒ w1 uXrxt v1 ⇒∗ w1 uXrxt v2 ⇒ w1 uXrx v2

⇒∗ w1 uXrx v3 ⇒ w1 ux v3 ⇒∗ w2 x v3 ⇒∗ w3 ux v3.

In this new derivation Xr is inserted and deleted within the same substring ux,
which means that Γ can simulate a subderivation of Γ′ employing Xr by directly
applying the deletion rule (ux, t, λ)del in the corresponding context ux. Together
with the fact that the applications of all insertion rules from I can carried over to
Γ directly, this implies that Γ can generate any terminal word Γ′ can produce and
concludes the argument.

Note that, due to Corollary 3.3.2, we know that INSk,01 DELk+1,0
1 contains

INSk,01 DELk,01 , so the previous lemma actually shows equality between the two
classes of languages, rather than inclusion. Inductively applying that statement and
using Theorem 3.3.13 yields the following result.

Theorem 3.3.16. INSk,01 DELk,01 = INS2,0
1 DEL2,0

1 , k ≥ 2.

Proof. According to Lemma 3.3.15, insertion-deletion systems of size (1, k, 0; 1, k, 0)
are equivalent in power to those of size (1, k, 0; 1, k + 1, 0). On the other hand,
we know from Theorem 3.3.13 that INS1,0

1 DELk+1,0
1 = INSk+1,0

1 DELk+1,0
1 . But,

since Corollary 3.3.2 implies the inclusions INS1,0
1 DELk+1,0

1 ⊆ INSk,01 DELk+1,0
1 ⊆

INSk+1,0
1 DELk+1,0

1 , we conclude that INSk,01 DELk+1,0
1 = INSk+1,0

1 DELk+1,0
1 and

therefore that systems of size (1, k, 0; 1, k, 0) generate the same languages as those
with rules of size (1, k + 1, 0; 1, k + 1, 0). It suffices now to inductively apply this
observation and to remark that the construction from the proof of Lemma 3.3.15
works for the base case k = 2.

The following is an immediate corollary of Theorems 3.3.13 and 3.3.16.

48 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

Table 3.1: A summary of new results on one-sided insertion-deletion systems

Result Reference
INS1,0

1 DEL1,0
1 63 (ba∗) [76, Theorem 8]

INS1,0
1 DEL1,0

1 ∩ CF \REG 6= ∅ [117, Example 2.4.1]
INS1,0

1 DEL2,0
1 ⊇ REG Theorem 3.3.7

INS2,0
1 DEL1,0

1 ⊇ REG Theorem 3.3.6
INS1,0

1 DEL2,0
1 3 L2k Corollary 3.3.10

INS1,0
1 DELk,01 = INSk,01 DEL1,0

1 , k ≥ 1 Theorem 3.3.13
INSk,01 DELk,01 = INS2,0

1 DEL2,0
1 , k > 1 Theorem 3.3.16

INS1,0
1 DEL2,0

1 = INSm,01 DELq,01 , m · q 6= 0, m+ q > 2 Corollary 3.3.17
INS2,0

1 DEL1,0
1 = INSm,01 DELq,01 , m · q 6= 0, m+ q > 2 Corollary 3.3.17

Corollary 3.3.17. INS1,0
1 DEL2,0

1 = INS2,0
1 DEL1,0

1 = INSm,01 DELq,01 , where
m · q 6= 0, m+ q > 2.

Table 3.1 summarises the results about one-sided insertion-deletion systems given
in this section. We remind that L2k stands for {(F1F0)n(a1a0)m | n ≥ 22m−2}, where
m,n ∈ N and k ≥ 2.

Even though insertion-deletion systems of size (1, 1, 0; 1, 2, 0), and hence all sys-
tems of size (1,m, 0; 1, q, 0), m, q ∈ N, are sufficiently powerful to generate non-
context-free languages, the fact that they can only check contexts on one side and
that one symbol can be inserted or deleted at a time leads us to the supposition
that such systems cannot generate all recursively enumerable languages.

Conjecture 3.3.18. INSm,01 DELq,01 (RE, for all m,n ∈ N.

3.4 Derivation Graphs

3.4.1 Definition and Motivation

In spite of the apparent simplicity of insertion-deletion systems of size (1, 1, 0; 1, 1, 0),
Theorem 6 of [64] shows that rules of this size are capable of generating rather
complex languages. In this section we introduce a graphical analysis tool aimed at
capturing the complex interplay between the rules of such size and simplifying the
design and understanding of such systems. Our construction is based on derivation
trees introduced in [75, Definition 4].

Derivation trees are an alternative graphical representation of a derivation of
an insertion-deletion system of size (1, 1, 0; 1, 1, 0). Consider such a system Γ =
(V, T,A, I,D) and a derivation C : w0 ⇒∗ z, w0 ∈ A, z ∈ T ∗. The derivation tree τ
of C is an ordered tree iteratively constructed as follows:

– the root of τ is λ,

– the letters of w0 are the children of λ, in order,

– for any insertion wav ⇒ wabv, add b as the new leftmost child of the let-
ter a, and

– for any deletion wabv ⇒ wav, strike out the node corresponding to the letter b.

3.4. DERIVATION GRAPHS 49

Example 3.4.1 ([75, Example 1]). Let Γ = (V = {a, b, c}, T = V,A = {a}, I,D) be
an insertion-deletion system with the following rules:

I = {(a, b, λ)ins, (a, a, λ)ins, (b, c, λ)ins, (a, c, λ)ins},
D = {(c, b, λ)del},

and consider the following derivation of it (we underline the active contexts):

a⇒ aa⇒ aba⇒ aaba⇒ aacba⇒ aacbca⇒ aacbcca⇒ aaccca.

The sequence of derivation trees corresponding to each sentential form of this deriva-
tion is shown in Figure 3.1.

λ

a

λ

a

a

λ

a

b a

λ

a

a b a

λ

a

a b a

c

λ

a

a b a

c c

λ

a

a b a

c cc

λ

a

a b a

c c c

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

Figure 3.1: The sequence of derivation trees corresponding to the sentential forms of the derivation
shown in Example 3.4.1.

By construction, the word corresponding to a derivation tree can be obtained
by collecting the nodes in pre-order, and by ignoring the nodes which are struck
through.

Derivation graphs essentially improve on derivation trees by storing more infor-
mation about deletion and by adopting a more convenient style of graphical presen-
tation. Before introducing this structure, however, we need to formally capture the
notion of a letter, informally discussed in [21].

Definition 3.4.2. Given a finite alphabet of symbols V and an infinite alphabet of
markers M , a letter over V is a pair (a,m) ∈ V ×M . A well-formed string of letters
over V is any string from (V ×M)∗ without repetitions. The canonical projection
of any well-formed string of letters w̄ = (a1,m1)(a2,m2) . . . (an,mn) is the string
π(w̄) = a1a2 . . . an.

The role of markers is helping distinguish between different instances of the same
symbol in one string. Thus, any string over the alphabet V can be transformed into
a well-formed string of letters by picking distinct markers for every instance of a
symbol. For example, for M = N and V = {a, b}, one well-formed string of letters
corresponding to abab could be (a, 1)(b, 3)(a, 3)(b, 7).

Definition 3.4.3. A well-formed string w̄ over the alphabet V is said to derive
another well-formed string v̄ by the insertion rule (u, α, v)ins if w̄ = w̄′ūv̄w̄′′ and
v̄ = w̄′ūᾱv̄w̄′′, where π(ū) = u, π(v̄) = v, and π(ᾱ) = α. Symmetrically, w̄ is said
to derive v̄ by the deletion rule (u, α, v)del if w̄ = w̄′ūᾱv̄w̄′′ and v̄ = w̄′ūv̄w̄′′, with
π(ū) = u, π(v̄) = v, and π(ᾱ) = α.

The derivation relations induced by each of the insertion and deletion rules over
the set of well-formed strings are easily extendable to sets of rules in the usual way

50 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

(cf. Section 3.1), yielding constructions which parallel exactly the relations (⇒ins),
(⇒del), (⇒), and (⇒∗). Moreover, remark that for a fixed insertion-deletion system
and any two well-formed strings of letters w̄ and v̄ over its alphabet, w̄ ⇒ v̄ if and
only if π(w̄) ⇒ π(v̄). We will therefore often identify well-formed strings of letters
and their canonical projections, as well as the operations performed on these two
classes of objects.

The following definition introduce the main object of study of this section:
derivation graphs.

Definition 3.4.4. Consider a insertion-deletion system Γ = (V, T,A, I,D) of size
(1, 1, 0; 1, 1, 0) and a derivation C : w ⇒∗Γ v, w, v ∈ V ∗. A derivation graph corre-
sponding to C is the construct GC = (G, h), where G = (V̄ , E), V̄ is the (finite) set
of letters appearing in C, E ⊆ V̄ × V̄ is the set of edges, and h : E → {ins, del}.
The edges E and the mapping h are given by the following:

– if the letter x inserts y in C, then (x, y) ∈ E and h((x, y)) = ins,

– if the letter x deletes y in C, then (x, y) ∈ E and h((x, y)) = del.

Remark that derivation graphs are conceived to represent derivations and not
words. This means that different derivation graphs may correspond to one and the
same word, just because the same word may be derived in several different ways.

The immediate advantage of derivation graphs over derivation trees is that the
information about which symbol carried a deletion operation is also stored, while
in deletion trees deleted symbols are simply struck through. We also introduce
the convention that, when visually representing a derivation graph, the relative
horizontal position of letters in the graph should correspond to relative positions
of these letters in the string. Thus the derivation graph corresponding to the last
derivation tree shown in Figure 3.1 will be drawn as shown in Figure 3.2.

a

a

c

b

c c

a

Figure 3.2: The derivation graph corresponding to the rightmost derivation tree from Figure 3.1

Instead of verbosely specifying edge labels, we use different styles. Edges marked
with ins are drawn as the edges of insertion trees, while edges marked with del are
drawn as dotted lines with a cross at the end.

Remark that while respecting the relative positions of letters in the string makes
it possible to immediately find the word the derivation of which a graph represents
by projecting all the nodes on a horizontal axis and discarding those which were
deleted, it is only a convention of visual representation and is not an inherent (or
necessary) part of the concept of a derivation graph.

One can clearly construct a derivation graph for any derivation of a given
insertion-deletion system. However, since the derivation graph does not completely
capture the information about the order in which the operations were carried out,
the same derivation graph can be obtained for different derivations. For example,

3.4. DERIVATION GRAPHS 51

the following two different derivations correspond to the derivation graph shown in
Figure 3.2:

a ⇒ aa ⇒ aba ⇒ aaba ⇒ aacba ⇒ aacbca ⇒ aacbcca ⇒ aaccca,
a ⇒ aa ⇒ aba ⇒ abca ⇒ abcca ⇒ aabcca ⇒ aacbcca ⇒ aaccca.

Nevertheless, if one only considers rightmost derivations, a one-to-one correspon-
dence with derivation graphs can be established. Indeed, it can be seen from the
construction of derivation graphs, that picking the rightmost operation is always
possible and deterministic, so only one rightmost derivation can be constructed
from a given graph, and different graphs will result in different derivations. On the
other hand, Proposition 3.2.6 shows that an equivalent rightmost derivation exists
for any derivation of an insertion-deletion system of size (1, 1, 0; 1, 1, 0), so the class
of derivation graphs is sufficiently fine-grained to serve as a tool for analysing the
dynamics of such insertion-deletion systems.

In the following subsections we will show how derivation graphs can be used to
illustrate and analyse some of the constructions shown in [62, 63, 64]. In all of the
cases we will rewrite the leftist grammars to fit the format of insertion and deletion
rules we use in this work.

3.4.2 Multiplication and Division by Two

The work [63] gives rather complicated constructions, but they are based on combi-
nations of fairly simple structures. Since one-sided one-symbol insertion and deletion
rules cannot distinguish between multiple instances of the same symbol, the author
relies on strings of a special alternating structure and uses the number of alterna-
tions to encode values. To that end, they introduce partitions of the alphabet and
define an alternation as a pair of neighbouring symbols which belong to different
members of the partition [63, Section 2]. For example, for the alphabet V = {a, b, c}
and the subsets A1 = {a, c} and A2 = {b}, the string abacaab has 3 alternations: the
first group ab, the immediately following ba, and the second group ab. The author
interprets the number of alternations plus one as the numerical value stored in the
string.

Due to the very limited amount of information insertion and deletion rules of size
(1, 1, 0; 1, 1, 0) have about their application sites, exactly calculating a function does
not appear possible. For this reason, the author of [63] defines a weaker version
of “computing” with leftist grammars: starting from a valid input word wi with
n− 1 alternations, where n is the input value, the leftist transformer is expected to
generate a word wo with at least f(n) − 1 alternations, where f is the function we
would like to calculate.

The first construction we will discuss is the one shown in [63, Section 3]; it
is a leftist system which essentially performs a multiplication by two on the input
language (cf. leftist transformers of [21]). We will take the alphabet of the input lan-
guage to consist of the actual input symbols I = {b0, b1}, partitioned into I0 = {b0}
and I1 = {b1}, plus one service symbol B = {b}. The alphabet of the output lan-
guage consists of the output symbols themselves: O = {a0, a

′
0, a1, a2, a3}, partitioned

into O1 = {a0, a
′
0, a2} and O2 = {a1a3}, plus the service symbols F = {f0, f1, f}. As

we will see in more details in the following analysis, the leftist transformer from [63,
Section 3] always leaves a trail of service symbols at the end of the string. The fact

52 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

that in Lemma 2 of [63] the authors combine different instances of this transformer
with itself explains the necessity of allowing for and taking care of service symbols
in the input alphabet.

We will now formally present the discussed leftist transformer as the insertion-
deletion transformer T1 = (V1, R1), with V1 = I∪O∪F and the following rules in R1

(for readability, we do not consider separate sets of insertion and deletion rules):

(g, ai, λ)del, i ∈ {0, 2}, (a3, f1, λ)del,
(g, a′0, λ)del, (fi, f, λ)del, i ∈ {0, 1},
(a′0, f, λ)del, (fi, f1−i, λ)ins, i ∈ {0, 1},
(ai, ai⊕41, λ)del, i ∈ {0, 1, 2, 3}, (fi, bi, λ)ins, i ∈ {0, 1}, bi ∈ Ii,
(a1, f0, λ)del (f, b, λ)ins, b ∈ B,

where i⊕4 1 = (i+ 1) mod 4 is the operation of increment modulo 4. Note that the
original deletion rules correspond to insertion rules in this version and vice versa, in
full agreement with the conversion procedure outlined in Proposition 3.2.1. Due to
this conversion, the function of the transformer is reversed as well: the version we
have just described will “divide” by two, instead of multiplying. Thus, T1 starts with
a string w = w1w2, where w1 is an alternating word over the O (with respect to
partitioning into O1 and O2) and w2 ∈ F ∗, while its output is taken to be any string
v = v1v2 such that v1 is an alternating word over I (with respect to partitioning
into I0 and I1) and v2 ∈ B∗.

A direct translation of the interpretation of derivations of leftist grammars as
computations to insertion-deletion systems of size (1, 1, 0; 1, 1, 0) yields the require-
ment that an output word of the insertion-deletion transformer T1 should contain at
most bn/2c− 1 alternations, where n− 1 is the number of alternations in the corre-
sponding input word, and bn/2c is the integer part of n/2. A rightmost derivation
in which the transformer we have just shown “computes” the value bn/2c for n = 4
may look as follows:

ga0a1a2a3f1f ⇒ ga0a1a2a3f1fb⇒ ga0a1a2a3f1b⇒ ga0a1a2a3f1b1b

⇒ ga0a1a2a3f1f0b1b⇒ ga0a1a2a3f1f0b0b1b⇒ ga0a1a2a3f0b0b1b

⇒ ga0a1a2f0b0b1b⇒ ga0a1f0b0b1b⇒ ga0a1b0b1b⇒ ga0b0b1b⇒ gb0b1b,

where the symbols active in each step are underlined. The graph corresponding to
this derivation is shown in Figure 3.3.

g a0 a1 a2 a3 f1

f0

b0

b1

f

b

Figure 3.3: A derivation graph of the leftist transformer from [63, Section 3]

The system starts with the word a0a1a2a3f1f which contains 3 alternations
of the input symbols {a0, a1, a2, a3}, corresponding to the input value 4, and two
worker symbols f1 and f . In order to produce an alternating word over the alphabet
{b0, b1}, f1 must insert f0, so that both symbols can both insert b1 and b0. However,
to subsequently erase an instance of f1 or f0, two symbols of the input string need

3.4. DERIVATION GRAPHS 53

to be erased, because only a1 and a3 can erase an indexed f -symbol. This leads
to the transformation of the input word with 3 alternations into the output word
b0b1b with one alternation, coding the value 2 = b4/2c. The insertion of b by f is
inessential to the division process and we include it to showcase the corresponding
insertion rule.

A similar construction is given in Section 4 of the same paper [63]. This time
the leftist transformer “performs” multiplication by 2, which, after conversion to
the conventional semantics of insertion-deletion systems, translates to a transformer
doubling the input value. We take the input alphabet to be I = {b0, b1, b2, b3},
partitioned into four subsets Ii = {bi}, 0 ≤ i ≤ 3, and the output alphabet O =
{a0, a1, a2, a3}, partitioned in a similar way into Oi = {ai}, 0 ≤ i ≤ 3, plus the
service symbols F = {fi, f ′i , f ′′i | 0 ≤ i ≤ 3}.

The insertion-deletion transformer is defined as T2 = (V2, R2), where V2 = I ∪
O ∪ F and the set R2 contains the following rules:

(g, ai, λ)del, i ∈ {0, 1}, (fi⊕41, fi, λ)ins, i ∈ {0, 1, 2, 3},
(ai, ai⊕41, λ)del, i ∈ {0, 1, 2, 3}, (f ′i⊕41, f

′
i , λ)ins, i ∈ {0, 1, 2, 3},

(ai, fi, λ)del, i ∈ {0, 1, 2, 3}, (fi, bj , λ)ins, j ∈ {0, 1, 2, 3},
i mod 2 = bj/2c,

(ai, f
′
i , λ)del, i ∈ {0, 1, 2, 3}, (f ′i , bj , λ)ins j ∈ {0, 1, 2, 3},

i mod 3 = |b(j − 1)/2c|,
(g, f ′′i , λ)del, i ∈ {0, 1, 2, 3}, (f ′′i , bi, λ)ins i ∈ {0, 1, 2, 3},

where i ⊕4 1 = (i + 1) mod 4 and |n| is the absolute value of n. T2 is applied
to a string w = w1w2, where w1 is an alternating word over O (with respect to
partitioning into Oi, 0 ≤ i ≤ 3) and w2 ∈ F ∗, while its output is taken to be any
alternating word over I (with respect to partitioning into Ii, 0 ≤ i ≤ 3).

A derivation in which the value 2 · 2 is computed, may look as follows (the
corresponding derivation graph is shown in Figure 3.4):

ga0a1f1 ⇒ ga0a1f1b3 ⇒ ga0a1f1b2b3 ⇒ ga0a1f1f0b2b3 ⇒ ga0a1f1f0b2b3
⇒ ga0a1f1f0b1b2b3 ⇒ ga0a1f1f0b0b1b2b3 ⇒ ga0a1f0b0b1b2b3 ⇒ ga0f0b0b1b2b3
⇒ ga0b0b1b2b3 ⇒ gb0b1b2b3.

g a0 a1 f1

f0

b0 b1

b2 b3

Figure 3.4: A derivation graph of the leftist transformer from [63, Section 4]

The explanation of the activity of T2 is symmetric to that of T1. Here, in order
to generate a language of the form (b0b1b2b3)∗, for example, the system has to
insert a series of indexed f -symbols, each of which will contribute two b-symbols.
Because each indexed f -symbol should be erased by an a-symbol, a one-to-two
correspondence is established between the number of a-symbols in the input string
and the number of b-symbols in the output string.

54 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

Remark that the two derivation graphs we saw in this section are considerably
more compact and less redundant than the corresponding derivations. Moreover, the
graphical representations we showed in Figures 3.3 and 3.4 revealed some details of
the interaction between the symbols which were not easily visible from the formal
definition of the rules of the corresponding transformer. Thus, derivation graphs
prove useful even for relatively small leftist grammars carrying out rather simple
computations.

3.4.3 Simulation of an LBA

The next example we will consider is the main construction of [62]. The paper
investigates the time complexity of the membership problem for leftist grammars
and shows that this problem is PSPACE-hard. The proof is done by construct-
ing a leftist grammar some derivations of which simulate runs of a linear bounded
automaton (LBA).

A linear bounded automaton is a non-deterministic Turing machine L = (Q,Σ∪
{B,C}, a0, q0, F, δ) (cf. Section 2.2) with the additional requirement that, initially,
the head is positioned between the left end marker B and the right end marker C,
and L is not allowed to leave the region delimited by this markers, nor to erase
them. Thus, the workspace L may use is statically limited as a function of the size
of the input.

In the definition of the rules from [62], the symbol Γ is used to refer to the
alphabet of the LBA, Q to refer to the set of states, and Φ represents the rewriting
rules of the form a1a2 → b1b2, a1, a2, b1, b2 ∈ Γ ∪ Q, defining the behaviour of the
automaton (for example, the rule q1a→ bq2 moves the head of the LBA to the right,
rewrites a to b, and changes the state from q1 to q2). The blank symbol is denoted
by [. The rules of the grammar simulating this LBA, written in the conventional
notation for insertion and deletion rules, are the following:

(〈G, i, j, b〉, 〈K, i, j, b〉, λ)del, (H, 〈G, j, 0, [〉, λ)del,
(〈G, i, j, b〉, 〈G, i, j̄, b′〉, λ)del, (〈R, 0, [〉, H, λ)ins,
(〈K, i, j, b〉, 〈K, i, j̄, b′〉, λ)ins, (〈G, i, j, b〉, 〈Gα,2, i, j̄, b2〉, λ)del,
(〈K, i, j, b〉, 〈Y, ī, j, b〉, λ)ins, (〈Gα,2, i, j, b2〉, 〈K, i, j, a2〉, λ)del,
(〈R, j, b〉, 〈R, j̄, c〉, λ)ins, (〈Gα,2, i, j, b2〉, 〈Gα,1, i, j̄, b1〉, λ)del,
(〈R, j, b〉, 〈Y, 1, j, b〉, λ)ins, (〈Gα,1, i, j, b1〉, 〈K, i, j, a1〉, λ)del,
(x, 〈R, i, [〉, λ)ins, (〈Gα,1, i, j, b〉, 〈G, i, j̄, b′〉, λ)del,
(x, 〈K, i, j, b〉, λ)ins,

where i, j ∈ {0, 1}, j̄ = 1 − j, b, b′, c ∈ Γ ∪ Q, α = a1a2 → b1b2 ∈ Φ, and Y ∈
{G} ∪ {Gα,k | α ∈ Φ, k ∈ {1, 2}}. The alphabet of the system is taken to include all
symbols appearing in the rules above.

According to [62, Subsection 3.1], a valid sentential form of this system looks like
vHwu, where w is the reversed current contents of the tape between the end markers,
encoded in the fourth components of a sequence of G-symbols (that is, symbols
represented by tuples having G or G with subscripts as the first component), v stores
the accepting configuration of the automaton encoded in the third components of a
sequence of R-symbols (symbols with R in the first component), and u is a tail of
K-symbols (symbols with K in the first component). The grammar moves from one
configuration of the automaton to the other by having H produce a new tape, each

3.4. DERIVATION GRAPHS 55

cell of which (represented by a G-symbol) inserts a K-symbol capable of erasing the
corresponding cell of the old tape. Whenever the old tape is completely erased, the
last K-symbol will stay in the string and contribute to the tail of K-symbols.

The part v of every sentential form never changes in a derivation and is used
to compare the current configuration with the accepting configuration of the LBA.
Figure 3.5 shows the fragment of the derivation graph which corresponds to moving
from configuration B aq1[C to B q2b[C.

H

〈G, 1, 0, [〉

〈Gα,2, 1, 1, b〉

〈Gα,1, 1, 0, q2〉

〈K, 1, 0, a〉

〈K, 1, 1, q1〉

〈K, 1, 0, [〉

〈G, 0, 0, [〉

〈G, 0, 1, q1〉

〈G, 0, 0, a〉

Figure 3.5: An excerpt of the derivation graph of the insertion-deletion system some derivations of
which simulate an LBA [62]

Remember that, when converting leftist grammars to insertion-deletion systems,
the direction of the derivation is reversed, which means that the insertion-deletion
system we have just shown will simulate the reverse evolution of the LBA by starting
in its accepting configuration and successively going back through all of its config-
urations up to the starting configuration.

It follows from the way in which configurations of the LBA are represented
in sentential forms that only context-free subsets of the language recognised by the
leftist grammar are considered in [62]. Indeed, final words include the encoding of an
accepting configuration of the LBA and its initial configuration, both of which must
be of the same length. This variant of control is even more powerful than intersection
with regular languages used in [63], and, while being helpful in the assessment of
complexity of the membership problem for leftist grammars (and insertion-deletion
systems of size (1, 1, 0; 1, 1, 0)), represents little interest from the point of view of
the theory of formal languages and computability theory.

By looking at the derivation graph in Figure 3.5, one can remark that the third
components of G- and K-symbols assure alternating sequences and help avoid ac-
cidental deletions of several instances of the same symbol. The second components
on the other hand allow distinguishing between two successive tapes. Furthermore,
considering the derivation graph makes it clear that the evolution of the insertion-
deletion system (leftist grammar) consists of super-steps, in which the new tape is
generated while the old one is erased. Therefore, in the case of this example, relying
on derivation graphs helped us attain a clear understanding of the functioning of
the fairly intricate construction shown [62].

3.4.4 Generation of an Exponential Language

The last example we will analyse is the one shown in Section 8 of [64]. The authors
construct a leftist grammar which recognises such a non-context-free language L in
which all the words of the form (a1a0)m(F0F1)n have the property n ≥ 22m−2. This
parallels the way in which multiplications and divisions are carried out by leftist

56 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

transformers in [63] in the sense that no exact correspondence, but only a certain
inequality between the multiplicities of symbols, can be assured. Furthermore, the
strings under consideration have a similar alternating structure. When translated
into insertion-deletion systems according to Proposition 3.2.1, this leftist grammar
will have the following form:

(ai, Bi, λ)del, (Bi, a1−i, λ)ins, (F0, a0, λ)ins,
(ai, Xi,0, λ)del, (Di,j , Bi, λ)ins, (F0, X0,j , λ)ins,
(Xi,j , Yi,j , λ)del (Di,1−j , Di,j , λ)ins (F1, Y0,j , λ)ins,
(Yi,j , Di,j , λ)del (Di,0, X1−i,k, λ)ins (Fi, F1−i, λ)ins,
(Yi,j , Xi,1−j , λ)del (Di,1, Y1−i,k, λ)ins (x, F1, λ)ins,

(x, Di,j , λ)ins,

where i, j, k ∈ {0, 1}. The language generated by this insertion-deletion system is
L′ with the following property:

L′ ∩ (F1F0)∗(a0a1)∗ = {(F1F0)n(a0a1)m | n ≥ 22m−2}.

A possible way for the above system to derive the word (F1F0)4(a0a1)2 is shown
in Figure 3.6. The following is the fragment of the derivation involving the insertion
paths from x to the rightmost a1 and to the rightmost a0, as well as the symbols
X0,0 and Y0,0 situated in between:

x⇒ xD0,0 ⇒ xD0,0B0 ⇒ xD0,0B0a1 ⇒ xD1,1D0,0B0a1

⇒ xD1,1Y0,0D0,0B0a1 ⇒ xD1,1Y0,0B0a1 ⇒ xD1,1D1,0Y0,0B0a1

⇒ xD1,1D1,0X0,0Y0,0B0a1 ⇒ xD1,1D1,0X0,0B0a1 ⇒ xD1,1D1,0B1X0,0B0a1

⇒ xD1,1D1,0B1a0X0,0B0a1 ⇒ xD1,1D1,0B1a0B0a1 ⇒ xD1,1D1,0B1a0a1.

We do not give the full derivation corresponding to the graph from Figure 3.6 because
just spelling out all of its steps would require a lot of space without offering additional

x

F1

F0

F1

F0

F1

F0

F1

F0

a0 X0,0

Y0,0

X0,1

Y0,1

X0,0

Y0,0

X0,1

Y0,1

D0,1

D0,0

D0,1

D0,0

B0

a1

X1,0

Y1,0

X1,1

Y1,1

D1,1

D1,0

B1

a0

X0,0

Y0,0

D0,0

B0

a1

Figure 3.6: A derivation graph showing how exponential growth can be achieved in insertion-
deletion systems of size (1, 1, 0; 1, 1, 0) [64, Section 8]

3.4. DERIVATION GRAPHS 57

information on the dynamics of the system.
In this graphical representation we extend the notion of the derivation graph

by assigning colours to its vertices according to their position relative to terminal
symbols. Thus all symbols which are connected by an insertion path to a terminal
symbol are called red, while those which are not are called green. In the black-and-
white version of this thesis red symbols are also shown in bold font, while green ones
in light font.

Previously, in Subsections 3.4.2 and 3.4.3, we did not introduce colours, be-
cause we only focused on some parts of the derivation graphs, and also because we
mainly used them for illustrative purposes. In this section, however, we will see
how coloured derivation graphs can be used to actually generate interesting conclu-
sions in a fairly straightforward manner, despite the complexity of the underlying
insertion and deletion rules.

A series of properties of red and green symbols can be deduced immediately from
their definition, like for example, that all red symbols together with the correspond-
ing insertion edges form a set of subtrees of the derivation graph, or that all green
symbols are eventually deleted, or that a green symbol cannot insert a red symbol.
Because red symbols form trees, we will refer to insertion paths starting at a red
symbol and ending with a terminal as to red branches.

One other property which is just as immediate but gives important insight as
to how far insertion and deletion rules can carry information in a string is that,
whenever a red symbol appears in a sentential form, it cannot be erased unless it
has inserted another red symbol. Given that we can require that terminals are never
deleted (Lemma 3.3.3), this means that red symbols have a behaviour similar to that
of terminals in the sense that a red branch cannot “disappear” from the string. The
implication of this for rules of size (1, 1, 0; 1, 1, 0) is that no rule can ever “see” what
happens to the left or to the right of a red branch, and that the evolution of a green
subgraph depends exclusively on the enclosing red branches.

Unfortunately, this observation is only applicable in an a posteriori fashion,
because a symbol being red or green is usually decided rather late, sometimes at
the very end of the derivation. A static separation between red and green symbols
is not possible: while one can design a system in which symbols statically marked
as green never end up producing terminal symbols, there is no way of guaranteeing
that a symbol statically marked as red will actually yield a terminal. For example,
if the rightmost letter B0 in the graph from Figure 3.6 does not insert a1, the whole
branch x−D0,0 −B0 becomes green.

Distinguishing between red and green symbols further helps analyse the dynam-
ics of insertion-deletion systems of size (1, 1, 0; 1, 1, 0). For example, one can see
from Figure 3.6 that every red branch has twice as many D-symbols than the next
one to its right. This is because of the fact that two D-symbols have to insert a Y -
symbol and then an X-symbol to delete a single D-symbol and then see both Y - and
X-symbols erased. F -symbols have the same behaviour as D-symbols in what con-
cerns interaction with the red branch immediately to the right, but since F -symbols
are terminals, they do not need to be erased. Remark now that all red branches,
except the leftmost one, are finally represented by a single terminal a-symbol. The
leftmost branch on the other hand must contain at least 2k F -symbols, where k is
the number of red branches not containing F -symbols. Indeed, if this is not the case,
there will be D-symbols left in the string with no more letters to erase them. This

58 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

constraint explains how insertion-deletion systems of size (1, 1, 0; 1, 1, 0) are capable
of performing a series of multiplications by two.

While it is a trivial observation that red symbols form subtrees of the derivation
graph, no suppositions as to the kinds of structures green symbols may arrange
in can be immediately made. Our conjecture is, however, that the graph from
Figure 3.6 showcases the possible functionality of green structures comprehensively.
This supposition is based on the fact that the main role of green symbols is assuring
a relationship between the numbers of certain symbols on two neighbouring red
branches, and that the induced relations are essentially linear (e.g. there have to be
twice as many D-symbols on a red branch than there are on the branch which is
immediately to the right). This conjecture implies therefore that green structures
can be considerably “flattened” down to the kind of up-going deletion paths formed
by X- and Y -symbols in Figure 3.6, and that the derivation graphs of any insertion-
deletion system can be brought into a kind of a “wave” normal form, consisting of
normal red branches interspersed with up-going green deletion paths.

Another non-trivial conclusion the observation of a derivation graph in Figure 3.6
suggests is that, at least in this case, green symbols can be done away with. Indeed,
consider the situation in which F1 inserts Y0,1, which then erases D0,1; this deletion
operation can instead be associated with F1 directly. Remark however, that F1 can
also insert Y0,0 which erases D0,0; if we associate this other deletion with the same
symbol F1, a single instance of it will be sufficient to erase all D-symbols on the
second leftmost red branch. To avoid such a collapse, we would need to introduce
two different species of F1: F ′1 and F ′′1 , one of which would be able to erase D0,1,
and the other would delete D0,0. Of course, the rules inserting F1 would have to be
altered accordingly. Furthermore, the same procedure would have to be carried out
for D-symbols. All these operations clearly result in a substantial increase in the
number of rules, but the resulting system will produce derivation graphs consisting of
red branches only (whenever a terminal word of the form (F1F0)∗(a0a1)∗ is derived).
The important consequence of such a transformation would be that any derivation
of the new system could be simulated by non-contracting (context-sensitive) string
rewriting rules. While this simulation comes with little surprise for the system we
are discussing, if the conjecture about the existence of the “wave” normal form is
true, the possibility of eliminating green symbols would imply that any insertion-
deletion system of size (1, 1, 0; 1, 1, 0) can be simulated by a context-sensitive string
rewriting grammar.

Conjecture 3.4.5. INS1,0
1 DEL1,0

1 ⊆ CS.

Differentiating between red and green symbols also allows giving an easy expla-
nation of what pure derivations are. In a pure derivation, all inserted symbols must
either insert or delete useful symbols, i.e. symbols which eventually contribute to
the insertion of a terminal. It is immediate that red symbols are useful. On the
other hand, a green symbol is useful either if it erases a red symbol or if it inserts
or deletes another useful green symbol. Thus, in the derivation graph of a pure
derivation, there exists a path from every green symbol to at least one red symbol.
Expressing eagerness in derivation graph parlance is more difficult and gives no ad-
ditional insight as compared to the original definition, essentially because eagerness
discusses the time moment at which a symbol is deleted, and time is not directly
captured in derivation graphs.

3.4. DERIVATION GRAPHS 59

We remark that derivations graphs proved very useful in analysing the function-
ing of the leftist grammar introduced in [64, Section 8]. We saw that, first of all, that
Figure 3.6 compactly represents a derivation which would take about a page to spell
out completely, and does it without losing any essential details. Moreover, colouring
the letters helped discern even more structural elements right away. Further, we
used some properties of red branches to explain the way in which exponentiation
is performed in a clear and concise manner. Finally, we formulated two non-trivial
conjectures in terms of local properties of derivation graphs: the one about the
existence of the “wave” normal form, and the one suggesting that the family of lan-
guages generated by insertion-deletion systems of size (1, 1, 0; 1, 1, 0) is completely
contained in the family of context-sensitive languages.

We conclude this section by considering the possibilities of extending the idea
of derivation graphs to insertion-deletion systems of size (1, 1, 0; 1, 2, 0). Because
these systems rely on insertion rules of size (1, 1, 0), we can start with derivation
trees, just as we did in the case of insertion-deletion systems of size (1, 1, 0; 1, 1, 0)
and leftist grammars. Unfortunately, elegantly representing deletions of size (1, 2, 0)
poses a greater challenge, mostly because such rules involve three symbols, possibly
situated on three different branches. While describing this relation graphically can
be as simple as connecting the three nodes with a special kind of line, reasoning
about the resulting structure (which, incidentally, may be seen as a hypergraph)
is considerably more difficult than about derivation graphs for insertion-deletion
systems of size (1, 1, 0; 1, 1, 0). Yet, a couple interesting observations can be made
right away. However we choose to represent deletions, red branches can still be
defined, because they only rely on insertions. It turns out that deletion rules of size
(1, 2, 0) can “look over” a red branch and interact with the green structure situated
to the left of it. Such rules cannot involve letters separated by more than one red
branch, but it follows from Corollary 3.3.17 that looking over one red branch suffices
to indirectly connect letters separated by any bounded number of red branches.

60 CHAPTER 3. ONE-SIDED INSERTION-DELETION SYSTEMS

Chapter 4

Insertion-deletion Systems with
Control

In this chapter, we consider controlled variants of insertion-deletion systems and dis-
cuss their expressive power. We show that adding graph, semi-conditional, or ran-
dom context control allows achieving computational completeness with very small
rules. These results are summarised in Table 4.1 on page 86. In Section 4.5, we con-
sider mixed networks of evolutionary processors and show how universal networks
with 4, 5, and 7 rules only can be constructed.

4.1 Definitions

In this section we will introduce the three control mechanisms we will employ in this
work: semi-conditional control, random context control, and graph control.

4.1.1 Sequential Rewriting Systems

Following the ideas in [37], we start by generalising the notion of a rewriting system
to define control mechanisms in their most general form.

Definition 4.1.1. A sequential grammar is a construct G = (O,OT , A, P, (⇒G)),
where O is a set of objects, OT ⊆ O is a set of terminal objects, A ⊆ O is a finite
set of axioms, P is a finite set of rules, and (⇒G) ∈ O×O is the derivation relation
of G. Given an object w ∈ O, its membership in the set of terminal objects w ∈ OT
is required to be decidable.

Each rule p ∈ P is assigned a derivation relation (
p⇒G) ⊆ O × O which should

verify the following conditions:

– for any x ∈ O, the number of objects y ∈ O which satisfy x p⇒G y is finite, and

– there exists a Turing machine which, given an object x ∈ O, computes all such
y ∈ O that x p⇒G y.

The derivation relation of the grammar is defined as the union of all derivation
relations associated with every rewriting rule:

(⇒G) =
⋃
p∈P

(
p⇒G).

61

62 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

The symbol (⇒∗G) will be used to refer to the reflexive and transitive closure of
(⇒G). We will often omit the index in (⇒G) when the grammar to which we refer
is clear from the context.

A derivation of G is a sequence of derivation steps w1 ⇒ w2 ⇒ . . . ⇒ wn,
wi ∈ O, 1 ≤ i ≤ n. The objects wi are sometimes referred to as configurations. The
language generated by a sequential rewriting grammar G is defined as

L(G) = {v ∈ OT | w ⇒∗G v, w ∈ A}.

Definition 4.1.2. A string rewriting grammar is defined as the following tuple:
Gs = (V ∗, T ∗, A, P, (⇒Gs)), where V is a finite alphabet of symbols, T ⊆ V is the
alphabet of terminal objects, A ⊆ V ∗ is a finite set of axioms (start strings), and P
is a set of string rewriting rules with or without additional control mechanisms.

A string rewriting grammar is an instantiation of the notion of a sequential
rewriting grammar for the case of strings. String rewriting rules without control
mechanisms have the form p : w → v, w ∈ V +, v ∈ V ∗, and the relations (

p⇒Gs)
and (⇒Gs) are defined to capture the usual semantics of string rewriting rules.
Configurations of string rewriting systems are sometimes referred to as sentential
forms. Insertion-deletion systems without context-free insertion rules (i.e. rules of
size (k, 0, 0), k ∈ N) belong to the class of string rewriting grammars without con-
trol mechanisms. Context-free insertion rules can be represented by extending the
semantics of string rewriting to allow rules of the form λ → v, v ∈ V ∗, performing
a context-free insertion of v.

4.1.2 Graph Control

In this subsection we first introduce the graph control mechanism for sequential
rewriting systems, and then instantiate the concept for the case of conventional
insertion-deletion systems.

Definition 4.1.3. A graph-controlled sequential rewriting system with objects O
and rules of type X, where X may stand for “string rewriting”, “multiset rewriting”,
etc., is a sequential rewriting system Ggc = (O′, O′T , A, P, (⇒Ggc)), with the alphabet
O′ ⊆ O ×H, where H is a finite set of state labels, and the set of terminal objects
O′T ⊆ OT × H, OT ⊆ O. The set of axioms is a finite set of labelled objects:
A ⊆ O ×H.

The rules of Ggc have the form p : (i, r, S, F), where i ∈ H, r is a rule of type
X, and S, F ⊆ H are the success and failure fields of p, respectively. For such a
rule, (i, x)

p⇒ (j, y) holds if either x r⇒ y and j ∈ S, or x 6 r⇒ y and j ∈ F . If all
the rules of G have empty failure fields, then G is said to be without appearance
checking. Otherwise, it is called a graph-controlled sequential rewriting system with
appearance checking.

Observe that the rules of a graph-controlled system induce a graph of labels with
two types of edges, corresponding to the success and failure fields. Some authors
prefer defining the graph up front, e.g. [37].

Often, when defining the output of a graph-controlled sequential rewriting sys-
tem, we will discard state labels in terminal configurations:

L(G) = {v ∈ OT | w ⇒∗Ggc
(h, v), (h, v) ∈ O′T , w ∈ A}.

4.1. DEFINITIONS 63

Depending on the correspondence between rules and state labels, as well as on the
number of elements allowed in success and failure fields of rules, different equivalent
ways of defining graph-controlled systems exist. Thus, if state labels are required to
be in bijective correspondence with the rules, one obtains Definition 2.2.4 of [73]. If,
on the other hand, multiple rules are allowed to correspond to the same label, but
success and failure fields are required to be singletons sets, Definition 2.2.5 of [73] is
obtained.

A graph-controlled insertion-deletion system is a graph-controlled sequential
rewriting system with strings over a finite alphabet V as objects and insertion and
deletion rules. We introduce the following equivalent definition, which can be found
more often in the literature.

Definition 4.1.4. A graph-controlled insertion-deletion system is a tuple of the
form Γ = (V, T,A,H,H0, Hf , R), where V is a finite alphabet of symbols, T ⊆ V
is the terminal alphabet, H is a set of labels, H0 ⊆ H is the set of initial labels,
Hf ⊆ H is the set of final labels, A ⊆ V ∗ ×H0 is a set of axioms, and R contains
rules of the form

(
h, (u, α, v)t, S, F

)
, with t ∈ {ins, del}, h ∈ H, and S, F ⊆ H.

According to the definition of a graph-controlled sequential rewriting system,
the language generated by Γ is

L(Γ) = {v ∈ T ∗ | (w0, h0)⇒∗Γ (v, hf), (w0, h0) ∈ A, hf ∈ Hf}.

We will use the symbol ELSPk(insm,m
′

n , delq,q
′

p) to refer to the family of languages
generated by graph-controlled insertion-deletion systems with k states and insertion
and deletion rules of size (n,m,m′; p, q, q′).

Example 4.1.5. Consider the following graph-controlled insertion-deletion system
Γ = (V, T,A,H,H0, Hf , R):

V = T = {a, b},
A = {λ},
H = {1, 2},

H0 = Hf = {1},
R =

{
r1 :

(
1, (λ, a, λ)ins, {2},∅

)
, r2 :

(
2, (λ, b, λ)ins, {1},∅

)}
.

The rules in R induce the following graph of states:

1 2
r1

r2

Γ starts in the configuration (λ, 1) in which its only option is inserting a and moving
into state 2. In state 2, the only possibility Γ has is to insert b and move back into
state 1. This, together with the fact that the final label is 1, implies that L(Γ) =
{v ∈ V ∗ | |v|a = |v|b}.

Graph-controlled insertion-deletion systems without appearance checking and
with all success fields required to be singletons correspond to insertion-deletion P
systems (e.g. [59]). Indeed, even though multiple strings may be present in a P
system, the fact that they do not interact means that it suffices to trace the evolution
of each of them individually.

64 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

4.1.3 Semi-conditional and Random Context Control

Like in the previous subsection, we will first define semi-conditional and random
context control for the general case of sequential rewriting systems, and will then
show how these definitions apply to the case of insertion-deletion systems.

Definition 4.1.6. A semi-conditional grammar is a string rewriting grammar with
the rules of the form p : (α → β, P,Q), where α ∈ V +, β ∈ V ∗, and P and
Q are finite subsets of V ∗ called the permitting and forbidding context conditions
respectively. For such a rule p, w p⇒ v, w ∈ V +, v ∈ V ∗, if w = w′αw′′ and
v = w′βw′′, and, additionally, all elements of P are subwords (i.e. factors) of w and
no elements of Q are subwords of w.

Definition 4.1.7. A random context grammar is a semi-conditional grammar in
which the permitting and forbidding context conditions are only allowed to contain
single symbols.

Semi-conditional insertion-deletion systems are defined to be those semi-condit-
tional grammars allowing rules of the form λ → v in which all rules correspond to
insertion or deletion rules [58].

Definition 4.1.8. A semi-conditional insertion-deletion system is the construct
Γ = (V, T,A,R), where V is a finite alphabet, T ⊆ V is the alphabet of termi-
nal symbols, A ⊆ V ∗ is a finite set of axioms, and R is finite set of rules of the
form

(
(u, α, v)t, P,Q

)
, where t ∈ {ins, del}, and P and Q are the permitting and

forbidding context conditions correspondingly.

The degree of the semi-conditional insertion-deletion system Γ = (V, T,A,R) is
the pair (i, j), where

i = max{|w| :
(
p, P,Q

)
∈ R,w ∈ P} and j = max{|v| :

(
p, P,Q

)
∈ R, v ∈ Q}.

We will use the notation SCi,jINS
m,m′
n DELq,q

′
p to refer to the family of lan-

guages generated by semi-conditional insertion-deletion systems of degree (i, j) and
of size (n,m,m′; p, q, q′).

Definition 4.1.9. A random context insertion-deletion system is a semi-conditional
insertion-deletion system of degree (1, 1).

We will use the following shortcut notation for the family of languages generated
by such systems: RC INSm,m

′
n DELq,q

′
p = SC1,1INS

m,m′
n DELq,q

′
p .

The following example illustrates the power of semi-conditional control, which
may be used to assure complex interactions between the symbols in the string.
Section 4.3 conducts further study of the power of this control mechanism.

Example 4.1.10. We will construct a semi-conditional insertion-deletion system
Γ = (V, T,A,R) of size (1, 0, 0; 1, 0, 0) and degree (2, 2) such that L(Γ) = {anbn |
n ∈ N}. The alphabets of Γ are defined as follows:

V = {a, ā, b, b̄, S1, S2, S3, S4, B,E}, T = {a, b},

and the single axiom of Γ is BS1E. We will assure that all rules of Γ can only
operate on a string in which clean and barred versions of terminal symbols alternate,

4.1. DEFINITIONS 65

and in which the beginning and end markers B and E are on the corresponding ends
of the string, by adding the following set to the forbidding conditions of every rule:

N = {xy, x̄ȳ | x, y ∈ T} ∪ {Bā, bE} ∪ {XB,EX | X ∈ V }.

We will call normalised the strings which do not have any of the words of N as
subwords.

Γ will work in cycles, during each of which it will insert the words aā and bb̄ to
the left and to the right of the center of the string, marked by one of the symbols Si.
The pair aā will be inserted by the following rules:(

(λ, a, λ)ins, {S1}, {S2, S3, S4} ∪ N
)
,(

(λ, S2, λ)ins, {aS1}, {S2, S3, S4} ∪ N
)
,(

(λ, ā, λ)ins, {S1S2}, {S3, S4} ∪ N
)
,(

(λ, S1, λ)del, {āS1, S1S2}, {S2ā, S3, S4} ∪ N
)
.

Consider a string BαS1βE, with α ∈ (aā)∗ and β ∈ (bb̄)∗. If a is not inserted
to the left of S1, the string will not be normalised any more (will denormalise), and
Γ will halt. When a is inserted, S2 can be inserted, and it has to be inserted to the
right of S1 in order for the insertion of ā to happen. The insertion of ā can only
occur to the left of S1, since otherwise the contexts of the rule erasing S1 will never
be satisfied. Γ will therefore effect the following sequence of transformations (the
inserted symbols are in bold):

BαS1βE ⇒ BαaS1βE ⇒ BαaS1 S2 βE ⇒ Bαa āS1S2βE ⇒ Bαaā S2βE.

When S1 is erased, Γ will switch to the second half of the cycle, during which it
will insert bb̄ by the following rules:(

(λ, S3, λ)ins, {āS2, S2b}, {S1, S3, S4} ∪ N
)
,(

(λ, b̄, λ)ins, {S2S3}, {S1, S4} ∪ N
)
,(

(λ, S2, λ)del, {S3b̄, S2S3}, {b̄S2, S1, S4} ∪ N
)
,(

(λ, S4, λ)ins, {āS3, S3b̄}, {S1, S2, S4} ∪ N
)
,(

(λ, b, λ)ins, {S3S4}, {S1, S2} ∪ N
)
.

As before, permitting and forbidding contexts are used to assure that the insertions
happen at the desired sites, and that the pair of symbols SiSj in the center of the
string follows the desired evolution orbit. Applications of these rules yield the fol-
lowing derivation:

BαaāS2βE ⇒ BαaāS2 S3 βE ⇒ BαaāS2S3 b̄βE ⇒ Bαaā S3b̄βE
⇒ BαaāS3 S4 b̄βE ⇒ BαaāS3S4 b b̄βE.

To finalise a cycle of insertions, Γ will use the following rules:(
(λ, S3, λ)del, {S4b, S3S4}, {bS3, S1, S2} ∪ N

)
,(

(λ, S1, λ)ins, {āS4, S4b}, {S1, S2, S3} ∪ N
)
,(

(λ, S4, λ)del, {S1S4}, {S1, S2} ∪ N
)
,

which effectively replace the word S3S4 by S1 and transform the string
BαaāS3S4bb̄βE into BαaāS3S4bb̄βE, thus permitting Γ to carry out the insertion

66 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

cycle once again.
In the end, to stop the production of symbols, Γ will just erase S1 instead of

starting a new cycle:(
(λ, S1, λ)del, {S̄1, S1b}, {S2, S3, S4} ∪ N

)
,

which will enable the following rule to remove all barred terminals:(
(λ, x̄, λ)del,∅, {S1, S2, S3, S4} ∪ N

)
, for x ∈ T.

Finally, the end markers will be removed:(
(λ, X, λ)del,∅, {x̄ | x ∈ T} ∪ {S1, S2, S3, S4} ∪ N

)
, for X ∈ {B,E}.

4.2 Graph-controlled Insertion-deletion Systems

In this subsection we consider graph-controlled insertion-deletion systems with rules
of size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) and show that three states are sufficient for
achieving computational completeness. This contrasts Conjecture 3.3.18 according
to which systems with rules of such size but without control would not be compu-
tationally complete.

We first prove computational completeness for graph-controlled insertion-deletion
systems of size (1, 2, 0; 1, 1, 0).

Theorem 4.2.1. ELSP3(ins2,0
1 , del1,01) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in special Geffert normal form
and letN ′′ = {A,B,C,D} ⊆ N . We will now construct a graph-controlled insertion-
deletion system Γ = (V, T,A,H,H0, Hf , R) simulating G. The alphabet of Γ is
V = N ∪ T ∪ {Mi | i : X → α ∈ P} ∪ {K,K ′}. The set of labels is defined as
H = {1, 2, 3}, and the initial and the final sets of labels are H0 = Hf = {1}. The
set of rules R of Γ is constructed in the following way:

– for every i : X → bY ∈ P and for all a ∈ N ′′ we add to R the following rules:

i.1 :
(
1, (X, Mi, λ)ins, {2},∅

)
, i.2 :

(
2, (XMi, Y, λ)ins, {3},∅

)
,

i.3 :
(
2, (a, Mi, λ)del, {1},∅

)
, i.4 :

(
3, (a, X, λ)del, {3},∅

)
,

i.5 :
(
3, (aMi, b, λ)ins, {2},∅

)
;

– for every i : X → Y b ∈ P and for all a ∈ N ′′ we add to R the following rules:

i.1 :
(
1, (X, Mi, λ)ins, {2},∅

)
, i.2 :

(
2, (XMi, b, λ)ins, {3},∅

)
,

i.3 :
(
2, (a, Mi, λ)del, {1},∅

)
, i.4 :

(
3, (a, X, λ)del, {3},∅

)
,

i.5 :
(
3, (aMi, Y, λ)ins, {2},∅

)
;

– for the erasing rule i1 : AB → λ ∈ P we add to R the following rules:

i1.1 :
(
1, (λ, K, λ)ins, {2},∅

)
, i1.2 :

(
2, (K, A, λ)del, {3},∅

)
,

i1.3 :
(
2, (λ, K, λ)del, {1},∅

)
, i1.4 :

(
3, (K, B, λ)del, {2},∅

)
;

4.2. GRAPH-CONTROLLED INSERTION-DELETION SYSTEMS 67

– for the erasing rule i2 : CD → λ ∈ P we add to R the following rules:

i2.1 :
(
1, (λ, K ′, λ)ins, {2},∅

)
, i2.2 :

(
2, (K ′, C, λ)del, {3},∅

)
,

i2.3 :
(
2, (λ, K ′, λ)del, {1},∅

)
, i2.4 :

(
3, (K ′, D, λ)del, {2},∅

)
;

– finally for i3 : S → λ ∈ P , we add to R the following rule:

i3.1 :
(
1, (λ, S, λ)del, {1},∅

)
.

The rules of Π induce the following graph of state labels:

1 2 3
R12

R21

R23

R32

R33R11

In this figure, the symbol Rij refers to the set of rules assuring the transition from
state i to state j. These sets are defined as follows:

R11 = {i3.1}, R12 = {i.1, i1.1, i2.1},
R23 = {i.2, i1.2, i2.2}, R33 = {i.4},
R32 = {i.5, i1.4, i2.4}, R21 = {i.3, i2.3, i3.3}.

In this listing, the labels i.1 through i.5 refer to both the group of rules simulating
X → bY and the group simulating X → Y b.

We state that L(Π) = L(G). For this we show how each rule of G can be
simulated in Π. Consider the configuration (wXw′, 1) and suppose that there is a
rule i : X → bY in P . Then the following unique evolution can happen:

(wXw′, 1)
i.1⇒ (wXMiw

′, 2)
i.2⇒ (wXMiY w

′, 3)
i.4⇒ (wMiY w

′, 3)
i.5⇒ (wMibY w

′, 2)
i.3⇒ (wbY w′, 1).

In the second step it was also possible to apply i.3, yielding (wXw′, 1), but this
would just reset the simulation to the original configuration.

The rule X → Y b is simulated in a similar manner:

(wXw′, 1)
i.1⇒ (wXMiw

′, 2)
i.2⇒ (wXMibw

′, 3)
i.4⇒ (wMibw

′, 3)
i.5⇒ (wMiY bw

′, 2)
i.3⇒ (wY bw′, 1).

The rule i1 : AB → λ is simulated as follows (the case of rule i2 : CD → λ is
treated in an analogous way). First a symbol K is inserted in a context-free manner
into the string ww′ by using rule i1.1, yielding (wKw′, 2). If the symbol to the right
of K is not an A, then the only possibility is to apply rule i1.3 which deletes K
and returns into state 1. If K is inserted in front of a symbol A (w′ = Aw′′) then
rule i1.2 can be applied and the system moves to the configuration (wKw′′, 3). Now
if w′′ does not start with B, then the evolution of this word is stopped and does
not yield a result. Otherwise (w′′ = Bw′′′), rule i1.4 is applied yielding (wKw′′′, 2).
Now the computation may continue in the same manner and K either eliminates
another pair of symbols AB if this is possible, or the system returns to state 1 and
to a string without K and is then ready for further evolution.

68 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

Now in order to complete the proof, we observe that the only sequences of rules
leading to a terminal derivation in Π correspond to the simulation sequences shown
above. Indeed, we pointed out that any subderivation diverging from these sequences
either leads to Π halting with no output, or makes it return to one of the previous
configurations, thus having no effect on the result. Hence, a derivation in G can be
reconstructed from any derivation in Π, and therefore L(G) = L(Π).

We will now show that graph-controlled insertion-deletion systems with rules of
symmetric size (1, 1, 0; 1, 2, 0) are computationally complete as well. We will use a
technique similar to the one shown in the proof above to prove the result for rules
of this size.

Theorem 4.2.2. ELSP3(ins1,0
1 del2,01) = RE.

Proof. Consider the type-0 grammar G = (N,T, S, P) in special Geffert normal
form and denote N ′′ = {A,B,C,D} ⊆ N . We will now construct a graph-controlled
insertion-deletion system Γ = (V, T,A,H, h0, hf , R) simulating G. The set of labels
of Γ is H = {1, 2, 3}, the set of initial labels is H0 = {1} and the set of final labels
is Hf = {1} as well. The alphabet of Γ contains new special symbols per each rule
of G and is defined in the following way:

V = {Mi, Ȳi,M
′
i | i : X → bY ∈ P}

∪ {Mi, Ni, Ȳi,M
′
i | i : X → Y b ∈ P}

∪ {K,K ′} ∪N ∪ T.

The set of rules R of Γ is constructed in the following way:

– for every i : X → bY ∈ P we add to R the following rules:

i.1 :
(
1, (λ, Mi, λ)ins, {2},∅

)
, i.2 :

(
2, (Mi, Ȳi, λ)ins, {2},∅

)
,

i.3 :
(
2, (Mi, b, λ)ins, {3},∅

)
, i.4 :

(
2, (bȲi, X, λ)del, {1},∅

)
,

i.5 :
(
3, (λ, Mi, λ)del, {2},∅

)
;

– for every i : X → Y b ∈ P and for all a ∈ N ′′ we add to R the following rules:

i.1 :
(
1, (λ, Mi, λ)ins, {2},∅

)
, i.2 :

(
2, (Mi, Ni, λ)ins, {2},∅

)
,

i.3 :
(
2, (Ni, b, λ)ins, {3},∅

)
, i.4 :

(
2, (Ȳib, X, λ)del, {1},∅

)
,

i.5 :
(
3, (Mi, Ȳi, λ)ins, {3},∅

)
, i.6 :

(
3, (λ, Mi, λ)del, {3},∅

)
,

i.7 :
(
3, (aȲi, Ni, λ)del, {2},∅

)
;

– moreover, for every i : X → bY ∈ P or i : X → Y b ∈ P , we add to R the
following rules:

i′.1 :
(
1, (λ, M ′i , λ)ins, {2},∅

)
, i′.2 :

(
2, (M ′i , Y, λ)ins, {3},∅

)
,

i′.3 :
(
2, (λ, M ′i , λ)del, {1},∅

)
, i′.4 :

(
3, (M ′iY, Ȳi, λ)del, {2},∅

)
;

– for the erasing rule i1 : AB → λ ∈ P we add to R the following rules:

i1.1 :
(
1, (λ, K, λ)ins, {2},∅

)
, i1.2 :

(
2, (K, A, λ)del, {3},∅

)
,

i1.3 :
(
2, (λ, K, λ)del, {1},∅

)
, i1.4 :

(
3, (K, B, λ)del, {2},∅

)
;

4.2. GRAPH-CONTROLLED INSERTION-DELETION SYSTEMS 69

– for the erasing rule i2 : CD → λ ∈ P we add to R the following rules:

i2.1 :
(
1, (λ, K ′, λ)ins, {2},∅

)
, i2.2 :

(
2, (K ′, C, λ)del, {3},∅

)
,

i2.3 :
(
2, (λ, K ′, λ)del, {1},∅

)
, i2.4 :

(
3, (K ′, D, λ)del, {2},∅

)
;

– finally, for i3 : S′ → λ ∈ P , we add to R the following rule:

i3.1 :
(
1, (λ, S′, λ)del, {1},∅

)
.

The rules of Π induce the following graph of state labels:

1 2 3
R12

R21

R23

R32

R33R11

R22

In this figure, the symbol Rij refers to the set of rules assuring the transition from
state i to state j. The set R11 only contains i3.1. The set R12 contains rules i.1
from the first two groups, as well as i′.1, i1.1, and i2.1. The set R22 contains rules
i.2 from the first two groups. R23 contains i.3 from the first two groups, as well as
i′.2, i1.2, and i2.2. R33 contains rules i.5 and i.6 of the second group. R32 contains
rules i.5 of the first group, i.7 of the second group, as well as i′.4, i1.4, and i2.4.
Finally, R21 contains rules i.4 of the first and the second groups, as well i′.3, i1.3,
and i2.3.

We claim that L(Π) = L(G). For this we show how each rule of G can be
simulated in Π. We immediately remark that the simulation of the rules AB → λ
and CD → λ is done in exactly the same way as in the proof of Theorem 4.2.1.

Rule i : X → bY . Consider the configuration (wXw′, 1) and suppose that there
is a rule i : X → bY in P . The simulation of this rule occurs in two phases: in the
first phase we rewrite X to bȲi, while in the second one we substitute Ȳi with Y .
The following is the valid first-phase simulation sequence in Π:

(wXw′, 1)
i.1⇒ (wMiXw

′, 2)
i.2⇒ (wMiȲiXw

′, 2)
i.3⇒ (wMibȲiXw

′, 3)
i.5⇒ (wbȲiXw, 2)

i.4⇒ (wbȲiw
′, 1).

The second phase happens due to rules i′.1 through i′.4 and consists of the following
steps:

(wȲibw
′, 1)

i′.1⇒ (wM ′i Ȳibw
′, 2)

i′.2⇒ (wM ′iY Ȳibw
′, 3)

i′.4⇒ (wM ′iY bw
′, 2)

i′.3⇒ (wY bw′, 1).

We claim the both the first phase and the second phase simulation sequences
are the only ones which can happen in valid derivations of Π. Indeed, consider the
string wXw′ into which i.1 has inserted an instance ofMi. By inspecting the symbol
requirements of the rules associated with state 2, we conclude that only rules i.2
and i.3 may become applicable. Suppose that rule i.3 is applied directly. If, for
example, Mi was inserted to the right of X, this would result in the configuration
(γMibγ

′′Xw′, 3). The case when i.1 inserts Mi to the right of X is treated similarly.
Now, the only way to further move the computation out of state 3 is by applying

70 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

i.5 which will erase the instance of Mi and move the system into state 2. However,
no more rules will be applicable from now on, because the string contains no service
symbols at all, but the system is in state 2.

Suppose now that, after the application of i.1, rule i.2 is applied k > 1 times.
A subsequent application of i.3 will insert an instance of b after Mi, thus yielding a
substring of the formMib(Ȳi)

k. Again, the only way to move the system out of state
3 is to erase the symbol Mi which results in a string with a substring of k instances
of Ȳi in state 2. If X is situated to the left of (Ȳi)

k, the string cannot contain ȲiX,
which is required by i.3. On the other hand, if X is to the right of (Ȳi)

k, it will
not be possible to apply i.3 again, because the string does not contain the substring
ȲiX preceded by a symbol from N ′′. Finally, if i.1 does not insert Mi just to the
left of X, Γ will not be able to move out of state 2, thus blocking without producing
any meaningful result.

We will focus on the second-phase simulation sequence now. The application of
rule i′.1 inserts an instance of M ′i somewhere and moves the system into state 2.
There are only two rules that may become applicable: i′.2 and i′.3. Suppose that
i′.3 is applied directly after i′.1. In this case the system will come back into the
configuration it was in before the application of i′.1 without doing any changes to
the string whatsoever. Therefore, to actually modify the string, rule i′.2 must be
applied.

An application of i′.2 inserts exactly one instance of Y after M ′i and moves the
system in state 3. Now, the only way to exit this state is by applying i′.4, which
means that, if the application of rule i′.1 has not inserted M ′i to the left of Ȳi,
the system Γ will unproductively block in the third state. Consequently, after the
application of i′.4, the string must be of the form wM ′iY bw

′. At this point, two
rules are still applicable, i′.2 and i′.3. Suppose that rule i′.2 is applied a second time
and inserts another instance of Y after M ′i , thus yielding the string wM ′iY Y bw

′ and
moving the system in state 3. Now, however, rule i′.4 is not applicable because the
string lacks Ȳi and Γ will thus block. Therefore, the only productive way to move
out of the second state is to apply i′.3.

Rule i : X → Y b. Again, the simulation of i happens in two phases: in the first
phase we rewrite X to Ȳib, while in the second phase we substitute Ȳi with Y . Since
the second phase of the simulation happens in exactly the same way as in the case
of the rule X → bY , we will only focus on the first-phase simulation sequence:

(wXw′, 1)
i.1⇒ (wMiXw

′, 2)
i.2⇒ (wMiNiXw

′, 2)
i.3⇒ (wMiNibXw

′, 3)
i.5⇒ (wMiȲiNibXw

′, 3)
i.6⇒ (wȲiNibXw

′, 3)
i.7⇒ (wȲibXw

′, 2)
i.4⇒ (wȲibw

′, 1).

We claim that the first-phase simulation sequence we have just shown is the only
possible in a terminal derivation of Γ. We will now consider the variations that can
interfere with this subderivation and show that none of them can influence the result
of a computation of Γ.

Consider the application of i.1 which inserts Mi into the original string wXw′

and moves the system into the configuration (γMiγ
′Xw′, 2), w = γγ′. The case

when Mi is inserted to the right of X is treated in a similar way. In the current
situation, the only applicable rule is i.3, which may insert k instances of Ni, thus
yielding the string γMi(Ni)

kγ′Xw′. If one discards the possibility of producing yet

4.3. SEMI-CONDITIONAL INSERTION-DELETION SYSTEMS 71

more instances of Ni, the only other way to evolve is the application of rule i.3
to insert a b after one of the Ni’s and thereby move the system into state 3. The
new configuration will have the form (γMi(Ni)

k1b(Ni)
k2γ′Xw′, 3), where k1 ≥ 1 and

k1 + k2 = k. We immediately remark that the only way for Γ to move out of this
configuration is to apply rule i.7. This rule requires that there is a substring of ȲiNi

preceded by a symbol from N ′′. The string γMi(Ni)
k1b(Ni)

k2γ′Xw′, with which the
system has just arrived in state 3, does not contain any instances of Ȳi, but rule i.5
can introduce them. Suppose this latter rule is applied t times, t ≥ 0, thus yielding
the following result:

γMi(Ȳi)
t(Ni)

k1b(Ni)
k2γ′Xw′.

Clearly, i.7 is not yet applicable, because there are no instances of Ȳi preceded by
symbols from N ′′. The only way to reach this situation is to apply i.6 to obtain the
string

γ(Ȳi)
t(Ni)

k1b(Ni)
k2γ′Xw′.

Rule i.7 imposes an even stronger requirement: the instance of Ȳi which is preceded
by a symbol from N ′′ must be immediately followed by Ni. Since instances of Ȳi
can only be inserted to the right of Mi, and since the process of inserting Ni’s has
already been completed in state 2, applying i.7 actually requires that exactly one
instance of Ȳi should have been inserted by i.5 (i.e., it requires that t = 1), which
means that the string must have the form

γȲi(Ni)
k1b(Ni)

k2γ′Xw′.

An application of i.7 will erase the leftmost instance of Ni and will move the system
in state 2 with the following string:

γȲi(Ni)
k1−1b(Ni)

k2γ′Xw′.

Rule i.3 will still be applicable at this moment. Remark, however, that the string
resulting from such an application would contain no instances of Mi, so the rule
which might become applicable is i.7; it would remove yet another instance of Ni

following Ȳi. Applications of rules i.3 and i.7 in a loop are only possible as long as
there are instances of Ni just to the right of Ȳi and then Γ would either block in
state 3 or move in state 1 by an application of i.4.

We can now assert that the general form of configurations in which Γ is in state
2 after at least one passage through state 3 is γȲi(N∗i (Nib)

∗)∗γ′Xw′. If we discard
the possibility of yet again retracing the loop formed by i.3 and i.7, the only other
way for Γ to proceed is to apply i.4. However, in order for this rule to be applicable,
there has to exist a substring ȲibX. The only way to have exactly one b between
Ȳi and X is, firstly, to have i.1 insert Mi exactly to the left of X (that is, γ′ should
be zero) and, secondly, to only apply i.3 once during the whole simulation process,
thus obtaining the string γȲibXw′ in state 2. The application of i.4 will then erase
the X and successfully finish the rewriting of X into Ȳib.

4.3 Semi-conditional Insertion-deletion Systems

In this subsection we show that semi-conditional insertion-deletion systems of de-
gree (2, 2) and with rules of size (1, 0, 0; 1, 0, 0) are computationally complete. We

72 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

start by proving that this result is optimal in the sense that semi-conditional insertion-
deletion systems of the same degree, but with rules of size (1, 0, 0; 0, 0, 0) (i.e. insertion-
only systems), do not generate more than context-free languages.

Proposition 4.3.1. SC2,2INS
0,0
1 DEL0,0

0 ⊆ CS.

Proof. Let Γ = (V, T,A, I,D) be a semi-conditional insertion-deletion system of size
(1, 0, 0; 0, 0, 0). We will construct a semi-conditional grammar G = (N,T, S, P) in
the following way:

N = {S} ∪ {Na | a ∈ T},
P =

{(
S → Na1 . . . Nan ,∅,∅

)
| a1 . . . an ∈ A

}
∪
{(
Nb → NbNa, E, F

)
,
(
Nb → NaNb, E, F

)
|
(
(λ, a, λ)ins, E, F

)
∈ I, b ∈ T

}
∪
{(
Na → a,∅,∅

)
| a ∈ T

}
.

Observe that G accurately simulates Γ in the sense that L(Γ) = L(G). This, com-
bined with the fact that the family of languages generated by semi-conditional gram-
mars without erasing rules is contained in CS [109], proves the statement of the
theorem.

We will now show a normal form for random context string rewriting grammars.

Lemma 4.3.2. For an arbitrary random context grammar G = (N,T, S,R), there
exist an equivalent random context grammar G′ = (N ′, T, S,R′) such that L(G′) =
L(G) and the length of any right-hand side in R′ is either 2 or 0.

Proof. We will define the alphabet of the grammar G′ as N ′ = QW ∪N , where

QW = {W (i)
r | r :

(
A→ u1u2 . . . un, P,Q

)
∈ R, 1 ≤ i ≤ n}.

The rules of G′ are given by the following set:

R′ =
{(
A→ u1W

(1)
r , P,Q ∪QW

)
,
(
W (i)
r → ui+1W

(i+1)
r ,∅,∅

)
,(

W (n)
r → λ,∅,∅

)
| r :

(
A→ u1u2 . . . un, P,Q

)
∈ R, 1 ≤ i < n

}
∪
{
r | r :

(
A→ λ, P,Q

)
∈ R

}
,

We claim that G′ can correctly simulate any rule r of G. Indeed, the contexts
of r are checked in the application of the rule A → u1W

(1)
r . The presence of QW

in the forbidding set ensures that no other rule simulations (including r itself) may
start before the already running simulation has finished. Thus G′ can reproduce any
derivation of G, and, moreover, any derivation involving symbols from QW ends up
simulating a rule of G, which concludes the proof.

We proceed to showing that semi-conditional insertion-deletion systems of degree
(2, 2), with rules of size (1, 0, 0; 1, 0, 0), are computationally complete. The main
inconvenience with systems of such a small size is that there is no direct way to
check the context of a specific symbol in the string. To address this issue, we will
encode every symbol a ∈ V with a pair of symbols âā and place special markers
B and E at the beginning and the end of the string respectively, similarly to what
we did in Example 4.1.10. Every rule will have a forbidding context which will

4.3. SEMI-CONDITIONAL INSERTION-DELETION SYSTEMS 73

check whether the string has this form. We will call this forbidding context the
normalisation condition.

To operate at a specific locus in the string, we will insert some “service” symbols
and rely on the permitting and forbidding contexts of the subsequent rules to check
whether the insertion has happened in the appropriate position. We then further
insert and delete symbols as we need, and the normalisation condition included in
every rule will ensure that the operations we are performing only happen in the
neighbourhood of the service symbols. Whenever the proper organisation of the
string is broken, no rules will be further applicable, thus blocking the computation
at a string which contains non-terminal symbols.

We will now show the inclusion λRCac ⊆ SC2,2INS
0,0
1 DEL0,0

1 , where λRCac
is the family of languages generated by random context grammars with erasing
rules, which is known to be equal to RE [27]. The proof will be split into several
propositions formally stating the necessary properties of the construction which will
be described in the following several paragraphs.

Consider an arbitrary random context grammar G = (N,T, S,R) and let V =
N ∪ T . We can assume that, for any random context rule r :

(
A → u, P,Q

)
of G,

either |u| = 2, or |u| = 0 (Lemma 4.3.2). Further consider V̄ = {ā | a ∈ V }, and let
c : V ∗ → (V V̄)∗ be the morphism given by c(a) = aā. The normalisation condition
is the following set:

QN = {xy, x̄ȳ | x, y ∈ V } ∪ {Bx̄, xE | x ∈ V } ∪ {uB,Eu | u ∈ V ∪ V̄ }.

Those words over the extended alphabet V ′ = V ∪ V̄ ∪ {B,E} which do not have
strings from QN as substrings are said to satisfy the normalisation condition, or to
be normalised. A normalised string thus has the form B(V V̄)∗E.

We will now show how to construct the semi-conditional insertion-deletion sys-
tem Γ = (VΓ, T, AΓ, IΓ, DΓ) which simulatesG. The alphabet VΓ contains the service
symbols, as well as the clean and barred versions of every symbol in the alphabet
of G:

VΓ = Q# ∪Q$ ∪ {a, ā | a ∈ V }, where
Q# = {#p | p :

(
A→ λ, P,Q

)
∈ R},

Q$ = {$(i)
q | q :

(
A→ α, P,Q

)
∈ R, |α| = 2, 1 ≤ i ≤ 5}.

The only axiom of the constructed insertion-deletion system is BSS̄E. According to
the strategy briefly described above, Γ operates by pinpointing a locus with service
symbols, erasing the left-hand side of the simulated rule, and then inserting the right-
hand side. The correct positioning of inserted non-service symbols is guaranteed by
the normalisation condition which is part of the forbidding context of every rule
of Γ.

The set of rules of Γ is constructed in the following way:

– for every rule p :
(
X → λ, P,Q

)
∈ R, we add to IΓ and DΓ the rules

p.1 :
(
(λ, #p, λ)ins, {XX̄} ∪ P,Q ∪Q# ∪Q$ ∪QN

)
,

p.2 :
(
(λ, X, λ)del, {#pX}, QN

)
,

p.3 :
(
(λ, X̄, λ)del, {#pX̄}, {X#p} ∪QN

)
,

p.4 :
(
(λ, #p, λ)del,∅, QN

)
;

74 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

– for every rule q :
(
X → Y Z, P,Q

)
∈ R, X,Y, Z ∈ V , we add to IΓ and DΓ the

rules

q.1 :
(
(λ, $(1)

q , λ)ins, {XX̄} ∪ P,Q ∪Q# ∪Q$ ∪QN
)
,

q.2 :
(
(λ, $(2)

q , λ)ins, {$(1)
q X}, {$(2)

q } ∪QN
)
,

q.3 :
(
(λ, X, λ)del, {$(1)

q X, X̄$(2)
q }, QN

)
,

q.4 :
(
(λ, $(3)

q , λ)ins, {$(1)
q X̄}, {$(2)

q X̄, $(3)
q , X$(1)

q } ∪QN
)
,

q.5 :
(
(λ, $(1)

q , λ)del, {$(3)
q $(1)

q }, QN
)
,

q.6 :
(
(λ, X̄, λ)del, {$(3)

q X̄}, {$(1)
q } ∪QN

)
,

q.7 :
(
(λ, $(4)

q , λ)ins, {$(3)
q $(2)

q }, {$(1)
q , $(4)

q , X$(3)
q } ∪QN

)
,

q.8 :
(
(λ, $(2)

q , λ)del, {$(4)
q $(3)

q }, QN
)
,

q.9 :
(
(λ, $(5)

q , λ)ins, {$(4)
q }, {$(2)

q , $(5)
q } ∪QN

)
,

q.10 :
(
(λ, Y, λ)ins, {$(4)

q $(3)
q , $(3)

q $(5)
q }, {Y $(4)

q } ∪QN
)
,

q.11 :
(
(λ, Ȳ , λ)ins, {$(4)

q Y, Y $(3)
q , $(3)

q $(5)
q }, {$(5)

q Ȳ } ∪QN
)
,

q.12 :
(
(λ, Z, λ)ins, {$(4)

q Y, Ȳ $(3)
q , $(3)

q $(5)
q }, {Z$(4)

q } ∪QN
)
,

q.13 :
(
(λ, Z̄, λ)ins, {$(4)

q Y, Ȳ $(3)
q , $(3)

q Z,Z$(5)
q }, {$(5)

q Z̄} ∪QN
)
,

q.14 :
(
(λ, $(3)

q , λ)del, {$(4)
q Y, Ȳ $(3)

q , $(3)
q Z, Z̄$(5)

q }, QN
)
,

q.15 :
(
(λ, $(4)

q , λ)del, {$(4)
q Y, Z̄$(5)

q }, {$(3)
q } ∪QN

)
,

q.16 :
(
(λ, $(5)

q , λ)del,∅, {$(3)
q , $(4)

q } ∪QN
)
;

– we also add the rules

z.1 :
(
(λ, B, λ)del,∅, QN ∪ (VΓ \ {{B,E} ∪ {a, ā | a ∈ T}})

)
,

z.2 :
(
(λ, E, λ)del,∅, {B}

)
},

z.3 :
(
(λ, ā, λ)del,∅, {B,E}

)
, for all a ∈ V \ T.

We will start by analyzing the third and simplest group of rules. The goal of
these rules is to consecutively erase the symbols B, E, and ā, for a ∈ T , in the
clean-up phase of the simulation.

Lemma 4.3.3. Rules z.1 through z.3 transform any string of the form w = BβE,
where β = c(α), α ∈ T ∗, into α.

Proof. Remark that w is a normalised string consisting of the start and end markers
B and E, and of the images of the original terminals under the morphism c.

The forbidding condition of the first rule in the third group of rules ensures that
the string is in the normalised form and that it only contains the symbols B and E,
and the images of the original terminals under c. At this stage, no rules from the
first two groups are applicable (the actual simulation of a derivation of the original
random context grammar has already been finished).

The first rule in the third group of rules erases B. This enables the second rule
in this group to erase E. This in its turn enables the third rule in this group, which
eventually removes all barred symbols from the string, leaving only terminals.

4.3. SEMI-CONDITIONAL INSERTION-DELETION SYSTEMS 75

We will now turn to simulating the erasing rule p :
(
X → λ, P,Q

)
and will show

that the first group of rules works correctly. Before discussing the actual proof,
though, we remark that the simulation of any rule starts by introducing a service
symbol from Q#∪Q$. During the simulation, there are always service symbols in the
string, and the simulation of a rule application ends by removing all service symbols.
On the other hand, the forbidding contexts of the rules of Γ which start simulations
of rule applications all include Q# ∪ Q$. This means that, after a simulation of a
rule application has started, no other simulations can start.

Lemma 4.3.4. Rules p.1 through p.4 correctly simulate an application of the random
context rule p :

(
X → λ, P,Q

)
.

Proof. The correct simulation sequence has the following form:

w1XX̄w2
p.1⇒ w1#pXX̄w2

p.2⇒ w1#pX̄w2
p.3⇒ w1#pw2

p.4⇒ w1w2,

where w1, w2 ∈ V ∗Γ and all sentential forms are normalised.
To prove that, in a terminal derivation, Γ cannot modify the string in a way

different from what we have just shown, for each rule p.i, 1 ≤ i ≤ 4, we will describe
the set of strings in(p.i) it is applicable to and the set of strings out(p.i) that it can
produce. We will then show that all derivations which result in a normalised string
different from w1XX̄w2 correctly simulate the original rule.

The set in(p.1) contains the strings which are in the normalised form (because
the forbidding context includes QN), which do not have traces of other simulations
(because the forbidding context includes Q# ∪Q$), which contain a substring XX̄,
and which contain all the permitting contexts P of the original rule p and do not
contain any of the forbidding contexts Q of the original rule. In other words, any
string in in(p.1) can be written as Bc(α)E, where α ∈ in(p) is a string to which the
original rule p could be applied.

Rule p.1 inserts #p somewhere in the string. Consider a (normalised) string w =
w1XX̄w2 ∈ in(p.1). After an application of p.1 we can have either of the following
cases: w1#pXX̄w2, w1X#pX̄w2, w1XX̄#pw2, or, eventually, α#pβ, where α does
not end in X or X̄, and β and does not start with X or X̄. It turns out that only
the first case is possible in terminal derivations, or else the string is not modified.
Indeed, in the sentential form w1X#pX̄w2 rule p.2 is not applicable because the
string does not contain #pX, while rule p.3 is not applicable, because the string
includes X#p. Rule p.4 is applicable, however, but it will simply remove #p from
the string, thus resetting the simulation to the starting string w. Using the same
reasoning for the other three cases, we conclude that the only way in which Γ can
continue evolving is producing the string w1#pXX̄w2.

Consider now rule p.2. The set in(p.2) contains normalised strings with #pX as
substrings, the application of p.2 removes an instance of X from the string. Note
that, if it removes an instance of X which is not to the right #p, the two barred
symbols which surrounded X will be one next to the other, which will denormalise
the string, so p.2 has to delete the correct instance of X for the system not to block.

The set in(p.3) consists of the normalised strings containing #pX̄ and not con-
taining X#p. As we have seen above, p.3 is never applicable after p.1 has been
applied. On other hand, p.2 is only applicable after p.1 has inserted the #p at
the correct location. Therefore, p.3 is only applicable after p.2 has been applied.
The application of p.3 either removes the desired instance of X̄, thus transforming

76 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

w1#pX̄w2 into w1#pw2, or removes a different instance of X̄ and denormalises the
string. Consequently, in a terminal derivation, an application of p.3 always results
in the step w1#pX̄w2

p.3⇒ w1#pw2.
Rule p.4 is less deterministic, since it can be applied to any normalized string

containing #p. In a terminal derivation, this symbol can appear in the string only
after the application of p.1. If rule p.4 gets applied immediately after p.1, the
derivation returns to the original string w. If rule p.4 gets applied after p.2, the
system will arrive at the string w1X̄w2, which is not normalized (the string w1X̄
contains two successive barred symbols). Finally, if rule p.4 is applied after rule p.3,
it transforms the string w1#pw2 into w1w2, thereby finalising a correct simulation
of the erasing rule p :

(
X → λ, P,Q

)
.

We will now focus on the simulation of the generic context-free rule q :
(
X →

Y Z, P,Q
)
. The simulation is based on ideas similar to what we have just exposed.

It starts by enclosing the site of X by two markers which further delete X and insert
Y and Z.

Lemma 4.3.5. Rules q.1 through q.16 correctly simulate an application of the ran-
dom context rule q :

(
X → Y Z, P,Q

)
.

Proof. The correct simulation sequence consists of two phases. In the first phase,
the deletion phase, Γ selects a word XX̄ and replaces it with three service symbols,
thereby delimiting the sites at which the words Y Ȳ and ZZ̄ will be inserted later. In
the second phase, the insertion phase, Γ uses the markers which have been inserted
in the deletion phase to insert Y Ȳ and ZZ̄ to thereby complete the simulation. A
correct first-phase simulation sequence is as follows:

w1XX̄w2
q.1⇒ w1$(1)

q XX̄w2
q.2⇒ w1$(1)

q XX̄$(2)
q w2

q.3⇒ w1$(1)
q X̄$(2)

q w2
q.4⇒ w1$(3)

q $(1)
q X̄$(2)

q w2
q.5⇒ w1$(3)

q X̄$(2)
q w2

q.6⇒ w1$(3)
q $(2)

q w2
q.7⇒ w1$(4)

q $(3)
q $(2)

q w2
q.8⇒ w1$(4)

q $(3)
q w2

q.9⇒ w1$(4)
q $(3)

q $(5)
q w2.

A correct second-phase simulation sequence is as follows:

w1$(4)
q $(3)

q $(5)
q w2

q.10⇒ w1$(4)
q Y $(3)

q $(5)
q w2

q.11⇒ w1$(4)
q Y Ȳ $(3)

q $(5)
q w2

q.12⇒ w1$(4)
q Y Ȳ $(3)

q Z$(5)
q w2

q.13⇒ w1$(4)
q Y Ȳ $(3)

q ZZ̄$(5)
q w2

q.14⇒ w1$(4)
q Y Ȳ ZZ̄$(5)

q w2

q.15⇒ w1Y Ȳ ZZ̄$(5)
q w2

q.16⇒ w1Y Ȳ ZZ̄w2.

We remark that all the strings shown in this derivation sequence satisfy the normal-
isation condition. We will now prove that the only possible sequence of events in a
terminal derivation is the one we have just described.

Deletion phase. Consider the set of strings in(q.1) to which q.1 can be applied.
This set consists of those normalised strings without traces of other simulations
which include a substring XX̄, all strings from the permitting context P of the
original random context rule q, and which do not contain any element of the for-
bidding context Q of rule q. Therefore the strings in in(q.1) correspond to those
strings to which q could be applied in a derivation of the original random context
grammar G.

4.3. SEMI-CONDITIONAL INSERTION-DELETION SYSTEMS 77

Per each string in w ∈ in(q.1), the set out(q.1) contains all the strings which
can be obtained by inserting an instance of $(1)

q into w. Notice that only rules of
the second group may be applicable to such strings. Among those, only q.2 might
be applicable to a string in out(q.1). Remark that q.4 cannot be applicable right
after q.1. Indeed, the permitting context of this rule demands that $(1)

q be just
to the left of X̄, while the forbidding context requires that there be no X to the
left of $(1)

q . However, the only rule that has been applied up to now is q.1, which
has only inserted a $(1)

q . If this symbol were inserted right before a substring XX̄,
then the permitting context of q.4 would not be satisfied. On the other hand, if
$(1)
q was inserted in between X and X̄, the forbidding contexts of q.4 will again

render it inapplicable. Finally, if $(1)
q is inserted at any other place in the string, the

permitting context of q.4 will not be satisfied once more.
The contexts of rule q.2 guarantee that Γ will proceed with a terminal computa-

tion only if $(1)
q was inserted by q.1 immediately to the left of an X. An application

of q.2 adds an instance of $(2)
q to the string. This application may render rule q.3

applicable, but no other rule. Remark that if $(2)
q is inserted in such a way that the

contexts of q.3 are not satisfied, i.e. $(2)
q is not to the right of an X̄, Γ will halt with

a string with non-terminal symbols.
An application of q.3 removes an X from the string. As we have already seen in

other situations, if this application removes an instance of X which is not near $(1)
q

or $(2)
q , the string will denormalise and Γ will halt prematurely. However, remark

that if there is an X near $(2)
q , then it is necessarily to the right of $(2)

q , because the
contexts of q.3 are satisfied only when there is an X̄ to the left of $(2)

q . Consequently,
if q.3 deletes this X, the string will contain $(2)

q X̄, because, before this deletion, the
string contained $(2)

q X, and any X must be followed by an X̄. rule q.4 (and all other
rules) will not be applicable in these circumstances, and Γ will thus halt at a string
with non-terminals. Therefore, in a terminal derivation, q.3 can only remove the X
which is just to the right of $(1)

q .
After the application of q.3, the system arrives at a string which contains a

substring $(1)
q X̄ and a substring X̄$(2)

q . Note that, while we do want to see the
substring $(1)

q X̄$(2)
q , we have not ensured this as of yet.

Once q.3 has been applied, only rule q.4 may become applicable; this rule inserts
$(3)
q somewhere in the string. The only rule that may now become applicable is rule
q.5. The contexts of q.5 ensure that $(3)

q was inserted right before $(1)
q (or else Γ

halts with error). An application of rule q.5 removes the $(1)
q , thus assuring that the

string contains the substrings $(3)
q X̄ and X̄$(2)

q , and enabling q.6. Rule q.6 removes
an instance of X̄. Once again, this instance should be either near $(3)

q or near $(2)
q .

Remark, however, that the contexts of q.3 and q.4 ensure that there is no X̄ near
$(2)
q , so there is nothing for q.6 to remove in the neighbourhood of $(2)

q . On the other
hand, if there is an X̄ to the left of $(3)

q and it is removed, the only applicable rule
will again be q.6. If it is applied a second time and finally removes the X̄ after $(3)

q ,
no more rules will be applicable: after q.6 deletes an X̄ to the left of $(3)

q , the string
will include the substring X$(3)

q , which is listed in the forbidding context of q.7.
Observe now that the permitting context of q.7 imposes a strong condition: it

requires that the string contain $(3)
q $(2)

q . This condition ensures that Γ will halt if

78 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

q.2 did not insert $(2)
q just to the right of the group XX̄ already marked from the

left by $(1)
q (and subsequently by $(3)

q).
The insertion of $(4)

q by q.7 marks the end of the deletion phase. The only rule
that may become applicable after q.7 is q.8. The contexts of this rule ensure that q.7
has inserted the $(4)

q right before the $(3)
q , while the application of the rule removes

the $(2)
q . Once $(2)

q is removed, rule q.9 becomes applicable and inserts an instance
of $(5)

q somewhere into the string.

Insertion phase. The insertion of $(5)
q marks the beginning of the insertion phase

of the simulation of the non-erasing random context rule q. The only rule which
may become applicable after the application of q.9 is q.10. The contexts of this
rule require that q.9 has inserted the $(5)

q immediately to the right of $(3)
q . This

guarantees that the string has now the aspect w1$(4)
q $(3)

q $(5)
q w2.

The actual insertion starts with an application of rule q.10, which results in the
addition of Y to the string. This insertion can occur at any locus in the string;
however, it has to happen in the immediate neighbourhood of the symbols $(4)

q , $(3)
q ,

or $(5)
q to not denormalise the string and halt the system. Remark, however, that we

cannot control the number of times Y is inserted in the same way as we did with the
service symbols of the $(i)

q family, i.e. by adding Y to the forbidding context of the
rule which inserts it. The reason is that Y is not a service symbol and is therefore
not necessarily unique in the string we are working on. To exercise the desired
control, we utilise both the contexts of the rules and the normalisation condition in
the following way. First of all, note that the only rule that may become applicable
after the insertion of Y is q.11 (rules q.12 through q.15 require more symbols to be
present near $(4)

q , $(3)
q , and $(5)

q). The permitting context of q.11 ensures that there
is a Y between $(4)

q and $(3)
q , and that there is nothing between $(3)

q and $(5)
q . The

other two possible loci where q.10 could insert Y are to the left of $(4)
q and to the

right of $(5)
q . Note, however, that if Y is inserted to the right of $(5)

q , the string will
become denormalised, because, in a normalised string, $(5)

q is already followed by a
non-barred symbol. On the other hand, if q.10 performs the insertion to the left of
$(4)
q , all rules will be disabled (including q.10) and so Y will never appear between

$(4)
q and $(3)

q , forcing Γ to halt on a string with non-terminals. Yet further, if q.10 is
applied more than once to insert more than one instance of Y between $(4)

q and $(3)
q ,

the string will become denormalized as well. Therefore, in a terminal derivation, Y
is necessarily inserted only once and only between $(4)

q and $(3)
q .

When q.11 is enabled, it will insert a Ȳ . The only rule that may become ap-
plicable after this is q.12. Similarly to the case with q.10, if Ȳ is inserted to the
left of $(4)

q , the string will become denormalized, because, in a normalized string,
$(4)
q is already preceded by a barred symbol. On the other hand, if Ȳ is inserted

to the right of $(5)
q , the forbidding context of q.11 will prevent the insertion from

happening again, Ȳ will never appear to the left of $(3)
q , and Γ will halt with error.

The contexts of q.12 ensure that Ȳ is not inserted between $(3)
q and $(5)

q , and the
normalisation condition guarantees that, if Ȳ does get inserted to the left of $(3)

q ,
then it is inserted exactly once.

The next applicable rule, q.12, inserts a Z. This may only render applicable rule

4.4. RANDOM CONTEXT INSERTION-DELETION SYSTEMS 79

q.13 and, as with Y and Ȳ before, the contexts of q.12 and q.13 ensure that Z is
inserted between $(3)

q and $(5)
q . Rule q.13 inserts a Z̄, this may only enable q.14,

and yet again the contexts of q.13 and q.14 ensure the correct positioning of the
inserted symbol and limit the number of insertions. Therefore, in a valid derivation,
the string w1$(4)

q Y Ȳ $(3)
q $(5)

q w2 is always transformed into w1$(4)
q Y Ȳ $(3)

q ZZ̄$(5)
q w2.

The several remaining rules finalise the simulation by erasing the service sym-
bols. Rule q.14 removes $(3)

q , enabling q.15. Rule q.15 removes $(4)
q , enabling q.16,

which finally removes $(5)
q and concludes the overall transformation of w1XX̄w2 into

w1Y Ȳ ZZ̄w2.

The three lemmas we have just proved imply that SC2,2INS
0,0
1 DEL0,0

1 ⊇
λRCac = RE. To show the actual equality between the two classes of languages, we
recall that INS0,0

1 DEL0,0
1 ⊆ CF [116]; therefore, SC2,2INS

0,0
1 DEL0,0

1 ⊆ SC2,2 ⊆
RE. Hence the following statement is true.

Theorem 4.3.6. SC2,2INS
0,0
1 DEL0,0

1 = RE.

4.4 Random Context Insertion-deletion Systems

In this section we investigate the computational power of random context insertion-
deletion systems. We show that such systems with rules of size (2, 0, 0; 1, 1, 0) are
computationally complete, while the systems of size (1, 1, 0; p, 1, 1), with p > 0, are
not. A comparison between the results shown in this section and those from the
previous one stresses that limiting the permitting and forbidding contexts of rules
to only include symbols (instead of words) is a considerable restriction.

We start by showing the computational completeness of the family of random
context insertion-deletion systems of size (2, 0, 0; 1, 1, 0). The proof will be based on
the simulation of an arbitrary grammar G = (N,T, S,R) in special Geffert normal
form. We suppose that N = N ′ ∪ F , with F = {A,B,C,D}, and N ′ ∩ F = ∅. We
will use an approach similar to the one shown in Section 4.3: given a string w ∈ V ∗
which can be derived from the axiom of G, the corresponding string wΓ of the system
Γ will not directly contain any symbols from F . Instead, for any occurrence of a
symbol U ∈ F in w, wΓ will include the substring Û Ū in the corresponding position.
Although this approach is indeed similar to the one used in Section 4.3, at this time
we only apply it to the symbols in F , and neither will we set up special markers at
the beginning or the end of the string. This is because, in this proof, we only use
the pairs of hatted and barred symbols to control the number of times a deletion
rule is applied

Recall that, since the grammar G is in special Geffert normal form, a non-
terminal symbol X ∈ N ′ cannot appear more than once in any derivable string.
This means that any deletion rule of Γ which erases such a non-terminal X will
never be applied more than once in a row. On the other hand, the symbols from
F can appear any number of times and in arbitrary succession, and we need to
simulate the erasing rules AB → λ and CD → λ. However, since we cannot check
more than a one-symbol context to the left of the deletion site, and the permitting
and forbidding contexts may only include single symbols, it is impossible to control
the number of times a rule erasing a symbol from F is applied when there are runs
of such symbols, i.e. substrings from {U}∗, where U ∈ F . The goal of having hatted
and barred symbols is to avoid precisely this kind of substrings.

80 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

We will rewrite the rules of the original grammar G in the following way. For
any rule X → UY (or X → Y U), U ∈ F , we will take the rule X → Û ŪY
(or X → Y ÛŪ respectively). Further, instead of a rule UV → λ, we will take
Û Ū V̂ V̄ → λ, where U = A and V = B, or U = C and V = D. To avoid simulating
longer right-hand sides, we further rewrite these new productions into X → ÛY ′

and Y ′ → ŪY (X → Y ′Ū and Y ′ → Y Û , respectively) and define the modified
grammar G′ = (N ′ ∪ F̄ ∪ F̂ , T, S,R′) to contain the new rules.

We will now construct the random context insertion-deletion system Γ =
(VΓ, T, {S}, IΓ, DΓ) simulating the modified G. The alphabet of the new system is
defined as VΓ = T ∪N ′∪ (F̄ ∪ F̂)∪NP , where F̂ = {X̂ | X ∈ F}, F̄ = {X̄ | X ∈ F}
and NP is defined as follows:

NP = {#(1)
q ,#(2)

q | q : X → Y U ∈ R′} ∪ {m,m′, f, f ′}
∪ {$(i)

r | r : Û Ū V̂ V̄ → λ ∈ R′, 1 ≤ i ≤ 7}.

Γ can simulate the rules X → UY almost directly by inserting UY and having Y
erase X. The same approach does not work with X → Y U because the non-terminal
Y cannot be used to erase X directly any more. We will therefore need to mark the
instance of X with service symbols and use them as reference points. The simulation
of the erasing rules is the more complex part of the proof. Γ starts by marking the
substring to erase with special symbols and uses them to perform deletions and
assure that, if something goes wrong, no result is ever produced. We remark up
front that deletions of Â and Ĉ are delegated either to subsequent simulations or to
the final cleanup phase.

The sets of rules IΓ and DΓ is constructed in the following way:
– for every rule p : X → UY , we add the following rules to IΓ and DΓ:

p.1 :
(
(λ, UY, λ)ins, {X}, (N ′ ∪NP) \ {X}

)
, p.2 :

(
(Y, X, λ)del,∅,∅

)
;

– for every rule q : X → Y U , we add the following rules to IΓ and DΓ:

q.1 :
(
(λ, #(1)

q #(2)
q , λ)ins, {X}, (N ′ ∪NP) \ {X}

)
, q.2 :

(
(#(2)

q , X, λ)del,∅,∅
)
,

q.3 :
(
(λ, Y U, λ)ins, {#(1)

q }, {X,Y }
)
, q.4 :

(
(U, #(2)

q , λ)del,∅,∅
)
,

q.5 :
(
(λ, #(1)

q , λ)del,∅, {#(2)
q }
)
;

– for every rule r : Û Ū V̂ V̄ → λ, (U, V) ∈ {(A,B), (C,D)}, we add the following
rules to RΓ:

r.1:
(
(λ, $(1)

r $(2)
r , λ)ins, {Ū}, N ′ ∪NP

)
, r.2:

(
(Û , $(1)

r , λ)del,∅,∅
)
,

r.3:
(
(λ, f ′f, λ)ins, {$(2)

r }, {$(1)
r , f}

)
, r.4:

(
(V̄ , f ′, λ)del,∅,∅

)
,

r.5:
(
(λ, m′m, λ)ins, {$(2)

r , f}, {f ′,m}
)
, r.6:

(
(Ū , m′, λ)del,∅,∅

)
,

r.7:
(
(λ, $(3)

r , λ)ins, {m}, {m′, $(3)
r }
)
, r.8:

(
($(3)

r , $(2)
r , λ)del,∅,∅

)
,

r.9:
(
($(3)

r , Ū , λ)del,∅, {$(2)
r }
)
, r.10:

(
($(3)

r , m, λ)del,∅, {$(2)
r }
)
,

r.11:
(
(λ, $(4)

r , λ)ins, {$(3)
r }, {$(2)

q , $(4)
q ,m}

)
,r.12:

(
($(4)

r , $(3)
r , λ)del,∅,∅

)
,

r.13:
(
($(4)

r , Â, λ)del,∅, {$(3)
r , $(5)

r }
)
, r.14:

(
($(4)

r , Ĉ, λ)del,∅, {$(3)
r , $(5)

r }
)
,

r.15:
(
(λ, $(5)

r , λ)ins, {$(4)
r }, {$(3)

r , $(5)
r }
)
, r.16:

(
($(5)

r , $(4)
r , λ)del,∅,∅

)
,

r.17:
(
($(5)

r , V̂ , λ)del,∅, {$(4)
r , $(6)

r }
)
, r.18:

(
(λ, $(6)

r , λ)ins, {$(5)
r }, {$(4)

r , $(6)
r }
)
,

r.19:
(
($(6)

r , $(5)
r , λ)del,∅,∅

)
, r.20:

(
($(6)

r , V̄ , λ)del,∅, {$(5)
r , $(7)

p }
)
,

r.21:
(
(λ, $(7)

r , λ)ins, {$(6)
r }, {$(5)

q , $(7)
r }
)
, r.22:

(
($(7)

r , $(6)
r , λ)del,∅,∅

)
,

r.23:
(
($(7)

r , f, λ)del,∅, {$(6)
r }
)
, r.24:

(
(λ, $(7)

r , λ)del,∅, {f}
)
;

4.4. RANDOM CONTEXT INSERTION-DELETION SYSTEMS 81

– finally, we add the following two rules:

s.1 :
(
(λ, Â, λ)del,∅, VΓ \

(
T ∪ {Â, Ĉ}

))
,

s.2 :
(
(λ, Ĉ, λ)del,∅, VΓ \

(
T ∪ {Â, Ĉ}

))
.

We will now prove that each of the described groups of rules carries out the
corresponding simulations correctly. We start with rules of the form X → UY .

Lemma 4.4.1. Rules p.1 and p.2 always correctly simulate an application of a rule
p : X → UY , with X,Y ∈ NP , U ∈ F̂ ∪ F̄ .

Proof. The correct simulation sequence is as follows:

w1Xw2
p.1⇒ w1UY Xw2

p.2⇒ w1UY w2,

where w1, w2 ∈ V ∗Γ are such strings over the alphabet of Γ that S ⇒∗Γ w1Xw2.
Γ starts by inserting the pair UY somewhere in the string, given that the only

symbol from N ′ ∪ NP present in the string is X. The presence of other symbols
from N ′ ∪NP would mean that there is an on-going simulation of another rule, so
Γ is not allowed to start a new simulation.

The insertion performed by p.1 can happen anywhere in the string; however, rule
p.2 serves two goals at the same time: it ensures that the pair UY was inserted just
to the left of X and it also removes the original instance of X. Indeed, if UY was
not inserted before X, p.2 would not be applicable, but the string would contain
two non-terminals from NP : X and Y . By checking the contexts of other rules, one
can verify that none will be applicable and Γ will therefore halt with a string with
non-terminals. Consequently, in a terminal derivation of Γ, rule p : X → UY is
always simulated correctly.

The simulation of the rule q : X → Y U is slightly more sophisticated than that
of p : X → UY , and it requires two service symbols, because this time the unique
symbol Y is to the left of U .

Lemma 4.4.2. Rules q.1 through q.5 correctly simulate the application of a rule
q : X → Y U , with X,Y ∈ NP , U ∈ F̂ ∪ F̂ ∪ T .

Proof. The correct simulation sequence has the following form:

w1Xw2
q.1⇒ w1#(1)

q #(2)
q Xw2

q.2⇒ w1#(1)
q #(2)

q w2
q.3⇒ w1#(1)

q Y U#(2)
q w2

q.4⇒ w1#(1)
q Y Uw2

q.5⇒ w1Y Uw2,

where w1 and w2 are defined as in the case of the rule p : X → UY . We will prove
that this simulation sequence is the only one possible in a terminal derivation of Γ.

First of all, observe that q.1 is only applicable to those strings which contain an
instance of X and do not contain other symbols from N ′ ∪NP . Just like in the case
of the rule p : X → UY , this guarantees that there are no other simulations already
running. After the application of q.1, only q.2 may become applicable. Indeed,
q.3 is not applicable because the string still contains an instance of X, q.4 is not
applicable because #(2)

q is preceded by #(1)
q , while q.5 is not applicable because the

string contains an instance of #(2)
q .

82 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

The application of q.2 after q.1 brings the string into the form w1#(1)
q #(2)

q w2.
Remember that there was only one instance of X before this application, so there
are no more instances of this symbol. The only rule that may now be rendered
applicable is rule q.3: q.4 is not applicable because #(2)

q is still preceded by #(1)
q ,

while q5 is inapplicable because the string still contains #(2)
q . An application of q.3

inserts the pair Y U into the string. The only rule that may become applicable after
this insertion is q.4, and if Y U was not inserted right in between #(1)

q and #(2)
q ,

the system will halt with a string with non-terminals. Therefore, in order for the
system to proceed, rule q.3 must transform the string into w1#(1)

q Y U#(2)
q w2. An

application of q.4 removes the #(2)
q . This enables q.5 which removes the #(1)

q and
finishes the transformation of w1Xw2 into w1Y Uw2.

The simulation of an erasing rule r : Û Ū V̂ V̄ → λ is the most sophisticated part
of the argument given in this subsection. The reason is that the only way we can
mark a certain position in the string is by relying on left contexts of deletion rules,
and this means that we cannot reliably place a service symbol to the left of a symbol
which may be present in multiple instances, like Û , without erasing it.

Our solution is to delay the removal of Û to later phases. A part of leftover
hatted symbols is erased at the very end of the simulation of a derivation of G
by rules s.1 and s.2. These two rules only get activated when the string contains
terminals and Â and Ĉ, i.e. when Γ has almost finished simulating a derivation of
G which resulted in a string of terminals and only needs to clean up the remaining
service symbols. The other situation in which Â and Ĉ are removed is when the
string contains nested quadruples of symbols from F̂ ∪ F̄ , i.e. constructions similar
to ÂĀ ĈC̄D̂D̄ B̂B̄. In this case, a simulation of the rule ĈC̄D̂D̄ → λ will erase C̄,
D̂, and D̄ thus producing the string ÂĀ Ĉ B̂B̄. Rules r.13 and r.14 are meant to
handle exactly these kinds of situations and assure that the extra hatted symbols
are removed and do not hinder further simulations.

The proof of the following statement gives more details to how Γ erases quadru-
ples of hatted and barred symbols and formally shows that, whenever Γ takes a
wrong guess, it may not produce a result.

Lemma 4.4.3. Rules r.1 through r.24 correctly remove a substring of the form
Û ŪγV̂ V̄ , where (U, V) ∈ {(A,B), (C,D)} and γ ∈ {Â, Ĉ}∗.

Proof. We will show the correct simulation sequence for the case γ = λ. The case
in which γ 6= λ is handled by applying rules r.13 and r.14 after r.12 and r.15 a
sufficient number of times.

The simulation happens in two phases. In the first phase, Γ inserts some markup
symbols and erases Ū :

w1Û Ū V̂ V̄ w2
r.1⇒ w1Û$(1)

r $(2)
r Ū V̂ V̄ w2

r.2⇒ w1Û$(2)
r Ū V̂ V̄ w2

r.3⇒ w1Û$(2)
r Ū V̂ V̄ f ′fw2

r.4⇒ w1Û$(2)
r Ū V̂ V̄ fw2

r.5⇒ w1Û$(2)
r Ūm′mV̂ V̄ fw2

r.6⇒ w1Û$(2)
r ŪmV̂ V̄ fw2

r.7⇒ w1Û$(3)
r $(2)

r ŪmV̂ V̄ fw2
r.8⇒ w1Û$(3)

r ŪmV̂ V̄ fw2
r.9⇒ w1Û$(3)

r mV̂ V̄ fw2.

In the second phase, Γ erases V̂ and V̄ , and also assures retroactively that the

4.4. RANDOM CONTEXT INSERTION-DELETION SYSTEMS 83

markup symbols were inserted correctly and selected a correct substring Û Ū V̂ V̄ :

w1Û$(3)
r mV̂ V̄ fw2

r.10⇒ w1Û$(3)
r V̂ V̄ fw2

r.11⇒ w1Û$(4)
r $(3)

r V̂ V̄ fw2
r.12⇒ w1Û$(4)

r V̂ V̄ fw2
r.15⇒ w1Û$(5)

r $(4)
r V̂ V̄ fw2

r.16⇒ w1Û$(5)
r V̂ V̄ fw2

r.17⇒ w1Û$(5)
r V̄ fw2

r.18⇒ w1Û$(6)
r $(5)

r V̄ fw2
r.19⇒ w1Û$(6)

r V̄ fw2
r.20⇒ w1Û$(6)

r fw2
r.21⇒ w1Û$(7)

r $(6)
r fw2

r.22⇒ w1Û$(7)
r fw2

r.23⇒ w1Û$(7)
r w2

r.24⇒ w1Ûw2.

The symbolsm and f are the “middle marker” and the “final marker” respectively,
in the sense that, after the application of r.6, we expect m to be located between the
halves Û Ū and V̂ V̄ of a quadruple Û Ū V̂ V̄ , while f is expected to mark the end of
the quadruple. Obviously, there is no guarantee that the insertions have happened
at the desired places. Nevertheless, we will later see that, whenever the marker
symbols are not positioned at proper sites, Γ halts with a string with non-terminals.

We will now prove that, in a valid derivation, Γ will always simulate the erasing
rule r : Û Ū V̂ V̄ → λ in the way we have just described. Consider the string w =
w1Û ŪγV̂ V̄ w2, where w1, w2 ∈ V ∗Γ are some strings over the alphabet of Γ, while
γ ∈ {Â, Ĉ}∗ is an arbitrary string containing the hatted symbols left after the
incomplete erasure of some quadruples of hatted and barred symbols, as above.

First phase. The simulation starts by the application of r.1, which inserts the
pair $(1)

r $(2)
r . The only rule that may become applicable after this insertion is r.2,

and the only case when it becomes applicable is when $(1)
r $(2)

r has been inserted
to the right of an instance of Û . The application of rule r.2 enables r.3 and only
this rule, which inserts the pair f ′f at some locus in the string. Similarly to the
situation with the pair $(1)

r $(2)
r , the only rule which may become enabled after this

insertion is the deletion rule r.4, which ensures that the marker symbol f is fixed
after an instance of V̄ . The application of r.4 enables r.5 and only this rule, which
inserts the pair m′m. Finally, rule r.6, which is the only rule to be enabled after
the application of r.5, ensures that the marker symbol m is fixed to the right of an
instance of Û .

After the applications of rules r.1–r.6, we would like to have the initial string
w transformed into w1Û$(2)

r Ū mγ V̂ V̄ f . However, so far we have only ensured the
presence of the pairs Û$(2)

r , Ūm, and V̄ f in the resulting string. In what follows,
we will keep in mind two cases: the “good” case, when Γ produces the desired string
w1Û$(2)

r Ū mγ V̂ V̄ f , and the “bad” case in which Γ produces a different string, which
still includes the substrings Û$(2)

r , Ūm, and V̄ f .
The application of r.6 enables r.7, and only this rule. Rule r.7 inserts $(3)

r

somewhere in the string. This may only enable r.8, which requires that r.7 has
inserted $(3)

r exactly before $(2)
r . This means that the pair of rules r.7 and r.8 has

the effect of replacing $(2)
r with $(3)

r . Remark once again that this is the only possible
effect of the application of this pair of rules in a terminal derivation of Γ.

After the application of r.8, the string contains the substrings Û$(3)
r , Ūm, and

V̄ f . Since the string does not contain $(2)
r , but contains $(3)

r , there are two rules
which may become applicable: rules r.9 and r.10. Remember, however, that we
have assured the presence of Ūm in the string, which means that r.10 cannot be
applicable, because $(3)

r is definitely not to the left of m. This means that the

84 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

only rule that may become applicable is r.9, which can only be enabled if $(3)
r is

followed by Ū . This means, in its turn, that, for Γ not to halt, the string must
include the substring $(3)

r Ū , besides the aforementioned substrings Û$(3)
r , Ūm, and

V̄ f . Knowing that there cannot be more than one instance of $(3)
r in the string, we

conclude that, in a terminal derivation, the string must contain the substring Û$(3)
r Ū .

The application of r.9 removes the instance of Ū which is situated to the right
of $(3)

r . Remember that the symbols from F̂ ∪ F̄ are always produced in pairs of the
form Û Ū , and therefore, when the erasure of quadruples begins, the string cannot
include runs of hatted or barred symbols, i.e. it cannot contain substrings of the
form α ∈ F̂ k or β ∈ F̄ k, where k ≥ 2. On the other hand, as we have already seen,
a valid simulation of a rule r : Û Ū V̂ V̄ → λ removes all barred symbols. This means
that the string cannot include runs of barred symbols at any step of a derivation
of Γ. Therefore, an application of r.9 (which removes a Ū) can only happen once at
a time, because Ū is necessarily followed by a non-barred symbol.

Keeping in mind all of the previous observations regarding the structure of the
string ensured by the time r.9 has been applied, one can see that only r.10 may
become applicable at this moment. However, this rule may only become applicable
if $(3)

r is followed by m. This means that, before the application of r.9, the string
had to include the substring $(3)

r Ūm so that the erasure of Ū could place $(3)
r right

before m; otherwise Γ would have halted on a string with non-terminals.
We remark that, actually, a slightly stronger condition has been assured by

the time r.9 has been applied: the string has to include the substring Û$(3)
r Ūm.

Whenever this is not the case, Γ halts on a string with non-terminals.

Second phase. An application of rule r.10 removes m from the string. The only
rule that may now become applicable is r.11, which is coupled with r.12, and the only
possible effect of these two rules is replacing $(3)

r with $(4)
r . In the “good” case, when

all markers have been positioned correctly, the string will look like w1Û$(4)
r γV̂ V̄ w2,

where γ ∈ {Â, Ĉ}∗, as before. We remind that the mission of $(4)
r is to remove γ

(which can also be empty). This is accomplished by successive applications of r.13
and r.14. However, rule r.15 is also applicable after r.12, which means that $(5)

r

can be inserted even if not all of the leftover Â and Ĉ were removed and $(4)
r is

not immediately followed by V̂ . Remark, though, that if this does happen, rules
r.13 and r.14 will be rendered inapplicable. If $(5)

r is not inserted before $(4)
r , the

system will halt on a string with non-terminals; otherwise, the only applicable rule
will be r.16, which will remove $(4)

r . Among the rules which are left, none is capable
of removing Â or Ĉ (r.17 can only erase B̂ or D̂, depending on the form of the
rule r), which means that the only way in which Γ can evolve from this point is by
successively applying r.18, r.19, r.21, and r.22. Observe that the erasing rules r.17
and r.20 will not be applied, because all of the dollar symbols will be followed by
either Â or Ĉ. Therefore, after the application of r.22, the symbol $(7)

r will not be
followed by f and Γ will halt with a string with non-terminals. The conclusion is
that, in the “good” case, the only valid way for Γ to evolve is by erasing the substring
γ entirely, up to the moment when $(4)

r is just to the left of V̂ .
At the beginning of the simulation, we have assured that f is preceded by a V̄ ;

on the other hand, up to the application of rule r.15, no instances of V̄ have been
erased. This means that f is still preceded by V̄ by the time r.15 is applied. Observe
now that, as different from the case of Û ∈ {Â, Ĉ}, all pairs V̂ V̄ , V ∈ {B,D},

4.4. RANDOM CONTEXT INSERTION-DELETION SYSTEMS 85

are removed entirely, i.e. in the original string w = w1Û ŪγV̂ V̄ w2, there were no
instances of V̄ which were not preceded by V̂ (whenever this is not so, the string
must necessarily contain non-terminals from NP). Consequently, we have actually
assured that f is preceded by the pair V̂ V̄ , which means that, if $(4)

r is not located
to the left of the pair V̂ V̄ which is followed by f , Γ will never arrive at a string
including $(7)

r f and thus f will never be deleted. Indeed, by looking at rules r.16–
r.21, one can see that the symbols $(5)

r and $(6)
r can condition the removal of at

most one V̂ and one V̄ (since there can be no runs of these symbols), in this order.
Therefore, if there are different symbols between $(4)

r and f , it is impossible for Γ
to arrive at a string where there is a dollar symbol immediately to the left of f .

Up to now, we have shown that, at the moment of application of r.15, $(4)
r and f

should mark the same pair V̂ V̄ for Γ to continue the evolution. We will now prove
that, in a valid derivation, Γ necessarily removes this pair.

As we have already seen above, the only valid effect of rules r.15 and r.16 is
replacing $(4)

r with $(5)
r . This renders two rules applicable: r.17 and r.18. Remark,

however, that, if r.18 is indeed applied at this time, r.17 will never become applicable
again. Rule r.19, coupled with r.18, will replace $(5)

r with $(6)
r . The system Γ will

not be able to apply r.20, because $(6)
r will still be followed by V̂ , and, finally,

the applications of r.21 and r.22 will not place $(7)
r right before f , thus making

impossible the removal of the latter two symbols and blocking the system on a
string with non-terminals. Therefore, in a valid derivation, r.17 is always applied
before r.18.

The pair of rules r.20 and r.21, which becomes applicable after the substitution
of $(6)

r with $(7)
r effected by r.18 and r.19, has the same property as the pair r.17

and r.18, i.e. Γ necessarily halts on a string with non-terminals if r.21 is applied
before r.20. Therefore, in a valid derivation, the pair V̂ V̄ marked by the symbols
$(4)
r and f is always removed. The general conclusion is that Γ either simulates the

rule r : Û Ū V̂ V̄ → λ correctly or halts on a string with non-terminals.

The three lemmas above show that Γ simulates exactly the derivations of the
original grammar in special Geffert normal form G, which implies the statement of
the following theorem.

Theorem 4.4.4. RC INS0,0
2 DEL1,0

1 = RE.

We will now show that random context insertion-deletion systems with rules
of size (1, 1, 0; p, 1, 1) are not capable of generating all recursively enumerable lan-
guages. The proof is based on the observation that it is impossible to control the
number of applications of an insertion rule r :

(
(x, y, λ)ins, P,Q

)
when y is already

present in the string. Indeed, in the case when x 6∈ P ∪Q and y 6∈ P ∪Q, if r can be
applied once, it can also be applied any number of times. Furthermore, including x
in either P or Q does not in any way increase control: including x in the permitting
context is redundant, while including it in the forbidding context would just make
the rule never applicable. Similarly, including y into P contributes nothing in what
concerns control over the number of applications of rule r. The remaining possibil-
ity is including y into the forbidding context Q. In this case, however, the rule will
never be applicable to a string which already contains y.

Proposition 4.4.5. (ab)+ ∈ REG \RC INS1,0
1 DEL1,1

p , p ≥ 1.

86 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

Proof. Suppose, by contradiction, that there exists a random context insertion dele-
tion system Γ = (V, T, S,R) of the required size such that L(Γ) = (ab)+. Since the
statements of Lemmas 3.3.1 and 3.3.3 can be directly generalised to random-context
insertion-deletion systems, we can require without losing generality that Γ contain
no context-free insertion rules and no rules erasing terminals.

Consider a derivation S ⇒∗Γ w, with w ∈ (ab)+, and pick a pair ab by regarding
the string as w = w1abw2, where w1, w2 ∈ (ab)∗. Since R does not contain rules
erasing terminals, the b in our pair was either added by an insertion rule or was
a part of the axiom S. Note, however, that we can choose w such that |w| > |S|,
because the length of the words in (ab)+ is unbounded. Obviously, in such a w, one
can always pick a pair ab which does not originate from the axiom.

Suppose that the instance of b in w = w1abw2 was inserted by the rule p :(
(x, b, λ)ins, P,Q

)
, where x ∈ V . Then, in the derivation of w, there was a step

γxδ
p⇒ γxbδ, with γ, δ ∈ V ∗. Remark that, if b belongs to the forbidding context Q

of p, this rule will only be able to insert the very first instance of b into the string.
However, since the length of the words in (ab)+ is unbounded, R must contain a rule
which inserts b and does not include b in its forbidding context. Suppose we have
chosen w and the sentential form γxδ in such a way that p is this rule, i.e. b 6∈ Q; in
this case γxδ p⇒ γxbδ

p⇒ γxbbδ. But then it is possible to take the rule applications
from the derivation γxbδ ⇒∗ w1abw2 and build the derivation γxbbδ ⇒∗ w1abbw2,
which means that S ⇒∗ w1abbw2 6∈ (ab)+. This and the reasoning we showed in the
previous paragraphs implies that no random context insertion-deletion system can
generate the language (ab)+.

The results presented in this section are summarised in Table 4.1.

Table 4.1: A summary of results about the computational power of insertion-deletion systems with
control

Size Control Power Reference
(1, 0, 0; 0, 0, 0) semi-conditional ⊆ CS Proposition 4.3.1
(1, 0, 0; 1, 0, 0) semi-conditional = RE Theorem 4.3.6
(1, 1, 0; p, 1, 1) random-context 6⊇ REG Proposition 4.4.5
(2, 0, 0; 1, 1, 0) random context = RE Theorem 4.4.4
(1, 2, 0; 1, 1, 0) graph = RE Theorem 4.2.1
(1, 1, 0; 1, 2, 0) graph = RE Theorem 4.2.2

4.5 Small Universal NEPs

In this section we consider universal networks of evolutionary processors (NEPs)
having a small number of rules. We show that it is possible to construct a strongly
universal NEP with 5 rules, and a weakly universal NEP with 4 rules. We recall that
an element A0 ∈ C, for a class of computing devices C, is called weakly universal if
A(x) = y implies A(x) = f(A0(g(A), h(x))), where h and f are the encoding and
decoding functions respectively, and g is the function assigning numbers to devices
in C, according to some fixed enumeration. If h and f are identities, the element
A0 is called strongly universal. We refer to Section 2.3 for a detailed discussion of
computational completeness and universality.

4.5. SMALL UNIVERSAL NEPS 87

Towards the end of the section, we give a construction of a universal NEP with
7 rules that efficiently (in polynomial time) simulates any Turing machine.

4.5.1 Definitions

An evolution rule over an alphabet V is a rule a→ b, with a, b ∈ V ∪{λ} and where
a and b cannot be both empty. We say that an evolution rule is a substitution rule if
both a and b are not λ; it is a deletion rule if a 6= λ and b = λ; it is an insertion rule
if a = λ and b 6= λ. The set of all evolution, substitution, deletion, and insertion
rules over an alphabet V are denoted by EvoV , SubV , DelV , and InsV , respectively.

Given a rule σ : a→ b ∈ EvoV we define the result of the application of σ to a
word w ∈ V ∗ as follows:

σ(w) =

{
{ubv | w = uav, u, v ∈ V ∗}, if w contains a,
{w}, otherwise.

We can generalize this notation to languages and write σ(L) =
⋃
w∈L

σ(w).

A network of evolutionary processors of size n is the tuple Γ =
(V,N1, . . . , Nn, k,G), where V is an alphabet, 1 ≤ k ≤ n designates the output
node and Ni = (Mi, Ai, IFi, OFi) is the i-th node (processor), 1 ≤ i ≤ n, in which
Mi ⊆ EvoV is a finite set of evolutionary rules, Ai is a finite set of strings over V
(initial strings), and IFi and OFi are regular languages over V specifying conditions
for a string to enter and to exit a node, respectively (input and output filters). Fi-
nally, G = ({N1, . . . , Nn}, E) is the graph specifying the underlying communication
network.

Sometimes the NEPs as we define them here are referred to as mixed NEPs,
in contrast with the classical definition of this computational model in which the
processors are only allowed to carry out one type of operation, i.e. a processor is only
allowed to execute either insertions, or deletions, or substitutions [5]. As it will be
visible later, allowing mixed processors is a convention that simplifies descriptions
of networks without essentially modifying their computational power.

The configuration C = (C1, . . . , Cn) of a NEP consists of the sets of strings
appearing in each node (each string appears in an arbitrary large number of copies).
The system evolves from a configuration C = (C1, . . . , Cn) to a configuration C ′ =
(C ′1, . . . , C

′
n) in two kinds of alternating steps:

– evolution step (C ⇒ C ′): C ′i =
⋃
σ∈Mi
w∈Ci

σ(w),

– communication step (C ` C ′): C ′i = Ci \OFi ∪
⋃

(Ni,Nj)∈E

Cj ∩OFj ∩ IFi.

A computation consists of a sequence of configurations, C0 = (A1, . . . , An),
C2i ⇒ C2i+1 and C2i+1 ` C2i+2, for i ≥ 0. Remember that each string is present in
an arbitrarily large number of copies, which means that, after the rule applications
of an evolution step, we get arbitrarily many copies of each of the resulting strings
in each of the nodes of the network. The result of a (possibly infinite) computation
is a language collected in a designated node Nk called the output node. Thus,
L(Γ) =

⋃
t≥0C

t
k.

88 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

For the purposes of the present thesis we define the result of the computation
of Γ on an input word w, denoted by Γ(w). We assume that Γ has the property
Ai = ∅, i ≥ 1. Then Γ(w) can be computed by setting A1 = {w} and Ai = ∅, i ≥ 2,
obtaining the NEP Γ′, and having Γ′ evolve as usual. In this case Γ(w) = L(Γ′).

In this work we only consider NEPs in which all nodes contain at most one string
at any step of computation. Therefore Γ(w) is always a singleton language, and we
say that the only word of Γ(w) is the result of the computation of Γ on w.

4.5.2 Simulation of Register Machines

In this subsection we show that any register machine can be simulated by a NEP.
Since such machines deal with integer numbers, we need to modify the definitions
of the input and output of a NEP in order to accommodate to this property.

LetM = (k,Q, q1, q0, P) be a register machine with k registers (we remark that
the initial state is q1 and the final state is q0). We will use unary encoding to
represent a configuration (qi, n1, . . . , nk) of M: 1i01n10 . . . 1nk0. In this encoding,
the number of symbols 1 in the first block represents the state number and the size of
each next block of 1’s corresponds to the value of the respective register. Hence, the
initial configuration is represented by the string 101n10 . . . 1nk0, where n1, . . . , nk is
the input of M. We assume that M produces the result in the first register and
empties all other registers before halting. For a vector v = (n1, . . . , nk), ni ∈ N,
k > 0, we define the result Γ(v) of the computation of Γ on v as the length of the
string Γ(101n10 . . . 1nk0). We will use a similar definition of NEPs with input in
Section 4.5.3, where Turing machines are simulated.

For a given register machineM, we will construct the corresponding NEP simu-
latingM, ΓM = ({0, 1, 1̄, 0̄, ¯̄1}, N1, N2, N3, 3, G), with the following communication
graph G:

N3 N1 N2

The main idea behind the construction is to have processor N1 mark the symbols
that should be deleted with double bars, and the symbols that should be added with
a single bar. Since unary encoding is used, adding and deleting symbols permits
rewriting both the state and the values of registers using the same set of rules.

The processors of ΓM are defined as follows:

N1 : IF1 = {0, 1}∗,
M1 = {λ→ 1̄, 1→ ¯̄1},
OF1 = {1̄j ¯̄1i0(1∗0)t−11∗1̄0(1∗0)k−t | (qi, A(t), qj) ∈ P}

∪ {1̄j ¯̄1i0(1∗0)t−11∗¯̄10(1∗0)k−t | (qi, S(t), qj , qs) ∈ P}
∪ {1̄s¯̄1i0(1∗0)t−10(1∗0)k−t | (qi, S(t), qj , qs) ∈ P},

A1 = ∅;

N2 : IF2 = {0, 1, 1̄, ¯̄1}∗,
M2 = {1̄→ 1, ¯̄1→ λ},
OF2 = {(1∗0)k+1},
A2 = ∅;

4.5. SMALL UNIVERSAL NEPS 89

N3 : IF3 = {01∗00k−1},
M3 = ∅,
OF3 = ∅,
A3 = ∅.

The NEP ΓM simulates the register machineM in the following way. Suppose
that M is in configuration (qi, n1, . . . , nt, . . . , nk) and there exists an instruction
(qi, A(t), qj) ∈ P . As mentioned above, this configuration will be represented by
the string 1i01n10 . . . 1nt0 . . . 1nk0 in processor N1. The rules from M1 can now be
repeatedly applied, yielding strings over {0, 1, 1̄, ¯̄1}∗. However, only a string of the
form 1̄j ¯̄1i01n10 . . . 1nt 1̄0 . . . 1nk0 can pass the filters OF1 and IF2 and go to processor
N2. We remind that the marking of this string instructs to add j symbols and delete
i symbols in the first block of 1’s, thus referring to the transition from qi to qj , and
to add an additional symbol 1 to the (t + 1)-th block of 1’s, which corresponds to
the increment of the register Rt. Now, in order to pass OF2, all symbols ¯̄1 should be
erased and all instances of 1̄ rewritten to 1. The only result of this transformation
that can pass through OF2 and IF1 is the string 1j01n10 . . . 1nt+10 . . . 1nk0 which
corresponds to the configuration (qj , n1, . . . , nt + 1, . . . , nk).

The simulation of a decrement instruction of M is done in a similar way: the
new state is marked and the corresponding register is decremented by marking one
of its 1’s with a double bar. If there are no instances of 1 in the corresponding block,
the state corresponding to the empty register is selected.

Remark that the number of rules in our construction does not depend on the
number of instructions in the register machine. This allows us to formulate the
following universality result.

Theorem 4.5.1. There exist a weakly universal NEP with 4 rules and a strongly
universal NEP with 5 rules.

Proof. The proof follows from the fact that there exist strongly universal register
machines, e.g. U22 from [71]. Hence, ΓU22 constructed as above will be weakly
universal because for anyM it is true that ΓM(x) = M(x) + k + 1. It is possible
to achieve strong universality by adding a new output processor connected to N3,
a rule 0 → λ to M3, and a filter 1∗ to OF3. This rule and the corresponding filter
will remove symbols 0 and only the value of the first register will be kept.

4.5.3 Simulation of Turing Machines

Consider the deterministic Turing machine T = (Q,Σ, a1, q1, F, δ). We remind
that, if T halts with input w, then T (w) is the contents of the tape in the halting
configuration (cf. Section 2.2). In this subsection we will construct a NEP ΓT capable
of simulating a given Turing machine T : ΓT will halt on input w if and only if T
halts, and moreover, T (w) = h′(ΓT (f ′(w))), where f ′ and h′ are the coding and the
decoding functions correspondingly.

Let Σ = {a1, . . . , am} and consider the following (unary) coding: φ(ak) = 1k0,
k ≥ 0, so the empty symbol is coded as 10. We remark that this coding can be
extended to words in a standard way. Similarly, consider the coding ψ(qi) = 0i for
Q = {q1, . . . , qn}. We represent a configuration w′qiakw′′ of T in the following way:
φ(w′)ψ(qi)φ(ak)φ(w′′). Accordingly, we represent the initial configuration of T as

90 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

follows: 10 0 φ(w), where w is the input of T and the second symbol 0 is the code of
the initial state q1 of T . If w is empty, it is replaced by an instance of a1 to assure
that there is at least one symbol to the left and to the right of the head.

The function coding the input is defined as f ′(x) = φ(a1)ψ(q1)φ(x) and the
function decoding the output as h′(x) = π(z−1(x)), where z(x) = ψ(x) if x ∈ Q and
z(x) = φ(x) otherwise, while π(x) = λ if x ∈ Q and π(x) = x if x 6∈ Q.

We construct the NEP ΓT = ({0, 1, 1̄, 0̄, ¯̄1}, N1, N2, N3, N4, 4, G) with the follow-
ing communication graph G:

N1 N2 N3 N4

The main idea is essentially similar to what we have already shown in the pre-
vious subsection: processor N1 inserts 1̄’s to mark additions of 1’s to the string and
rewrites certain 1’s into ¯̄1’s to schedule them for subsequent deletion. It does so in
correspondence with the program of the simulated Turing machine.

The processors of ΓT are defined as follows:

N1 : IF1 = {(1+0)+0i(1+0)+ | qi 6∈ F},
M1 = {λ→ 1̄, 1→ ¯̄1, λ→ 0̄},
OF1 = {(1+0)+ 0i 1k1̄l−k0 0̄j (1+0)+ | (qi, ak, qj , al, R) ∈ δ, l ≥ k}

∪ {(1+0)+ 0i 1k1̄l−k0 0̄j 1̄0̄ | (qi, ak, qj , al, R) ∈ δ, l ≥ k}
∪ {(1+0)+ 0i 1l¯̄1k−l0 0̄j (1+0)+ | (qi, ak, qj , al, R) ∈ δ, l < k}
∪ {(1+0)+ 0i 1l¯̄1k−l0 0̄j 1̄0̄ | (qi, ak, qj , al, R) ∈ δ, l < k}
∪ {(1+0)+ 0̄j (1+0) 0i 1k1̄l−k0 (1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l ≥ k}
∪ {1̄0̄ 0̄j (1+0) 0i 1k1̄l−k0 (1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l ≥ k}
∪ {(1+0)+ 0̄j(1+0)0i 1l¯̄1k−l0 (1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l < k}
∪ {1̄0̄ 0̄j (1+0) 0i1l ¯̄1k−l 0(1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l < k},

A1 = ∅;

N2 : IF2 = {0, 1, 0̄, 1̄, ¯̄1}∗,
M2 = {0→ ¯̄1},
OF2 = {(1+0)+ ¯̄1+ 1+(1̄∗|¯̄1∗)0 0̄+

(
(1+0)+|1̄0̄

)
}

∪ {
(
(1+0)+|1̄0̄

)
0̄+ (1+0) ¯̄1+ 1+(1̄∗|¯̄1∗)0 (1+0)+},

A2 = ∅;

N3 : IF3 = {0, 1, 0̄, 1̄, ¯̄1}∗,
M3 = {1̄→ 1, ¯̄1→ λ, 0̄→ 0},
OF3 = {0, 1}∗,
A3 = ∅;

N4 : IF4 = {(1+0)+0i(1+0)+ | qi ∈ F},
M4 = ∅,
OF4 = ∅,
A4 = ∅.

We will now describe how the network ΓT simulates the Turing machine T . We
recall that the result of the computation of ΓT is the (only) string that reaches
processor N4. To rewrite the substring φ(ak) into φ(al), we either need to add some
1’s to the block of 1’s coding ak if l ≥ k, or to erase some 1’s otherwise. This exactly
is the mission of N1, which schedules the operations to carry out and also inserts a
number of 0̄’s to select the next state of T .

4.5. SMALL UNIVERSAL NEPS 91

The output filter OF1 exercises very precise control over which strings are even-
tually allowed out of N1. The first line in the definition of OF1 allows strings
corresponding to a transition of T during which the head moves to the right, ak is
rewritten into al, l ≥ k, and the sequences of 0’s and 0̄’s code the corresponding
old state qi and the new state qj . The second line in the definition of OF1 allows
N1 to deal with the situations in which ak is rewritten into al, l ≥ k, and the head
is at the right end of the string: a new empty cell 10 is scheduled for insertion by
placing 1̄0̄ at the right end. The next two lines in the definition of OF1 have exactly
the same role as the first two, but for the case in which l < k. Note how the first
two lines expect additions of 1’s by requiring the presence of 1̄’s, while the following
two lines expect removals of 1’s by requiring the presence ¯̄1’s. The next four lines
handle the same special cases for leftward head moves.

The task of N2 is to mark the previous state for deletion. This is done by
replacing the corresponding sequence of 0’s by a sequence of ¯̄1’s. We remark that
due to the form of the strings that can reach N2 (the ones which pass the filter
OF1), only those strings will be allowed out of N2 in which all the 0’s representing
the old state have been rewritten.

The role of N3 is to apply the operations scheduled by N1 and N2 by inserting
barred symbols and erasing double-barred 1’s. N3 forwards its output to both N1

and N4, but only one of these two processors will accept the string, since N4 only
lets in strings representing a configuration of T in one of its final states, while N1

will only work on strings which contain the code of a non-final state.
Applying our construction to simulate a concrete universal Turing machine yields

the following universality result.

Theorem 4.5.2. There exists a universal NEP with 7 rules that simulates any
Turing machine in polynomial time.

Proof. The proof follows from the existence of universal Turing machines that sim-
ulate the target machine in polynomial time, see [120] for more details.

For completeness, we remind what polynomial-time simulation means. Consider
two computing devices A and B and denote the number of steps A (respectively,
B) needs to produce output on input w by tA(w) (respectively, by tB(w)). Then
“A simulates B in polynomial time” means that, for a given input w, A produces
the same output as B, and moreover, for any w, tA(w) is bounded by a polynomial
function of tB(w).

We also remark that, in ΓT , the simulation of each step of a Turing machine
happens in a fixed number of steps depending on the codes of the implied symbols.

Finally, we remark that, while the universal Turing machines we simulate do not
rely on commands which only rewrite symbols without moving the head, it is rather
easy to apply the ideas we have just shown to simulate such instructions.

92 CHAPTER 4. INSERTION-DELETION SYSTEMS WITH CONTROL

Chapter 5

Small Universal Register Machines

In this chapter we explore the questions of universality for register machines. We
recall that an element A0 ∈ C, for a class of computing devices C, is called weakly
universal if A(x) = y implies A(x) = f(A0(g(A), h(x))), where h and f are the en-
coding and decoding functions respectively, and g is the function assigning numbers
to devices in C, according to some fixed enumeration. If h and f are identities,
the element A0 is called strongly universal. We refer to Section 2.3 for a detailed
discussion of computational completeness and universality.

In Section 5.1 of the present chapter, we introduce a generalisation of the clas-
sical model of register machines allowing several tests and operations to be carried
out at a single time, after which we describe a universal generalised register ma-
chine with seven states only. In Section 5.2 we recall Marvin Minsky’s approach
to building strongly and weakly universal register machines with 3 and 2 registers
respectively [92], and then we actually construct and give the instructions of these
machines.

5.1 Generalised Register Machines

5.1.1 Definition and Motivation

In this section we discuss an extension of the construct of a register machine which
originates in the fundamental similarities of this computing model with multiset
rewriting systems and Petri nets, discussed in more detail in Section 1.3. Conven-
tional register machines are based on a very restricted set of instructions, which
simplifies reasoning about them and gives a detailed insight into the complexity
of such operations as multiplication and division. However, a reduced instruction
set is more of a nuisance in the pursuit of minimal universality constructions in
the domains of Petri nets and multiset rewriting systems, which are traditionally
shown to simulate one of the universal register machines from Ivan Korec’s work [71]
(e.g., [6, 24]). Indeed, several operations of a conventional register machine can be
carried out in a single evolution step of such a system. Consider multiset rewriting,
for example; if the value of the register Ri is represented by the multiplicity of the
symbol ri, the multiset rewriting rule w → v r1r2r

2
3 increments the registers R1 and

R2, and adds 2 to R3 all at the same time, while a basic register machine would
require 4 separate instructions to achieve the same result.

This disparity between the complexity of an instruction of a register machine and

93

94 CHAPTER 5. SMALL UNIVERSAL REGISTER MACHINES

a multiset rewriting rule opens up several possibilities of optimising the simulation
of the former by the latter (e.g., [6, 40]). Often these optimisation ideas are not
specific to multiset rewriting and can be easily carried over to different computing
devices, like, for example, Petri nets. The generalised construction introduced in
this section is meant to capture the versatility of such systems in a form closely
related to original register machines, so that some important optimisations can be
performed on this abstract model and then directly taken over to other models of
computing. Essentially, we consider devices with registers, which can modify or test
several registers for zero in a single state transition.

A generalised register machine is a construct M = (R,G, q0, F, z, nz, add, sub),
where R = {1, . . . , k} is a set of register numbers, G = (Q,E, s, t) is a directed
multigraph of states Q and arcs (transitions) E, q0 ∈ Q is the initial state, F ⊆ Q
comprises the final states, while z, nz : E → 2R, add : E → R∗, and sub : E → 2R

are functions defining the registers which should be zero or non-zero for a transition
to be activated, as well as the registers which should be decremented or incremented
during the transition, respectively. We require that, for any e ∈ E, z(e)∩nz(e) = ∅,
and that sub(e) ⊆ nz(e), i.e. only those registers which are required to be non-zero
are decremented. Remark that add(e) is a multiset, which means that multiple
increments of the same register can be carried out in a single transition.

A configuration of a generalised register machine is the tuple (q, n1, . . . , nk),
where, just as in the case of conventional register machines, q ∈ Q is the current
state of M , and ni ∈ N, 1 ≤ i ≤ k, are the values of the registers. We say that there
is a transition from configuration C = (q, n1, . . . , nk) to C ′ = (q′, n′1, . . . , n

′
k) if G

contains an edge e such that s(e) = q, t(e) = q′, the conditions represented by z(e)
and nz(e) hold in C:

∀i ∈ z(e) . ni = 0 and ∀i ∈ nz(e) . ni 6= 0,

and the values of registers in C ′ can be obtained by applying the instructions pre-
scribed by se = sub(e) and ae = add(e):

∀i ∈ R .n′i = ni − se(i) + ae(i),

where x(i) is the number of occurrences of i in the multiset x, and the set se is
treated as a multiset. The arc e is said to be enabled in configuration C.

A graphical representation of a generalised register machine is shown in Fig-
ure 5.1. This machine has two registers numbered 1 and 2, and three states: q0, q1,
and q2, the latter state being final: F = {q2}. This register machine has four arcs:
E = {e1, e2, e3, e4} with the following source and target vertices:

s(e1) = q0, t(e1) = q1, s(e2) = (q0), t(e2) = q1,
s(e3) = q1, t(e3) = q2, s(e4) = (q2), t(e4) = q0.

The conditions and operations associated with these edges are the following:

z(e1) = ∅, nz(e1) = {1, 2}, add(e1) = λ, sub(e1) = {1, 2},
z(e2) = ∅, nz(e2) = ∅, add(e2) = 2, sub(e2) = ∅,
z(e3) = {1}, nz(e3) = ∅, add(e3) = 1, sub(e3) = ∅,
z(e4) = ∅, nz(e4) = {2}, add(e4) = λ, sub(e4) = ∅.

5.1. GENERALISED REGISTER MACHINES 95

q0 q1 q2

NZ(1), NZ(2)
S(1), S(2)

A(2)

Z(1)
A(1)

NZ(2)

Figure 5.1: An example of a generalised register machine

In the graphical representation of the label of an arc e of a generalised register
machine, we use the symbol Z(i) if i ∈ z(e), NZ(i) if i ∈ nz(e), S(i) if i ∈ sub(e),
and Aj(i) if the multiplicity of the register number i in the multiset add(e) is j. If
j = 1, we will just write A(i).

Remark that, if the set of arcs E of a generalised register machine contains two
distinct elements e1 and e2 such that z(e1) = z(e2), nz(e1) = nz(e2), add(e1) =
add(e2), and sub(e1) = sub(e2), then these arcs have the same effect and we can
safely identify them and only consider machines without such pairs of arcs. This
means that an arc is uniquely identified by the values the functions s, t, z, nz, add,
and sub assign to it. We will therefore omit specifying arc names in most of the
cases. Often we will also use the notation e : q1 → q2 when s(e) = q1 and t(e) = q2.

A generalised register machine is not required to be deterministic, and indeed,
the machine shown in Figure 5.1 can choose between two different evolution paths
in configuration (q0, 1, 2). We will say that a generalised register machine is deter-
ministic if, in every configuration C = (q, n1, . . . , nk), q ∈ Q \ F , there is precisely
one enabled arc, and in any configuration C = (qf , n1, . . . , nk), qf ∈ F , no arcs are
enabled.

It follows from the definition that any register machine based on the increment
and decrement-and-zero-check operations can be directly transformed into a gener-
alised register machine; in particular, U22 and U20 from [71] can be directly seen
as generalised register machines. Some more care should be taken in case the pure
decrement instruction is used without a prior zero test, because in [71, Section 1]
this instruction is defined to not modify the contents of the register if it is already
empty. This corresponds to a decrement-and-zero-check instruction (p, S(i), q, q),
which moves the machine into state q no matter what the value of the register was,
and should thus be simulated using two arcs of a generalised register machine having
complementary sets of conditions on the register i.

5.1.2 State Compression and Universality

As we have seen in the previous subsection, generalised register machines are ca-
pable of performing several register tests and modifications at a single time. This
property can be used to reduce the number of states at the expense of having
more complex transitions. Consider for example the generalized register machine
shown in Figure 5.2a; it could be described with the instructions (q1, S(1), q2, q3)
and (q2, S(j), q4, q5). The generalized register machine in Figure 5.2b performs the
same operations, but uses one state less. The idea is that, instead of checking that
register 1 is zero on the transition from q1 to q3, and then checking that register 2

96 CHAPTER 5. SMALL UNIVERSAL REGISTER MACHINES

q1 q2

q3 q4

q5

Z(1)

Z(2)

NZ(1)
S(1)

NZ(2)
S(2)

(a) Two decrements

q1

q5

q2

q4

NZ(1)
S(1)

Z(1), NZ(2)
S(2)

Z
(1
),
Z
(2
)

(b) Compressed version

Figure 5.2: State compression for successive S(1) and S(2).

is non-zero and decrementing it while moving to state q4, the register machine can
do all of these checks and operations in a single direct transition from q1 to q4. We
will refer to the procedure of removing states while conserving the same behaviour
as state compression.

While many states can be reduced away in this fashion, not all of them can. To
formally define the circumstances under which a state may be removed, consider a
state q, the set of edges which end in q: pred(q) = {e ∈ E | t(e) = q}, and another
set of edges which start at q: succ(q) = {e ∈ E | s(e) = q}. Then q is compressible
if all of the following conditions hold:

– no arc going into q modifies a register which is involved in the conditions of
an arc leaving q, that is, for every epred ∈ pred(q) and esucc ∈ succ(q),(

supp(add(epred)) ∪ sub(epred)
)
∩
(
z(esucc) ∪ nz(esucc)

)
= ∅,

where supp(w) is the support of the multiset w (see Section 2.1);

– q has no loop arcs (i.e. arcs which do not move the machine away from state q):

@e ∈ E . s(e) = t(e) = q.

Note that, since all registers which are decremented by an arc are required to be
checked for being non-zero by the same arc, the former condition implies that a state,
for which an incoming arc decrements a register and an outgoing arc decrements the
same register, is not compressible.

To compress away a state q, we take all pairs of edges epred ∈ pred(q) and
esucc ∈ succ(q) and pick the pairs which do not check for conflicting conditions,
that is:

z(epred) ∩ nz(esucc) = nz(epred) ∩ z(esucc) = ∅.

Then, for every such pair we add a new arc e : qpred → qsucc, putting together all
the conditions and operations of the arcs epred and esucc:

z(e) = z(epred) ∪ z(esucc), nz(e) = nz(epred) ∪ nz(esucc),
add(e) = add(epred) + add(esucc), sub(e) = sub(epred) ∪ sub(esucc).

The state q and all arcs having it as source or target are then removed.
The state compression algorithm is defined as iterative reduction of compressible

5.1. GENERALISED REGISTER MACHINES 97

states until no more such states remain in the generalised register machine. Using
this algorithm, it is possible to compress the original register machine U22 to a
generalized register machine with 7 states, including a Stop state. We will refer to
this generalized machine as U7; its program is shown in Table 5.1. Similarly, the
register machine U20 can be compressed to a weakly universal generalised register
machine with 7 states, which we will call U ′7; the program of this machine is given in
the appendix. Both machines start in state q1 with input in register 2 (corresponding
to R2 in U22 and U20), and place the result into register 0 (corresponding to R0 in
U22 and U20).

Table 5.1: The program of the universal generalised register machine U7

qi qj Conditions Operations
q1 q1 NZ(1) S(1), A(7)
q1 q4 Z(1) A(6)
q4 q4 Z(5), Z(6)
q4 q4 NZ(5) S(5), A(6)
q4 q10 Z(5), NZ(6) A(5), S(6)
q10 q1 Z(6), Z(7)
q10 q1 NZ(4), NZ(6), Z(7) S(4)
q10 q4 Z(6), NZ(7) A(1), S(7)
q10 q10 NZ(6), NZ(7) A(1), A(5), S(6), S(7)
q10 q16 Z(4), NZ(6), Z(7)
q16 q1 NZ(0), Z(2), Z(5) S(0)
q16 q1 NZ(2), NZ(4), Z(5) S(2), S(4)
q16 q1 Z(0), Z(2), NZ(4), Z(5) S(4)
q16 q18 NZ(5) S(5)
q16 Stop Z(0), Z(2), Z(4), Z(5)
q16 Stop NZ(2), Z(4), Z(5) S(2)
q18 q1 Z(3), Z(5) A(0)
q18 q1 NZ(3), NZ(4), Z(5) S(3), S(4)
q18 q20 NZ(5) S(5)
q18 Stop NZ(3), Z(4), Z(5) S(3)
q20 q1 NZ(4), Z(5) A(2), A(3), S(4)
q20 q16 NZ(5) A(4), S(5)
q20 Stop Z(4), Z(5) A(2), A(3)

The first three states of the machine U7 result from the compression of the
instruction block of U22 shown in Figure 2.1: state q1 of U7 corresponds to the cycle
involving q1 and q3 in U22, state q4 of U7 corresponds to the cycle involving q4 and
q6 in U22, and state q10 of U7 corresponds to the cycle involving the states q7, q9, q10,
and q12 of U22. Clearly, states q1, q4, and q10 of U7 cannot be further compressed,
because they have self-loop arcs.

The other three non-final states of U7 correspond to the three decrement opera-
tions of the decoder block of U22. The only compressible state in this block is q22;
the other three successively decrement the same register, R5, and thus cannot be
reduced.

Finally, the states of the simulation block of U22 are completely compressed
into the three states of the decoder. This is possible because the simulation block
contains no loops and does not interact in any way with R5.

We remark that, even though state compression always produces equivalent gen-
eralised register machines, the state compression algorithm is not confluent: starting
with the same machine, structurally different irreducible machines can be obtained.
Moreover, even the number of the states in the resulting machines can vary, as
illustrated in the following example.

98 CHAPTER 5. SMALL UNIVERSAL REGISTER MACHINES

Example 5.1.1. Consider a generalised register machine whose multigraph has the
form shown in Figure 5.3a. Suppose that the conditions and operations assigned
to the arcs are so that q1, q2, and q3 are compressible. If we start by compressing
the state q1 first, and then q3, we reach the two-state irreducible graph shown in
Figure 5.3b. If, however, we decide to compress q2 first, we will have to add loops to
q1 and q3, thereby rendering the two states incompressible, as shown in Figure 5.3c.

q1 q2 q3

q4

(a) Original multigraph

q2

q4

(b) Compressed q1 and q3

q1 q3

q4

(c) Compressed q2

Figure 5.3: Two irreducible multigraphs with a different number of states resulting from compress-
ing of different states in the same original multigraph

5.2 Universal 2- and 3-Register Machines

In this section we recall that there exist weakly universal register machines with
two registers only, and that strong universality for unary functions can be achieved
by adding a third input/output register. This result was proved by Marvin Minsky
in [92], a work which also gives the actual algorithm for simulating a register machine
with any number of registers using only two (respectively, three) registers. In this
section we will apply this algorithm to universal register machines constructed by
Ivan Korec [71] in order to give a concrete description of 2- and 3-register machines.
We remark that, even though Minsky’s approach has been known for a long time,
we could not find concrete constructions presented anywhere.

Consider a register machine M = (Q,R, q0, qf , P). Minsky’s construction is
based on exponential coding of the values of all registers in R as one number. The
values of the k registers in a configuration of M given by the vector (n1, . . . , nk)
can be represented as the number ρ = pn1

1 × . . .× p
nk
k , where p1, . . . , pk are different

prime numbers. Then, incrementing the register Ri in this coding corresponds to
multiplying ρ by pi, while decrementing the same register corresponds to dividing ρ
by pi.

Supposing that the value ρ is stored in register R0 of a 2-register machine M2,
multiplication of ρ by pi can be performed by repeatedly decrementingR0 and adding
pi to register R1 of M2. Division can be carried out symmetrically: by repeatedly
subtracting pi from R0 and incrementing R1 whenever the subtraction was possible.
If, after a certain number of subtractions of pi, the value of R0 is zero, we know that
ρ was divisible by pi and that the value stored in R1 is ρ/pi. If, on the other hand,
the value of R0 is non-zero, but less than pi, we conclude that ρ was not divisible by
pi, and we have to restore the original value ρ. Since R1 contains the value bρ/pic
at this point, M2 can rebuild ρ by adding to R0 the result of multiplication of R1

5.2. UNIVERSAL 2- AND 3-REGISTER MACHINES 99

by pi. For more details on this simulation approach we refer the reader to Minsky’s
work [92].

To achieve strong universality for unary functions, a third input/output register
is required to carry out exponentiation and logarithm. Suppose that the input
register of the simulated machine M is Rin. Then, in order to be able to use
exponential encoding, a 3-register machine M3 would have to repeatedly multiply
the value in register R0 by the corresponding prime number pin, and to decrement
its own input/output register R2 after each iteration. When R2 is zero,M3 is sure to
have raised pin to the power of the original input value from R2. In a similar fashion,
to obtain the value of the output register Rout from the exponential encoding of a
halting configuration of M , M3 would have to perform repeated divisions of R0 by
pi, incrementing R2 after each successful iteration.

The strategy for achieving weak universality with two registers can be applied
directly to constructing the weakly universal 2-register machine U2 which simulates
Korec’s weakly universal U20. This 2-register machine has 112 decrement and 165
increment instructions: 278 states all in all (including a final state). Simulating
Korec’s strongly universal U22 using two registers, and further adding the coding of
input and the decoding of output, allows building the strongly universal 3-register
machine U3 with 146 decrement and 221 increment instructions: 368 states in total.
Both register machines use register R0 to store the exponentially-coded values of
the simulated machine, and register R1 to keep the intermediate results. The input
of U2 should thus be provided in coded form in R0. The register machine U3, on
the other hand, reads its input from and writes its output to the third register, R2.
Full programs of U2 and U3 are provided in the appendix.

An important remark with regard to the strong universality of U3 is due here:
since this machine uses one register for input, it is only able to directly simulate
unary partial recursive functions. Nevertheless, Section 9 of [71] describes a way
to construct register machines simulating n-ary partial recursive functions; the ma-
chines use a coding to store the values of the n arguments in one of the working
registers. This approach can be naturally adapted to the register machine U2 to
obtain strongly universal register machines with n input registers, read by succes-
sive decrements at the start of the computation, and which only have two working
registers.

We remark that Section 2 of [70] describes the construction of a universal 3-
register machine with 130 states. However in this paper compound instructions are
assigned to single states (e.g. any increment of a register by m is treated as a single
instruction). Writing out such instructions in terms of elementary register machine
commands as we use in U2 and U3, would yield more than 450 instructions.

100 CHAPTER 5. SMALL UNIVERSAL REGISTER MACHINES

Chapter 6

Small Universal Petri Nets

In this chapter we discuss the problem of universality for Petri nets with inhibitor
arcs seen as computing devices, and give several strongly and weakly universal con-
structions. We define the size of a Petri net as a tuple comprising the number of
places, transitions, inhibitor arcs, and the maximal transition degree, and then de-
scribe techniques for minimising each of these parameters, which sometimes allow
attaining the theoretical minimum required for universality. The sizes of constructed
universal Petri nets are given in Table 6.1 on page 110.

We recall that an element A0 ∈ C, for a class of computing devices C, is called
weakly universal if A(x) = y implies A(x) = f(A0(g(A), h(x))), where h and f are
the encoding and decoding functions respectively, and g is the function assigning
numbers to devices in C, according to some fixed enumeration. If h and f are
identities, the element A0 is called strongly universal. We refer to Section 2.3 for a
detailed discussion of computational completeness and universality.

The universality of the Petri nets we construct in this chapter is an indirect
corollary of the universality of register machines and the fact that, for any Petri
net N , it is possible to construct a register machine simulating it by representing
each place of N as a register and reproducing token dynamics by incrementing and
decrementing the corresponding registers. This means that if we construct a Petri
which simulates a universal register machine, this net will be capable of (indirectly)
simulating any other Petri net.

6.1 Definitions

A Petri net with inhibitor arcs is a construct N = (P, T ,W,M0) where P is a finite
set of places, T is a finite set of transitions, with P∩T = ∅,W : (P×T)∪(T ×P)→
N ∪ {−1} is the weight function, and M0 is a multiset over P called the initial
marking.

Petri nets are usually represented by diagrams in which places are drawn as
circles, transitions as squares annotated with their locations, and a directed arc
(X,Y) is added between X and Y if W (X,Y) ≥ 1. The weight of the arc will
be explicitly written if it is 2 or more. Arcs of weight −1 are called inhibitor arcs
and will be drawn with a small circle on the side of the transition. Figure 1.3 in
Chapter 1 shows an example of such a representation.

The degree of a transition T is defined as the sum of the weights of the incoming

101

102 CHAPTER 6. SMALL UNIVERSAL PETRI NETS

and outgoing arcs involved with it plus the number of inhibitor arcs:

deg(T) =
∑
P∈P

∣∣W (P, T)
∣∣+
∣∣W (T, P)

∣∣.
Note that the degree is not the number of weighted arcs adjacent to the transition,
but rather the number of single arcs they represent.

Given a Petri net N , the pre- and post-multiset of a transition T are respectively
the multiset preN(T) and the multiset postN(T) such that, for all P ∈ P, for which
W (P, T) ≥ 0, preN(T)(P) = W (P, T) and postN(T)(P) = W (T, P). A configuration
of N , which is called a marking, is a multiset M over P; in particular, for every
P ∈ P, M(P) represents the number of tokens inside place P . A transition T is
enabled at a marking M if the multiset preN(T) is contained in the multiset M
and all inhibitor places P (such that W (P, T) = −1) are empty. A transition T
enabled at marking M can fire and produce a new marking M ′ such that M ′ =
M−preN(T) +postN(T) (i.e. for every place P ∈ P, the firing transition T consumes

preN(T)(P) tokens and produces postN(T)(P) tokens). We denote this by M T→M ′.
For the purposes of this work, we define a special subtype of Petri nets which

can execute computations (e.g. compute partially recursive functions). In such a net
some distinguished places I1, . . . , Ik from P will be called input places and another
one, I0 ∈ P, will be called the output place. The computation of the net N on the
input vector (n1, . . . , nk) starts with the initial marking M ′0 such that M ′0(Ij) = nj ,
and M ′0(x) = M0(x), for all x 6= Ij , 1 ≤ j ≤ k. This net will evolve by firing
transitions until deadlock occurs in some marking Mf , i.e. until no transition is
enabled inMf . Thus we haveM ′0 →∗ Mf and there are noM ′f and T ∈ T such that

Mf
T→M ′f . The result of the computation of N on the vector (n1, . . . , nk), denoted

by Φk
N (n1, . . . , nk), is defined as Mf (I0), i.e. the number of tokens in place I0 in the

final state. Since in the general case Petri nets are non-deterministic, the function
Φk
N may be considered to compute sets of numbers.
We remark that, with this definition of computation for Petri nets, a parallel with

multiset rewriting is directly established. Indeed, transitions are easily represented
as multiset rewriting rules sequentially acting on markings of the net until no more
rules are applicable.

If, for any reachable marking M of a Petri net N , there is at most one transition
T and one markingM ′ such thatM T→M ′, the Petri net is called deterministic. This
corresponds to labeled deterministic Petri nets in which all transitions are labeled
with the same symbol [96]. Otherwise the Petri net is called non-deterministic.

We define the size of a Petri net to be the vector (p, t, h, d) where p is the
number of places, t is the number of transitions, h is the number of inhibitor arcs,
and d is the maximal degree of a transition. These parameters provide fundamental
information about the structure of the net and can be further used to reason about
its other features (e.g., the average number of inhibitor arcs per transition, etc.).
Moreover, each of these parameters has a direct equivalent in the multiset rewriting
interpretation of Petri nets as the cardinality of the alphabet, number of rules,
inhibitors and maximal rule size.

We conclude this section by remarking that the effect of inhibitor arcs can be
reproduced by other computationally complete Petri net extensions, like, for exam-
ple, priorities. Indeed, the fact that there is an inhibitor arc going from place Q

6.2. MINIMISING THE TRANSITION DEGREE 103

to transition T1 may be represented by the fact that any other transition T2 which
consumes tokens from Q has priority over T1. If such a transition T2 does not exist,
a dummy transition taking a token from Q and putting it back can be added and
given priority over T1.

6.2 Minimising the Transition Degree

In this section we will show how to construct a strongly and a weakly universal Petri
net with inhibitor arcs, with transitions of degree of most 3, based on the universal
register machines from Ivan Korec’s work [71]. We will then evaluate the other
complexity parameters of the obtained nets: the number of places, the number of
transitions, and the number of inhibitor arcs.

We will mainly rely on the strongly universal U22 and the weakly universal U20

from [71]. Since these machines only use instructions of type increment and zero-
check-and-decrement, it suffices to describe how such operations can be carried out
in Petri nets. One of the simplest ideas is representing registers as places and also
allocating a place per state. The nets carrying out the two types of instructions
we are interested in are shown in Figure 6.1. The simulation of the increment is
straightforward: the token moves from place P into place Q and adds one token to
Ri along the way. The zero-check-and-decrement is simulated using an inhibitor arc
connected to Ri: if Ri is not empty, the token can only move from P to Q removing
a token from Ri along the way, while if Ri is empty, the token can only move to S.

P Q

Ri

(a) (p,A(i), q)

P Q

Ri

S

(b) (p, S(i), q, s)

Figure 6.1: Direct simulation of increment and zero-check-and-decrement in Petri nets

We can now directly construct the universal Petri net N1 simulating the register
machine U22 by iteratively translating all of its instructions. This Petri net has
22 places for states and 8 places for registers, 30 states all in all. There are 34
transitions in this net, as many as there are arcs in the graph representation of
U22. To count the number of inhibitor arcs in N1, remark that one will be required
per each decrement instruction of U22, except for q32, because it suffices to have
the net halt with a token in Q32 if the place corresponding to register R4 cannot
be decremented. Correspondingly, N1 has 12 inhibitor arcs. Finally, the maximal
transition degree is 3, which means that the size of N1 is (30, 34, 12, 3).

At the initial marking N1 will have one token in place Q1 corresponding to
state q1 of U22, the code of the machine to be simulated in place R1, and the input
value in place R2. The output of N1 is to be read from place R0. Therefore in
order to simulate the computation of an arbitrary Petri net N with one input place,
N1 shall be provided with the appropriate coding of N and its input in places R1

and R2 respectively. The net N1 is strongly universal in the sense of the relation

104 CHAPTER 6. SMALL UNIVERSAL PETRI NETS

ΦN (x) = Φ2
N1

(g(N), x), where ΦN is the function computed by the Petri net N and
g is a function assigning a number to every Petri net, in some fixed enumeration
(like Gödel numbering).

The same approach can be applied to simulating the weakly universal register
machine U20, yielding the weakly universal Petri net N ′1 of size (27, 31, 11, 3).

If all transitions are required to consume at least one token, nets N1 and N ′1
achieve the minimal value of the transition degree necessary for computational com-
pleteness. Indeed, such a Petri net (even with inhibitor arcs) which only has tran-
sitions of degree 2 is bounded; even more, the total count of tokens present in the
net at any time can never increase. Demanding that all transitions consume at least
one token corresponds to the requirement that no rule may have an empty left-hand
side in multiset rewriting systems.

6.3 Minimising the Number of Transitions

Because of the similarity of the semantics of Petri net transitions and the arcs of a
generalized register machine, Petri nets can be used to directly simulate the former
class of computing devices.

Consider a generalized register machine M = (R,G, q0, F, z, nz, add, sub), with
the underlying multigraph G = (Q,E, s, t). We will construct a Petri net N with
the weight function W simulating M . As before, we will represent the states Q and
the registers R as places, and, for every edge e ∈ E, with s(e) = q and t(e) = q′, we
will add a Petri net transition T which will have:

– an arc coming from the state place Q (representing the state q) and an arc
going into the state place Q′ (representing the state q′):

W (Q,T) = 1, W (T,Q′) = 1;

– an arc going into each of the register places representing the registers incre-
mented by e:

W (T,Ri) = ae(i), for ae = add(e), i ∈ R,

– an inhibitor arc to each of the register places representing the registers which
should be zero in order for e to be enabled:

W (Ri, T) = −1, for i ∈ z(e),

– an arc coming from the register places corresponding to registers decremented
by e:

W (Ri, T) = 1, for i ∈ sub(e),

– an arc coming from the register place and an arc going into the same register
place for registers which have to be non-zero for e to be enabled, but which
are not decremented by e:

W (Ri, T) = W (Ri, T) = 1, for i ∈ nz(e) \ sub(e).

Using this approach to simulate the generalized register machine U7 from Sub-
section 5.1.2, we obtain the strongly universal Petri net N2 of size (14, 23, 30, 6). By

6.3. MINIMISING THE NUMBER OF TRANSITIONS 105

simulating the generalized register machine U ′7, we construct the weakly universal
Petri net N ′2 of size (13, 21, 23, 6). The initial markings of both Petri nets have one
token in place Q1, which corresponds to the initial state, the code of the simulated
register machine in place R1, and the input value (exponentially coded in the case of
N ′2) in place R2. The output of both networks will be found in the register place R0.

Remark that, while a Petri net transition can simulate any arc of the generalised
register machine, the converse is not true, because an arc of a generalised register
machine cannot do more than one decrement of the same register.

We can further reduce the number of places, while keeping the number of tran-
sitions low, by coding the current state number in binary. If the simulated machine
has n states, we will use np = dlog2 ne places to encode the current state number in
the following way: place Qi, 0 ≤ i < np, will contain a token if the i-th bit of the
binary representation of n is 1, and will be empty otherwise. All transitions of such
a Petri net will thus depend on all the state places Qi, 0 ≤ i < np, and will produce
the new marking of the state places corresponding to the next state number. An
example of simulation of the increment instruction (q4, A(1), q6) using binary coded
states is shown in Figure 6.2b. The only transition of this net is enabled only if place
Q2 contains a token, and Q1 and Q0 are empty, which corresponds to the number
(100)2 = 4. When this transition fires, it adds a token to R1, replaces the consumed
token in Q2, adds a token to Q1, and leaves Q0 empty, thus producing the number
(110)2 = 6 in the state places.

Q4 Q6

R1

(a) (q4, A(1), q6)

Q2 Q1 Q0

R1

(b) Binary-coded states

Figure 6.2: A simulation of an increment instruction with binary-coded states

Remark that the choice of binary codes for states may influence the total number
of inhibitor arcs. Indeed, every transition simulating an arc originating in state q
will need to use as many inhibitor arcs as there are zeroes in the binary code assigned
to q. Therefore, to keep the number of inhibitor arcs low, we will assign numbers
with more non-zero bits to states with more outgoing transitions. This approach
yields a strongly universal Petri net N3 of size (11, 23, 37, 10) and a weakly universal
Petri net N ′3 of size (10, 21, 30, 10). In the initial marking, the state places of both
nets will contain the binary value (010)2, which is the code of the initial states of
both U7 and U ′7.

Of course, one need not restrict oneself to the simulation of generalized register
machines which cannot be further compressed. For example, one could consider only
compressing the states corresponding to increment instructions; such partial com-
pression has interesting applications to the construction of small universal multiset
rewriting systems (e.g. [6]). In the case of Petri nets, this approach allows building
a strongly universal Petri net N4 of size (21, 25, 12, 5) and a weakly universal Petri
net N ′4 of size (19, 23, 11, 5), which use more places and transitions than N2, N ′2,
N3, or N ′3, but instead have considerably fewer inhibitor arcs.

106 CHAPTER 6. SMALL UNIVERSAL PETRI NETS

6.4 Minimising the Number of Places

6.4.1 Non-deterministic Simulation

In this subsection we will construct strongly and weakly universal Petri nets with 5
and 4 places respectively. The constructions will be based on simulations of the uni-
versal 3- and 2-register machines U3 and U2 described and discussed in Section 5.2.
We start by showing that a register machine with n registers can be simulated
by a non-deterministic Petri net with only n + 2 places. We recall that in the
non-deterministic semantics, we only consider those branches of computation which
halt. The basic idea is representing a state number of a register machine in unary
encoding as the number of tokens in a (single) place of the Petri net, and then using
another place to assure that the transformations of state numbers happen correctly.

To illustrate our construction, we consider the register machine M =
(Q,R, q1, q4, P), where Q = {q1, q2, q3, q4}, R = {R0, R1, R2}, and the set of in-
structions P is defined as

P = { (q1, S(1), q2, q3), (q2, A(0), q1), (q3, A(2), q4), (q4, Stop) }.

This machine is shown in Figure 6.3 in generalised register machine notation. M
adds the contents of register R1 to R0, eventually setting R1 to zero, and then
increments R2 once.

q1

q2

q3

q4

NZ(1)
S(1)A(0)

Z(1)

A(2)

Figure 6.3: The toy register machine M

A non-deterministic Petri net N simulating M is shown in Figure 6.4. It uses
a place to store the value of each register (places R0, R1, and R2), and two more
places to store state numbers and validate state transitions (places Q1 and Q0). The
transitions of N read the state number out of Q0 or Q1, simulate the corresponding
instruction of the register machine, and then put the new state number into Q1 or
Q0. The inhibitor arcs connecting transitions to state places prevent incomplete,
and therefore incorrect, readings of state numbers. We do not need to represent the
final state q4 in the Petri net: it suffices that N carries out the operation associated
with q3 and halts.

The transitions of N fall into the following three groups. The transitions T0, T1,
T2, and T3 simulate the arcs q1 → q2, q1 → q3, q2 → q1, and q3 → q4 in the graph of
M , respectively. For example, the transition T0 decrements R1 if possible, consumes
one state token from place Q0, and puts two tokens into Q1. The transitions T ′0,
T ′1, T

′
2, and T

′
3 simulate the same transitions of M , in the same order, but consume

state tokens from Q1 and add tokens to Q0. Since transitions are not restricted to
consuming all tokens from a state place, it might happen that, for example, T0 fires
when Q0 contains 2 tokens. If this happens, however, the transitions T0 through T3

and T ′0 through T ′3 become blocked, because they have inhibitor arcs going to one

6.4. MINIMISING THE NUMBER OF PLACES 107

Q0

T0

T1

T2

T3

T ′0

T ′1

T ′2

T ′3
Q1

T6

T7

R1R0 R2

2

2

3

3

2

2

3
3

Figure 6.4: A non-deterministic Petri net N simulating M

of the state places, neither of which is empty. In this situation, loop transitions T6

and T7 assure that the net never halts. The net halts correctly by firing one of the
transitions T3 or T ′3, which consume, but do not reproduce, state tokens.

Note that, while in the case of the toy register machine M we did not need to
explicitly represent the final state of M , this omission is not possible in the case in
which several arcs go into the final state of M . Indeed, suppose that M contains
two arcs of the form q → qf and q′ → qf , and we attempt to simulate both of them
with transitions which only consume state tokens from either Q0 or Q1, and do not
put anything back. The states q and q′ must have different codes, c(q) and c(q′);
suppose that c(q′) > c(q). But then, it is possible that, when the code of state q′ is
put into Q0 or Q1, the transition simulating to q → qf fires, effectively setting the
state code to c(q′) − c(q), regardless of whether the corresponding state transition
is possible in M . Therefore, in what follows, we will still represent the final states
of the simulated register machines explicitly.

The number of places in a Petri net constructed is this way only depends on
the number of registers of the simulated register machine, and is in no connection
with the number of instructions. We can therefore construct a strongly universal
Petri net with 5 places only and a weakly universal net with 4 places by simulating
U3 and U2. However, before we carry out the actual construction, remark that the
maximal degree of a transition in the resulting Petri net depends on how states are
represented as numbers of tokens in state places. Indeed, suppose that c : Q → N
is the function assigning a code to each state. Then the degree of a transition Tij
simulating the arc qi → qj is given by dij + c(qi) + c(qj), where dij is the number
of arcs connecting Tij to register places. Our goal is minimising the worst-case
transition degree, i.e. the degree of the transition which has the maximal degree in
the resulting Petri net. We will now describe how linear programming can be used
to find an assignment c that satisfies our requirements.

Remark at first that we may assume without losing generality that c(q) ≤ |Q|,
for any q ∈ Q. We may also assume that qf ∈ Q is the only halting state of the

108 CHAPTER 6. SMALL UNIVERSAL PETRI NETS

simulated machine. Given that both the domain and the codomain of c are bounded,
we can represent it as a family of binary variables in the following way:

ci,i′ =

{
1, if c(qi) = i′,

0, otherwise.

In order to assure that these variables represent c correctly, some normalisation
conditions are in order:

∀qi ∈ Q .
∑

1≤i′≤|Q|

ci,i′ = 1 and ∀1 ≤ i′ ≤ |Q| .
∑
qi∈Q

ci,i′ = 1.

These conditions require that every state have exactly one code assigned, and that
each code be picked exactly once. To assure correct halting, we also require that
cf,|Q| = 1, i.e. that the final state qf be assigned the maximal code.

The family of variables ci,i′ can be used to express the cost of the arc qi → qj ,
i.e. the degree of the transition Tij simulating it, in the following way:

deg(Tij) = dij + c(qi) + c(qj) = dij +
∑

1≤i′≤|Q|

i′ · ci,i′ +
∑

1≤j′≤|Q|

j′ · cj,j′ .

Before formulating the optimisation problem itself, we introduce a shortcut no-
tation for the set of pairs of states between which there exists an arc in the graph
of the simulated register machine:

B = {(p, q) | (p,A(i), q) ∈ P} ∪ {(p, q), (p, s) | (p, S(i), q, s) ∈ P}.

We can now write the linear programming problem optimizing the maximal
transition degree by putting together the normalisation conditions on the family of
variables ci,i′ and the expressions for transition degrees:

Minimise C

Subject to deg(Tij) ≤ C, for all (qi, qj) ∈ B,∑
1≤i′≤|Q|

ci,i′ = 1, for all qi ∈ Q,∑
qi∈Q

ci,i′ = 1, for all 1 ≤ i′ ≤ |Q|,

cf,|Q| = 1.

Remark that both the number of variables and the number and size of the
constraints of this problem depend on the number of states and transitions of the
simulated register machine. We will therefore consider simulating generalized reg-
ister machines with compressed increment instructions which have less states than
their conventional counterparts. We saw in Section 5.2 that machines U3 and U2

have 221 and 165 increment instructions respectively; given that the number of bi-
nary variables ci,i′ in the linear optimisation problem is quadratic in the number of
states, cutting down on increment instructions alone reduces the size of the family
of these variables by a factor of four. Furthermore, the number of transitions in the
resulting Petri nets will be three times less, roughly.

6.5. MINIMISING THE NUMBER OF INHIBITOR ARCS 109

On the other hand, since compressing an increment instruction essentially cor-
responds to adding an extra arc to a Petri net transition, the maximal increase of
the transition degree when considering partially compressed versions of U3 and U2

will be equal to the length of the longest chain of increment instructions. From the
construction of these machines we know that such chains arise whenever multiplica-
tion is required and that their lengths are defined by the choice of prime numbers
used in exponential encoding. Since U3 simulates an 8-register machine and U2 a
7-register one [71], we know that the longest chain of increments in U3 contains 19
instructions, and the longest chain in U2 contains 17 instructions (eighth and seventh
prime numbers, respectively). We conclude therefore that the increase in transition
degree due to simulating several increments at once is massively outweighed by the
cut in transition degree due to the reduction of the number of states to simulate.

To attack the instances of this linear programming problem for U3 and U2 with
compressed increments, we used the Gurobi Optimizer [94]. The problem itself
was formulated in the AMPL model description language [33]. Based on the re-
sults obtained with these tools, we constructed the 5-place strongly universal non-
deterministic Petri net N5 of size (5, 590, 734, 208) and the 4-place weakly universal
non-deterministic Petri net N ′5 of size (4, 452, 562, 162).

6.4.2 Deterministic Simulations

It turns out that, even without non-determinism, it is possible to simulate any n-
register machine with a Petri net with n + 2 places only. The idea is to represent
state qi by putting i tokens in state place Q0 and |Q| − i tokens in place Q1, and
then to have all transitions read the state out of both places Q0 and Q1. With this
approach, any two multisets Qi0Q

|Q|−i
1 and Qj0Q

|Q|−j
1 , representing the markings of

state places corresponding to qi and qj , qi 6= qj , are incomparable with respect
to the submultiset relation. This means that, if the simulated register machine is
deterministic, the resulting Petri net will be deterministic as well. However, in this
case all transitions will end up having the degree of at least 2|Q|, because they
need to consume i + (|Q| − i) = |Q| state tokens and produce another |Q| tokens
coding the next state. Using this approach to simulate U3 and U2 with compressed
increment instructions, one can construct a strongly universal Petri net N6 of size
(5, 293, 146, 314) and a weakly universal Petri netN ′6 of size (4, 224, 112, 242). Notice
the increase in the maximal transition degree by about a hundred with respect to
the nets N5 and N ′5.

6.5 Minimising the Number of Inhibitor Arcs

In the previous subsections we saw that it was possible to construct universal Petri
nets with as few as four places by having rather complex transitions and by employ-
ing an important number of inhibitor arcs. We will now show that it is possible to
construct a Petri net which will only have as many inhibitor arcs as there are reg-
isters in the simulated register machine. This can be achieved by “outsourcing” the
actual zero-check-and-decrement action to special checker subnets instead of using
an inhibitor arc per each S(i) instruction. Figure 6.5 shows how a decrement can
be simulated in this way. Essentially, the state token in Qj is “split” into a token in
place Ci activating the checker subnet, and another token which waits in place Q′j

110 CHAPTER 6. SMALL UNIVERSAL PETRI NETS

Ci

Ri CiZ

CiNZ

tZ

tNZ Qk

Qk′

Qj

Q′j

Figure 6.5: A Petri net simulating a RiZM instruction using a checker subnet.

for the result of the checker. The checker subnet is the exact copy of the net from
Figure 6.1 simulating a decrement instruction, and it has the same function.

It is now possible to use checker subnets to simulate the 3- and 2-register ma-
chines U3 and U2. In addition to having one place per state and one per register
of the simulated machine, the Petri nets will have to include one extra place per
decrement instruction (the waiting place Q′j in Figure 6.5), as well as three more
places per register (for the checker subnets); the maximal transition degree is as
low as 3 though. This simulation yields a strongly universal Petri net N7 of size
(525, 659, 3, 3) and a weakly universal Petri net N ′7 of size (397, 504, 2, 3). Note that,
since reachability is decidable for Petri nets with one inhibitor arc [16, 106], the net
N ′7 uses the minimal number of inhibitor arcs to achieve universality.

To considerably reduce the number of places at the expense of an increase in
the maximal transition degree, it is possible to turn to representations of U3 and
U2 as generalized register machines with compressed increment instructions, just
as shown in Subsection 6.4.1. By simulating these slightly modified versions, we
construct the strongly universal Petri net N8 of size (304, 438, 3, 22) and the weakly
universal Petri net N ′8 of size (232, 339, 2, 20).

6.6 Final Remarks

In this section we considered the question of universality for Petri nets with inhibitor
arcs and gave several small universal Petri nets of different descriptional complexity.
We remark that the constructions from Sections 6.2, 6.3, and 6.5 simulate Korec’s
machines without any slowdown, while those from Subsections 6.4.1 and 6.4.2 do so
with exponential slowdown. The sizes of constructed universal Petri nets are given
in Table 6.1.

Some of our constructions achieve the theoretical minimum for the correspond-

Table 6.1: The sizes of universal Petri nets constructed in this chapter

Strong universality Weak universality
N1 N2 N3 N4 N5 N6 N7 N8 N ′1 N ′2 N ′3 N ′4 N ′5 N ′6 N ′7 N ′8

Places 30 14 11 21 5 5 525 304 27 13 10 19 4 4 397 232
Transitions 34 23 23 25 590 293 659 438 31 21 21 23 452 224 504 339

Inhibitor arcs 12 30 37 12 734 146 3 3 11 23 30 11 562 112 2 2
Maximal degree 3 6 10 5 208 314 3 22 3 6 10 5 162 242 3 20

6.6. FINAL REMARKS 111

ing parameters of descriptional complexity. Thus, nets N1 and N ′1 described in
Section 6.2 attain the minimal possible value for transition degree: 3, while nets
N7, N ′7, N8, and N ′8 from Section 6.5 achieve universality with the smallest pos-
sible number of inhibitor arcs: 3 for strong universality and 2 for weak. As for
the number of places and transitions, we conjecture that the values that we give
in the other subsections: 23 and 21 transitions (Section 6.3), and 5 and 4 places
(Subsections 6.4.1 and 6.4.2) for strong and weak universality respectively, cannot
be significantly improved upon because of inherent limitations of Petri nets with
inhibitor arcs.

Our constructions bring out a number of interesting trade-offs. Comparing nets
N1 and N ′1 from Section 6.2 with N2 and N ′2, N3 and N ′3, and N4 and N ′4, we
remark that a reduction of the number of places leads to an increase in the number
of inhibitor arcs and the maximal degree of a transition. Nets N5, N ′5, N6, and
N ′6 from Subsections 6.4.1 and 6.4.2 accentuate this trade-off even more: they are
universal with 5 and 4 places, but rely on considerably more inhibitor arcs and
transitions of big degrees.

Another trade-off brought out in this section is that between the number of
inhibitor arcs and the number of places and transitions. Nets N7 and N ′7 from
Section 6.5 use 3 and 2 inhibitor arcs respectively, but rely on considerably more
places and transitions than nets N1 and N ′1.

An interesting trade-off is observable between the pairs of nets N5 and N ′5, and
N6 and N ′6: the first pair is non-deterministic, while the second pair is determin-
istic. Switching to deterministic simulation halved the number of transitions and
reduced the number of inhibitor arcs by a factor of five roughly, while keeping the
number of places at the same value. On the other hand, the degrees of transitions
in deterministic nets N6 and N ′6 is about 50% bigger than that in nets N5 and N ′5.

112 CHAPTER 6. SMALL UNIVERSAL PETRI NETS

Conclusions

In this thesis we focused on insertion-deletion systems and on Petri nets with in-
hibitor arcs, which are two formal devices whose study is, in part, motivated by
biological and biochemical considerations. We started by stating that leftist gram-
mars, introduced in [93], correspond to a subclass of insertion-deletion systems of
size (1, 1, 0; 1, 1, 0) with a single one-symbol axiom. Therefore, the majority of re-
sults on leftist grammars can be directly taken over to insertion-deletion systems of
the said size. We then switched focus to a slightly more general case, in which either
the insertion or the deletion rules are allowed to make use of contexts of length 2. We
showed that both systems of size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) can generate all
regular languages, and that, moreover, rules of this size allow performing a one-time
filtering by a regular language. Given that any system of size (1, 1, 0; 1, 1, 0) can
be trivially considered to be either of size (1, 2, 0; 1, 1, 0) or (1, 1, 0; 1, 2, 0), we con-
cluded that the systems of the latter size could simulate those of size (1, 1, 0; 1, 1, 0)
equipped with a regular filter, which means that, when contexts of size 2 are allowed,
some rather simple non-context-free languages can be generated.

We continued by looking into contexts of larger sizes and showed that increasing
context size does not augment the expressive power of the system. In other words,
all languages generated by insertion-deletion systems of size (1,m, 0; 1, q, 0) can be
generated by systems of size (1, 2, 0; 1, 1, 0) or of size (1, 1, 0; 1, 2, 0). This rather
unexpected result shows that the gap in expressiveness between the power of the
systems of the latter sizes and those of size (1, 1, 0; 1, 1, 0) is larger than one would
intuitively expect. We do nevertheless conjecture that having contexts longer than
one symbol does not lead to universality, because one-sided contexts do not seem to
allow sending unbounded information in both directions.

After discussing insertion-deletion systems of size (1,m, 0; 1, q, 0), we turned back
to those of size (1, 1, 0; 1, 1, 0) and to the results as to the complexity of the languages
recognised by leftist grammars. Because of the small size of the rules of these
systems, the constructions giving the lower bounds of their power turn out rather
hefty and difficult to grasp. To facilitate understanding and design of such systems,
we introduced a new instrument: derivation graphs. Considering pictures of these
graphs instead of naked derivations offers a much more intuitive insight into the
function of individual symbols or groups of symbols. We showcased this new tool
by illustrating some of the leftist constructions pertaining to the exploration of
complexity of the membership problem, and also by giving examples of reasoning
that can be more easily conducted on derivation graphs.

After discussing pure one-sided insertion-deletion systems, we moved to con-
trolled insertion and deletion, and considered semi-conditional, random context,
and graph control mechanisms. Additional control over insertion and deletion rules

113

114 CONCLUSIONS

allows achieving a strict increase in computational power, which is especially visible
in the case of semi-conditional insertion-deletion systems: we showed that these sys-
tems are capable of generating the family of recursively enumerable languages with
rather minimalistic context-free one-symbol insertion and deletion rules, and at most
two-symbol strings in permitting and forbidding contexts. This demonstrates that
the semi-conditional control mechanism provides better increase in computational
power than the mechanism of graph control, because the latter does not go beyond
PsRE with such rule size [4]. The aspect of the rules and the way the control mech-
anism is specified permit considering semi-conditional insertion-deletion systems as
a particular case of networks of evolutionary processors, which means that our result
can be transcribed to fit that area as well.

In our study of insertion-deletion systems with random context conditions, we
unveiled an interesting asymmetry related to swapping the sizes of insertion and
deletion rules: systems with random context rules of size (2, 0, 0; 1, 1, 0) are com-
putationally complete, while those having rules of size (1, 1, 0; 2, 0, 0) (and, more
generally, of size (1, 1, 0; p, 1, 1)) are not. This asymmetry is intuitively unexpected
and surprising, given that, in the cases analysed previously, the computational power
was largely insusceptible to such an exchange of sizes.

Finally, we discussed graph-controlled insertion-deletion systems with rules of
size (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0), and showed that computational completeness
can be achieved with 3 states. Compared to [38] this result points out an interesting
trade-off between the sizes of contexts in insertion-deletion rules and the number of
states: with 4 states, computational completeness is obtained already with insertion
and deletion rules of size (1, 1, 0; 1, 1, 0). Now it remains an open question if the
number of states can be further decreased for the investigated systems or for systems
having bigger contexts for the insertion or deletion rules.

To conclude our discussion of computing devices based on the operations of inser-
tion and deletion, we turned to networks of evolutionary processors. We described
3 universal networks with a small number of rules, including a universal NEP with
4 rules only. Our constructions clearly show that a large part of the computational
power of NEPs is provided by filters. It could therefore be interesting and practi-
cal to investigate a similar universality problem for systems in which the filtering
components are restricted, e.g., NEPs from [28, 29], which use subclasses of regular
languages as filters, or hybrid NEPs that use random context filters.

We also remark that, in NEPs, one traditionally considers a single type of opera-
tion (insertion, deletion or substitution) per processor, while we allow mixed nodes.
Yet, the constructions we give in the present thesis can be easily adapted to the
uniformity condition without modifying the number of rules by simply increasing
the number of nodes in the network.

After discussing the computational power of one-sided insertion-deletion systems,
we moved on to the problem of universality in the classes of register machines and
Petri nets with inhibitor arcs. We started by generalising the concept of a register
machine to allow more complex instructions to be carried out at a time, and then
gave strongly and a weakly universal generalised register machines with 7 states only.
Next we considered universal register machines with a small number of registers and
applied Marvin Minsky’s algorithm from [92] to actually construct universal 3- and
2-register machines. While Minsky’s approach of exponential coding of the values
of any number of registers into a single number is rather well-known, we have not

CONCLUSIONS 115

been able to find any reference to the actual descriptions of concrete machines built
after this technique.

After considering register machines, we turned to Petri nets, and capitalising on
the close relation of these two computing devices, we described 8 pairs of strongly
and weakly universal Petri nets with inhibitor arcs. The nets are classified into four
groups, by the minimised parameter of descriptional complexity. The results exhibit
a number of interesting trade-offs, especially between the maximal transition degree
on the one hand and the number of transitions and inhibitor arcs on the other hand.
In the case of nets N5 and N6 (respectively N ′5 and N ′6) this trade-off is particularly
conspicuous and also includes a switch from non-deterministic constructs (N5 and
N ′5) to deterministic ones (N6 and N ′6).

We remark that, since we always simulated deterministic (generalised) register
machines, and since most of our translation techniques preserve this property, all of
the shown Petri nets, except N5 and N ′5, are also deterministic.

In what concerns minimal values for the parameters, we saw that 3 is the lowest
possible maximal transition degree and nets N1, N ′1, N7, and N ′7 actually attain
that lower bound. Similarly, it is known that at least 2 inhibitor arcs are necessary
to render reachability undecidable for a Petri net [16, 106], and we do show nets
N ′7 and N ′8 which have precisely 2 inhibitor arcs. Even though we cannot indicate a
lower bound for the other parameters, we conjecture that the number of transitions
cannot be under 23. We also believe it to be difficult to substantially decrease the
number of places below what was obtained in the paper. It might be possible to
achieve strong universality with 4 places, because the input/output register of U3 is
only modified during the initial and final phases of execution of the machine, when
input is read and output is produced [91]. We conjecture that 3 places or less are
insufficient to achieve strong universality, however.

Finally, we recall that our results on Petri nets can be directly translated to
P systems [101] and, more generally, multiset rewriting [6], or vector addition sys-
tems [36].

The following list summarises the open problems and promising research direc-
tions related to the results from the present thesis.

1. Are insertion-deletion systems of size (1,m, 0; 1, q, 0), m, q > 1, computation-
ally complete? If not, are the languages they generate all context-sensivite?

2. Are insertion-deletion systems of size (n,m, 0; 1, 1, 0) or (1, 1, 0; p, q, 0) compu-
tationally complete?

3. Can computational completeness be achieved with graph-controlled insertion-
deletion systems of sizes (1, 2, 0; 1, 1, 0) or (1, 1, 0; 1, 2, 0) with 2 states only?

4. Do there exist strongly universal Petri nets with inhibitor arcs and with 4
places (computing unary functions)?

5. Do there exist universal Petri nets with inhibitor arcs and with 3 places?
6. What is the minimal number of transitions in a universal Petri net with in-

hibitor arcs?
7. Are semi-conditional insertion-deletion systems of size (1, 0, 0; 1, 0, 0) and of

degrees (1, 2) and (2, 1) computationally complete?
8. What is the minimal number of instructions in strongly universal 3-register

machines and weakly universal 2-register machines?

116 CONCLUSIONS

Bibliography

[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial
problems. Science, 266:1021–1024, November 11, 1994.

[2] Tilak Agerwala and Mike Flynn. Comments on capabilities, limitations and
“correctness” of Petri nets. SIGARCH Computer Architecture News, 2(4):81–
86, December 1973.

[3] Artiom Alhazov, Alexander Krassovitskiy, Yurii Rogozhin, and Sergey Ver-
lan. Small Size Insertion and Deletion Systems, volume 228 of Mathematics,
Computing, Language, and Life: Frontiers in Mathematical Linguistics and
Language Theory, chapter 1, pages 459–524. World Scientific, 2010.

[4] Artiom Alhazov, Alexander Krassovitskiy, Yurii Rogozhin, and Sergey Verlan.
P systems with minimal insertion and deletion. Theoretical Computer Science,
412(1–2):136 – 144, 2011.

[5] Artiom Alhazov, Carlos Martín-Vide, and Yurii Rogozhin. On the number
of nodes in universal networks of evolutionary processors. Acta Informatica,
43(5):331–339, 2006.

[6] Artiom Alhazov and Sergey Verlan. Minimization strategies for maximally par-
allel multiset rewriting systems. Theoretical Computer Science, 412(17):1581
– 1591, 2011.

[7] Toshiro Araki and Tadao Kasami. Some decision problems related to the
reachability problem for Petri nets. Theoretical Computer Science, 3(1):85 –
104, 1976.

[8] Gheorghe Păun and Nguyen Xuan My. On the inner contextual grammars.
Revue Roumaine de Mathématiques Pures et Appliquées, 25:641–651, 1980.

[9] Brenda S. Baker and Ronald V. Book. Reversal-bounded multipushdown ma-
chines. Journal of Computer and System Sciences, 8(3):315 – 332, 1974.

[10] Falko Bause. On the analysis of Petri nets with static priorities. Acta Infor-
matica, 33(5):669–685, 1996.

[11] Robert Benne. RNA editing in trypanosomes. Molecular Biology Reports,
16(4):217–227, 1992.

[12] Robert Benne. RNA-Editing: The Alteration of Protein Coding Sequences of
RNA. Ellis Horwood, Chichester, West Sussex, 1993.

117

118 BIBLIOGRAPHY

[13] Franziska Biegler, Michael J. Burrell, and Mark Daley. Regulated RNA rewrit-
ing: Modelling RNA editing with guided insertion. Theoretical Computer Sci-
ence, 387(2):103–112, November 2007.

[14] Rémi Bonnet. The reachability problem for vector addition system with one
zero-test. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foun-
dations of Computer Science 2011, volume 6907 of Lecture Notes in Computer
Science, pages 145–157. Springer Berlin Heidelberg, 2011.

[15] Paolo Bottoni, Carlos Martín-Vide, Gheorghe Păun, and Grzegorz Rozenberg.
Membrane systems with promoters/inhibitors. Acta Informatica, 38(10):695–
720, 2002.

[16] Hans Kleine Büning, Theodor Lettmann, and Ernst W. Mayr. Projections of
vector addition system reachability sets are semilinear. Theoretical Computer
Science, 64(3):343–350, May 1989.

[17] Michael J. Burrell. Computational modelling of uridine insertion and deletion
in kinetoplastid RNA, Master’s Thesis. London, Canada, 2005.

[18] Juan Castellanos, Carlos Martín-Vide, Victor Mitrana, and Jose M. Sem-
pere. Solving NP-complete problems with networks of evolutionary processors.
In José Mira and Alberto Prieto, editors, Connectionist Models of Neurons,
Learning Processes, and Artificial Intelligence, volume 2084 of Lecture Notes
in Computer Science, pages 621–628. Springer Berlin Heidelberg, 2001.

[19] Juan Castellanos, Carlos Martín-Vide, Victor Mitrana, and José M. Sempere.
Networks of evolutionary processors. Acta Informatica, 39(6-7):517–529, 2003.

[20] Matteo Cavaliere and Dragoş Sburlan. Time-independent P systems. In Gi-
ancarlo Mauri, Gheorghe Păun, Mario J. Pérez-Jiménez, Grzegorz Rozenberg,
and Arto Salomaa, editors, Membrane Computing, 5th International Work-
shop, WMC 2004, Milan, Italy, June 14-16, 2004, Revised Selected and Invited
Papers, volume 3365 of Lecture Notes in Computer Science, pages 239–258.
Springer, 2004.

[21] Pierre Chambart and Philippe Schnoebelen. Toward a compositional theory
of leftist grammars and transformations. In Luke Ong, editor, Foundations of
Software Science and Computational Structures, volume 6014 of Lecture Notes
in Computer Science, pages 237–251. Springer Berlin Heidelberg, 2010.

[22] Ashish Choudhary and Kamala Krithivasan. Network of evolutionary proces-
sors with splicing rules and permitting context. Biosystems, 87(2–3):111 –
116, 2007.

[23] Gabriel Ciobanu, Linqiang Pan, Gheorghe Păun, and Mario J. Pérez-Jiménez.
P systems with minimal parallelism. Theoretical Computer Science, 378(1):117
– 130, 2007.

[24] Erzsébet Csuhaj-Varjú, Maurice Margenstern, György Vaszil, and Sergey Ver-
lan. On small universal antiport P systems. Theoretical Computer Science,
372(2-3):152–164, 2007.

BIBLIOGRAPHY 119

[25] Erzsébet Csuhaj-Varjú and Arto Salomaa. Networks of parallel language pro-
cessors. In Gheorghe Păun and Arto Salomaa, editors, New Trends in Formal
Languages, volume 1218 of Lecture Notes in Computer Science, pages 299–318.
Springer, 1997.

[26] Silvano Dal Zilio and Enrico Formenti. On the dynamics of PB systems: A
Petri net view. In Carlos Martín-Vide, Giancarlo Mauri, Gheorghe Păun,
Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane Computing, vol-
ume 2933 of Lecture Notes in Computer Science, pages 153–167. Springer
Berlin Heidelberg, 2004.

[27] Jrgen Dassow and Gheorghe Paun. Regulated Rewriting in Formal Language
Theory. Springer Publishing Company, Incorporated, 1st edition, 2012.

[28] Jürgen Dassow, Florin Manea, and Bianca Truthe. Networks of evolutionary
processors: the power of subregular filters. Acta Inf., 50(1):41–75, 2013.

[29] Jürgen Dassow and Bianca Truthe. On networks of evolutionary processors
with state limited filters. In Henning Bordihn, Rudolf Freund, Markus Holzer,
Thomas Hinze, Martin Kutrib, and Friedrich Otto, editors, Second Work-
shop on Non-Classical Models for Automata and Applications - NCMA 2010,
Jena, Germany, August 23 - August 24, 2010. Proceedings, volume 263 of
books@ocg.at, pages 57–70. Austrian Computer Society, 2010.

[30] Erik P. de Vink, Hans Zantema, and Dragan Bošnački. RNA-editing with com-
bined insertion and deletion preserves regularity. Scientific Annals of Com-
puter Science, 23(1):39–73, 2013.

[31] Michael Domaratzki and Alexander Okhotin. Representing recursively enu-
merable languages by iterated deletion. Theoretical Computer Science,
314(3):451–457, 2004.

[32] Catherine Dufourd, Petr Jancar, and Philippe Schnoebelen. Boundedness
of reset P/T nets. In Jiří Wiedermann, Peter van Emde Boas, and Mo-
gens Nielsen, editors, Automata, Languages and Programming, 26th Inter-
national Colloquium, ICALP’99, Prague, Czech Republic, July 11-15, 1999,
Proceedings, volume 1644 of Lecture Notes in Computer Science, pages 301–
310. Springer, 1999.

[33] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Model-
ing Language for Mathematical Programming. Duxbury Press, Brooks/Cole
Publishing Company, 2nd edition, 2002.

[34] Rudolf Freund. Asynchronous P systems and P systems working in the se-
quential mode. In Giancarlo Mauri, Gheorghe Păun, MarioJ. Pérez-Jiménez,
Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane Computing, vol-
ume 3365 of Lecture Notes in Computer Science, pages 36–62. Springer Berlin
Heidelberg, 2005.

[35] Rudolf Freund. Transition and halting modes in (tissue) P systems. In Ghe-
orghe Păun, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Membrane Computing, volume 5957 of Lec-

120 BIBLIOGRAPHY

ture Notes in Computer Science, pages 18–29. Springer Berlin Heidelberg,
2010.

[36] Rudolf Freund, Oscar Ibarra, Gheorghe Păun, and Hsu-Chun Yen. Matrix
languages, register machines, vector addition systems. Third Brainstorming
Week on Membrane Computing, pages 155–167, 1/31//05-2/4/05 2005.

[37] Rudolf Freund, Marian Kogler, and Marion Oswald. A general framework for
regulated rewriting based on the applicability of rules. In Jozef Kelemen and
Alica Kelemenová, editors, Computation, Cooperation, and Life, volume 6610
of Lecture Notes in Computer Science, pages 35–53. Springer Berlin Heidel-
berg, 2011.

[38] Rudolf Freund, Marian Kogler, Yurii Rogozhin, and Sergey Verlan. Graph-
controlled insertion-deletion systems. In Ian McQuillan and Giovanni
Pighizzini, editors, Proceedings Twelfth Annual Workshop on Descriptional
Complexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 8-10th Au-
gust 2010., volume 31 of EPTCS, pages 88–98, 2010.

[39] Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey
Verlan, and Claudio Zandron. Flattening in (tissue) P systems. In Artiom Al-
hazov, Svetlana Cojocaru, Marian Gheorghe, Yurii Rogozhin, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Membrane Computing, volume 8340 of Lec-
ture Notes in Computer Science, pages 173–188. Springer Berlin Heidelberg,
2014.

[40] Rudolf Freund and Marion Oswald. A small universal antiport P system with
forbidden context. In Hing Leung and Giovanni Pighizzini, editors, 8th Inter-
national Workshop on Descriptional Complexity of Formal Systems - DCFS
2006, Las Cruces, New Mexico, USA, June 21 - 23, 2006. Proceedings, pages
259–266. New Mexico State University, Las Cruces, New Mexico, USA, 2006.

[41] Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P
systems. In George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz
Rozenberg, and Arto Salomaa, editors, Membrane Computing, volume 4860
of Lecture Notes in Computer Science, pages 271–284. Springer Berlin Heidel-
berg, 2007.

[42] Pierluigi Frisco. P systems, Petri nets, and program machines. In Rudolf
Freund, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,
Membrane Computing, volume 3850 of Lecture Notes in Computer Science,
pages 209–223. Springer Berlin Heidelberg, 2006.

[43] Kaoru Fujioka. Morphic characterizations of languages in Chomsky hierarchy
with insertion and locality. Information and Computation, 209(3):397 – 408,
2011. 3rd International Conference on Language and Automata Theory and
Applications (LATA 2009).

[44] Kaoru Fujioka. Morphic characterizations with insertion systems controlled
by a context of length one. Theoretical Computer Science, 469(0):69–76, 2013.

BIBLIOGRAPHY 121

[45] Boris S. Galiukschov. Semicontextual grammars. Matematicheskaya Logica i
Matematicheskaya Lingvistika, pages 38–50, 1981. Tallin University, (in rus-
sian).

[46] Viliam Geffert. Normal forms for phrase-structure grammars. Informatique
Théorique et Applications, 25:473–498, 1991.

[47] Sheila A. Greibach. Remarks on blind and partially blind one-way multi-
counter machines. Theoretical Computer Science, 7(3):311 – 324, 1978.

[48] Michel Hack. The recursive equivalence of the reachability problem and the
liveness problem for Petri nets and vector addition systems. In Proceedings of
the 15th Annual Symposium on Switching and Automata Theory (Swat 1974),
SWAT ’74, pages 156–164, Washington, DC, USA, 1974. IEEE Computer
Society.

[49] Michel Hack. Decidability Questions for Petri Nets. PhD thesis, Cambridge,
MA, USA, 1976.

[50] David Haussler. Insertion and Iterated Insertion as Operations on Formal
Languages. PhD thesis, University of Colorado at Boulder, 1982.

[51] David Haussler. Insertion languages. Information Sciences, 31(1):77–89, 1983.

[52] John Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science, 8(2):135
– 159, 1979.

[53] Sergiu Ivanov. Basic concurrency resolution in clock-free P systems. In Marian
Gheorghe, Gheorghe Pŭun, Grzegorz Rozenberg, Arto Salomaa, and Sergey
Verlan, editors, Membrane Computing, volume 7184 of Lecture Notes in Com-
puter Science, pages 226–242. Springer Berlin Heidelberg, 2012.

[54] Sergiu Ivanov. A formal framework for clock-free networks of cells. Interna-
tional Journal of Computer Mathematics, 90(4):776–788, 2013.

[55] Sergiu Ivanov, Elisabeth Pelz, and Sergey Verlan. Small universal non-
deterministic Petri nets with inhibitor arcs. In Helmut Jürgensen, Juhani
Karhumäki, and Alexander Okhotin, editors, Descriptional Complexity of For-
mal Systems - 16th International Workshop, DCFS 2014, Turku, Finland,
August 5-8, 2014. Proceedings, volume 8614 of Lecture Notes in Computer
Science, pages 186–197. Springer, 2014.

[56] Sergiu Ivanov, Elisabeth Pelz, and Sergey Verlan. Small universal Petri nets
with inhibitor arcs. In Informal Electronic Proceedings of Computability in
Europe, 2014.

[57] Sergiu Ivanov, Yurii Rogozhin, and Sergey Verlan. Small universal networks of
evolutionary processors. Journal of Automata, Languages and Combinatorics,
19(1-4):133–144, 2014.

[58] Sergiu Ivanov and Sergey Verlan. Random context and semi-conditional
insertion-deletion systems. CoRR, abs/1112.5947, 2011.

122 BIBLIOGRAPHY

[59] Sergiu Ivanov and Sergey Verlan. About one-sided one-symbol insertion-
deletion P systems. In Artiom Alhazov, Svetlana Cojocaru, Marian Gheorghe,
Yurii Rogozhin, Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane
Computing, volume 8340 of Lecture Notes in Computer Science, pages 225–
237. Springer Berlin Heidelberg, 2014.

[60] Kurt Jensen. Coloured Petri nets and the invariant-method. Theoretical Com-
puter Science, 14(3):317 – 336, 1981.

[61] Kurt Jensen. Coloured Petri nets: A high level language for system design
and analysis. In Grzegorz Rozenberg, editor, Advances in Petri Nets 1990,
volume 483 of Lecture Notes in Computer Science, pages 342–416. Springer
Berlin Heidelberg, 1991.

[62] Tomasz Jurdziński. On complexity of grammars related to the safety problem.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, ed-
itors, Automata, Languages and Programming, volume 4052 of Lecture Notes
in Computer Science, pages 432–443. Springer Berlin Heidelberg, 2006.

[63] Tomasz Jurdziński. Leftist grammars are non-primitive recursive. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Pro-
gramming, volume 5126 of Lecture Notes in Computer Science, pages 51–62.
Springer Berlin Heidelberg, 2008.

[64] Tomasz Jurdziński and Krzysztof Loryś. Leftist grammars and the Chomsky
hierarchy. In Maciej Liśkiewicz and Rüdiger Reischuk, editors, Fundamentals
of Computation Theory, volume 3623 of Lecture Notes in Computer Science,
pages 293–304. Springer Berlin Heidelberg, 2005.

[65] Lila Kari. On Insertion and Deletion in Formal Languages. PhD thesis,
University of Turku, 1991.

[66] Lila Kari, Gheorghe Păun, Gabriel Thierrin, and Sheng Yu. At the crossroads
of dna computing and formal languages: Characterizing RE using insertion-
deletion systems. In Proc. of 3rd DIMACS Workshop on DNA Based Com-
puting, pages 318–333. Philadelphia, 1997.

[67] Lila Kari and Petr Sosík. On the weight of universal insertion grammars.
Theoretical Computer Science, 396(1–3):264 – 270, 2008.

[68] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal
of Computer and System Sciences, 3(2):147 – 195, 1969.

[69] Stephen Cole Kleene. Representation of events in nerve nets and finite au-
tomata. In Claude Shannon and John McCarthy, editors, Automata Studies,
pages 3–41. Princeton University Press, Princeton, NJ, 1956.

[70] Pascal Koiran and Cristopher Moore. Closed-form analytic maps in one and
two dimensions can simulate universal Turing machines. Theoretical Computer
Science, 210(1):217–223, January 1999.

BIBLIOGRAPHY 123

[71] Ivan Korec. Small universal register machines. Theoretical Computer Science,
168(2):267–301, 1996.

[72] S. Rao Kosaraju. Decidability of reachability in vector addition systems (pre-
liminary version). In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, STOC ’82, pages 267–281, New York, NY, USA,
1982. ACM.

[73] Alexander Krassovitskiy. Complexity and Modeling Power of Insertion-
Deletion Systems. PhD thesis, Departament de Filologies Romániques, Uni-
versitat Rovira and Virgili, 2011.

[74] Alexander Krassovitskiy, Yurii Rogozhin, and Sergey Verlan. Further results
on insertion-deletion systems with one-sided contexts. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory
and Applications, Second International Conference, LATA 2008, Tarragona,
Spain, March 13-19, 2008. Revised Papers, volume 5196 of Lecture Notes in
Computer Science, pages 333–344. Springer, 2008.

[75] Alexander Krassovitskiy, Yurii Rogozhin, and Sergey Verlan. Computational
power of insertion-deletion (P) systems with rules of size two. Natural Com-
puting, 10(2):835–852, 2011.

[76] Alexander Krassovitskiy, Yurii Rogozhin, and Serghey Verlan. Further results
on insertion-deletion systems with one-sided contexts. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory
and Applications, volume 5196 of Lecture Notes in Computer Science, pages
333–344. Springer Berlin Heidelberg, 2008.

[77] Lars M. Kristensen, Soren Christensen, and Kurt Jensen. The practitioner’s
guide to coloured Petri nets. International Journal on Software Tools for
Technology Transfer, 2(2):98–132, 1998.

[78] Joachim Lambek. How to program an infinite abacus. Canadian Mathematical
Bulletin, 4:295–302, 1961.

[79] Jérôme Leroux. Vector addition system reachability problem: A short self-
contained proof. In Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos
Martín-Vide, editors, Language and Automata Theory and Applications, vol-
ume 6638 of Lecture Notes in Computer Science, pages 41–64. Springer Berlin
Heidelberg, 2011.

[80] Jérôme Leroux and Philippe Schnoebelen. On functions weakly computable by
petri nets and vector addition systems. In Joël Ouaknine, Igor Potapov, and
James Worrell, editors, Reachability Problems - 8th International Workshop,
RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of
Lecture Notes in Computer Science, pages 190–202. Springer, 2014.

[81] Monica Marcus and Gheorghe Păun. Regulated Galiukshov semicontextual
grammars. Kybernetika, 26(4):316–326, 1990.

[82] Solomon Marcus. Contextual grammars. Revue Roumaine de Mathématiques
Pures et Appliquées, 14:1525–1534, 1969.

124 BIBLIOGRAPHY

[83] Solomon Marcus, Gheorghe Păun, and Carlos Martín-Vide. Contextual gram-
mars as generative models of natural languages. Computational Linguistics,
24(2):245–274, June 1998.

[84] Maurice Margenstern, Gheorghe Păun, Yurii Rogozhin, and Sergey Ver-
lan. Context-free insertion-deletion systems. Theoretical Computer Science,
330(2):339–348, 2005.

[85] Carlos Martín-Vide, Alexandru Mateescu, Joan Miquel-Vergés, and Gheorghe
Păun. Internal contextual grammars: Minimal, maximal, and scattered use of
selectors. In Proceedings of the Fourth Bar-Ilan Symposium on Foundations
of Artificial Intelligence, 1995.

[86] Carlos Martín-Vide, Gheorghe Păun, and Arto Salomaa. Characterizations of
recursively enumerable languages by means of insertion grammars. Theoretical
Computer Science, 205(1-2):195–205, 1998.

[87] Artiom Matveevici, Yurii Rogozhin, and Sergey Verlan. Insertion-deletion
systems with one-sided contexts. In Jérôme Olivier Durand-Lose and Maurice
Margenstern, editors, Machines, Computations, and Universality, 5th Inter-
national Conference, MCU 2007, Orléans, France, September 10-13, 2007,
Proceedings, volume 4664 of Lecture Notes in Computer Science, pages 205–
217. Springer, 2007.

[88] Ernst W. Mayr. An algorithm for the general Petri net reachability prob-
lem. In Proceedings of the Thirteenth Annual ACM Symposium on Theory of
Computing, STOC ’81, pages 238–246, New York, NY, USA, 1981. ACM.

[89] Zdzislaw Melzak. An informal arithmetical approach to computability and
computation. Canadian Mathematical Bulletin, 4:279–293, 1961.

[90] Marvin Minsky. Recursive unsolvability of Post’s problem of “tag” and other
topics in the theory of Turing machines. Annals of Mathematics, second series,
74:437–455, 1961.

[91] Marvin Minsky. Size and structure of universal Turing machines using tag
systems. In Recursive Function Theory: Proceedings, Symposium in Pure
Mathematics, Provelence, volume 5, pages 229–238, 1962.

[92] Marvin Minsky. Computations: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffts, NJ, 1967.

[93] Rajeev Motwani, Rina Panigrahy, Vijay Saraswat, and Suresh Ventkatasub-
ramanian. On the decidability of accessibility problems (extended abstract).
In Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, STOC ’00, pages 306–315, New York, NY, USA, 2000. ACM.

[94] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2014.

[95] Suhas Shrikrishna Patil. Coordination of Asynchronous Events. PhD thesis,
Cambridge, MA, USA, 1970.

BIBLIOGRAPHY 125

[96] Elisabeth Pelz. Closure properties of deterministic Petri nets. In Symposium
on Theoretical Aspects of Computer Science, STACS ’87, volume 247 of Lecture
Notes in Computer Science, pages 371–382. Springer, 1986.

[97] Ion Petre and Sergey Verlan. Matrix insertion-deletion systems. Theoretical
Computer Science, 456(0):80 – 88, 2012.

[98] Carl Adam Petri. Communication with automata. PhD thesis, Universität
Hamburg, 1966.

[99] Gheorghe Păun. Computing with membranes. Journal of Computer and Sys-
tem Sciences, 61:108–143, 1998.

[100] Gheorghe Păun. Computing with membranes: Attacking NP-complete prob-
lems. In I. Antoniou, C.S. Calude, and M.J. Dinneen, editors, Unconven-
tional Models of Computation, UMC’2K, Discrete Mathematics and Theoret-
ical Computer Science, pages 94–115. Springer London, 2001.

[101] Gheorghe Păun. Membrane Computing. An Introduction. Springer–Verlag,
2002.

[102] Gheorghe Păun, Mario J. Pérez-Jiménez, and Takashi Yokomori. Represen-
tations and characterizations of languages in Chomsky hierarchy by means of
insertion-deletion systems. International Journal of Foundations of Computer
Science, 19:859–871, 2008.

[103] Gheorghe Păun, Grzegorz Rozenberg, and Aarto Salomaa. DNA Computing:
New Computing Paradigms. Springer, 1998.

[104] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. The Oxford Hand-
book Of Membrane Computing. Oxford University Press, 2009.

[105] Chander Ramchandani. Analysis of Asynchronous Concurrent Systems by
Timed Petri Nets. PhD thesis, Cambridge, MA, USA, 1974.

[106] Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. Electronic
Notes in Theoretical Computer Science, 223:239–264, 2008.

[107] Vladimir Rogojin. Gene Assembly in Stichotrichous Ciliates: Elementary Op-
erations, Parallelism and Computation. PhD thesis, Turku Centre for Com-
puter Science, 2009.

[108] Yurii Rogozhin. Small universal Turing machines. Theoretical Computer Sci-
ence, 168(2):215–240, 1996.

[109] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Lan-
guages. Springer, Berlin, 1997.

[110] Lila Sântean. Six arithmetic-like operations on languages. Revue Roumaine
de Linguistique, Tome XXXIII, (1):65–73, 1988. Lila Sântean is Lila Kari’s
maiden name.

[111] Claude E. Shannon. A universal Turing machine with two internal states.
Automata Studies, Annals of Mathematics Studies, 34:157–165, 1956.

126 BIBLIOGRAPHY

[112] Warren D. Smith. DNA computers in vitro and in vivo. In R.J. Lipton and E.B.
Baum, editors, Proceedings of DIMACS Workshop on DNA Based Computers,
DIMACS Series in Discrete Mathematicts and Theoretical Computer Science,
pages 121–185. American Mathematical Society, 1996.

[113] Akihiro Takahara and Takashi Yokomori. On the computational power of
insertion-deletion systems. Natural Computing, 2(4):321–336, 2003.

[114] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(2):230–
265, 1936.

[115] Sergey Verlan. Head Systems and Applications to Bioinformatics. PhD thesis,
University of Metz, 2004.

[116] Sergey Verlan. On minimal context-free insertion-deletion systems. Journal
of Automata, Languages and Combinatorics, 12(1-2):317–328, 2007.

[117] Sergey Verlan. Study of language-theoretic computational paradigms inspired
by biology. Paris, 2010. Habilation thesis.

[118] Hao Wang. A variant to Turing’s theory of computing machines. Journal of
the ACM, 4(1):63–92, January 1957.

[119] Shinichi Watanabe. 5-symbol 8-state and 5-symbol 6-state universal Turing
machines. Journal of the ACM, 8(4):476–483, 1961.

[120] Damien Woods and Turlough Neary. The complexity of small universal Turing
machines: A survey. Theoretical Computer Science, 410(4–5):443 – 450, 2009.
Computational Paradigms from Nature.

[121] Hsu-Chun Yen. Introduction to Petri net theory. In Zoltán Ésik, Carlos
Martín-Vide, and Victor Mitrana, editors, Recent Advances in Formal Lan-
guages and Applications, volume 25 of Studies in Computational Intelligence,
pages 343–373. Springer, 2006.

[122] Dmitry A. Zaitsev. Universal Petri net. Cybernetics and Systems Analysis,
48(4):498–511, 2012.

[123] Dmitry A. Zaitsev. A small universal Petri net. EPTCS, 128:190–202, 2013.
In Proceedings of Machines, Computations and Universality (MCU 2013),
arXiv:1309.1043.

[124] Hans Zantema. Complexity of guided insertion-deletion in RNA-editing. In
Adrian-Horia Dediu, Henning Fernau, and Carlos Martín-Vide, editors, Lan-
guage and Automata Theory and Applications, volume 6031 of Lecture Notes
in Computer Science, pages 608–619. Springer Berlin Heidelberg, 2010.

Appendix

The following table gives the program of the generalised register machine U ′7 obtained
by state compression from the weakly universal register machine U20 [71].

qi qj Conditions Operations
q1 q1 NZ(1) S(1), A(7)
q1 q4 Z(1) A(6)
q4 q4 Z(5), Z(6)
q4 q4 NZ(5) S(5), A(6)
q4 q10 Z(5), NZ(6) A(5), S(6)
q10 q1 Z(6), Z(7)
q10 q1 NZ(4), NZ(6), Z(7) S(4)
q10 q4 Z(6), NZ(7) A(1), S(7)
q10 q10 NZ(6), NZ(7) A(1), A(5), S(6), S(7)
q10 q16 Z(4), NZ(6), Z(7)
q16 q1 Z(0), Z(5)
q16 q1 NZ(0), NZ(4), Z(5) S(0), S(4)
q16 q18 NZ(5) S(5)
q16 Stop NZ(0), Z(4), Z(5) S(0)
q18 q1 Z(2), Z(5)
q18 q1 NZ(2), NZ(4), Z(5) S(2), S(4)
q18 q20 NZ(5) S(5)
q18 Stop NZ(2), Z(4), Z(5) S(2)
q20 q1 NZ(4), Z(5) A(0), A(2), S(4)
q20 q16 NZ(5) A(4), S(5)
q20 Stop Z(4), Z(5) A(0), A(2)

127

128 APPENDIX

The following is the program of the weakly universal 2-register machine U2 sim-
ulating the weakly universal U20 from [71].

(q1, S(0), q2, q25) (q2, S(0), q3, q23) (q3, S(0), q4, q22)
(q4, S(0), q5, q21) (q5, S(0), q6, q20) (q6, S(0), q7, q19)
(q7, S(0), q8, q18) (q8, S(0), q9, q17) (q9, S(0), q10, q16)
(q10, S(0), q11, q15) (q11, S(0), q12, q14) (q12, A(1), q1)
(q13, A(0), q14) (q14, A(0), q15) (q15, A(0), q16)
(q16, A(0), q17) (q17, A(0), q18) (q18, A(0), q19)
(q19, A(0), q20) (q20, A(0), q21) (q21, A(0), q22)
(q22, A(0), q23) (q23, A(0), q24) (q24, S(1), q13, q55)
(q25, S(1), q26, q27) (q26, A(0), q25) (q27, S(0), q28, q45)
(q28, A(1), q29) (q29, A(1), q30) (q30, A(1), q31)
(q31, A(1), q32) (q32, A(1), q33) (q33, A(1), q34)
(q34, A(1), q35) (q35, A(1), q36) (q36, A(1), q37)
(q37, A(1), q38) (q38, A(1), q39) (q39, A(1), q40)
(q40, A(1), q41) (q41, A(1), q42) (q42, A(1), q43)
(q43, A(1), q44) (q44, A(1), q27) (q45, S(1), q46, q1)
(q46, A(0), q45) (q47, S(0), q48, q53) (q48, S(0), q49, q51)
(q49, A(1), q47) (q50, A(0), q51) (q51, A(0), q52)
(q52, S(1), q50, q61) (q53, S(1), q54, q55) (q54, A(0), q53)
(q55, S(0), q56, q59) (q56, A(1), q57) (q57, A(1), q58)
(q58, A(1), q55) (q59, S(1), q60, q47) (q60, A(0), q59)
(q61, S(0), q62, q69) (q62, S(0), q63, q67) (q63, S(0), q64, q66)
(q64, A(1), q61) (q65, A(0), q66) (q66, A(0), q67)
(q67, A(0), q68) (q68, S(1), q65, q47) (q69, S(1), q70, q71)
(q70, A(0), q69) (q71, S(0), q72, q74) (q72, A(1), q73)
(q73, A(1), q71) (q74, S(1), q75, q76) (q75, A(0), q74)
(q76, S(0), q77, q112) (q77, S(0), q78, q110) (q78, S(0), q79, q109)
(q79, S(0), q80, q108) (q80, S(0), q81, q107) (q81, S(0), q82, q106)
(q82, S(0), q83, q105) (q83, S(0), q84, q104) (q84, S(0), q85, q103)
(q85, S(0), q86, q102) (q86, S(0), q87, q101) (q87, S(0), q88, q100)
(q88, S(0), q89, q99) (q89, S(0), q90, q98) (q90, S(0), q91, q97)
(q91, S(0), q92, q96) (q92, S(0), q93, q95) (q93, A(1), q76)
(q94, A(0), q95) (q95, A(0), q96) (q96, A(0), q97)
(q97, A(0), q98) (q98, A(0), q99) (q99, A(0), q100)
(q100, A(0), q101) (q101, A(0), q102) (q102, A(0), q103)
(q103, A(0), q104) (q104, A(0), q105) (q105, A(0), q106)
(q106, A(0), q107) (q107, A(0), q108) (q108, A(0), q109)
(q109, A(0), q110) (q110, A(0), q111) (q111, S(1), q94, q128)
(q112, S(1), q113, q114) (q113, A(0), q112) (q114, S(0), q115, q126)
(q115, A(1), q116) (q116, A(1), q117) (q117, A(1), q118)
(q118, A(1), q119) (q119, A(1), q120) (q120, A(1), q121)
(q121, A(1), q122) (q122, A(1), q123) (q123, A(1), q124)
(q124, A(1), q125) (q125, A(1), q114) (q126, S(1), q127, q61)
(q127, A(0), q126) (q128, S(0), q129, q136) (q129, S(0), q130, q134)
(q130, S(0), q131, q133) (q131, A(1), q128) (q132, A(0), q133)
(q133, A(0), q134) (q134, A(0), q135) (q135, S(1), q132, q1)
(q136, S(1), q137, q272) (q137, A(0), q136) (q138, S(0), q139, q150)

APPENDIX 129

(q139, S(0), q140, q148) (q140, S(0), q141, q147) (q141, S(0), q142, q146)
(q142, S(0), q143, q145) (q143, A(1), q138) (q144, A(0), q145)
(q145, A(0), q146) (q146, A(0), q147) (q147, A(0), q148)
(q148, A(0), q149) (q149, S(1), q144, q152) (q150, S(1), q151, q1)
(q151, A(0), q150) (q152, S(0), q153, q158) (q153, S(0), q154, q156)
(q154, A(1), q152) (q155, A(0), q156) (q156, A(0), q157)
(q157, S(1), q155, q184) (q158, S(1), q159, q160) (q159, A(0), q158)
(q160, S(0), q161, q166) (q161, S(0), q162, q164) (q162, A(1), q160)
(q163, A(0), q164) (q164, A(0), q165) (q165, S(1), q163, q202)
(q166, S(1), q167, q168) (q167, A(0), q166) (q168, S(0), q169, q174)
(q169, S(0), q170, q172) (q170, A(1), q168) (q171, A(0), q172)
(q172, A(0), q173) (q173, S(1), q171, q232) (q174, S(1), q175, q176)
(q175, A(0), q174) (q176, S(0), q177, q182) (q177, A(1), q178)
(q178, A(1), q179) (q179, A(1), q180) (q180, A(1), q181)
(q181, A(1), q176) (q182, S(1), q183, q152) (q183, A(0), q182)
(q184, S(0), q185, q200) (q185, S(0), q186, q198) (q186, S(0), q187, q197)
(q187, S(0), q188, q196) (q188, S(0), q189, q195) (q189, S(0), q190, q194)
(q190, S(0), q191, q193) (q191, A(1), q184) (q192, A(0), q193)
(q193, A(0), q194) (q194, A(0), q195) (q195, A(0), q196)
(q196, A(0), q197) (q197, A(0), q198) (q198, A(0), q199)
(q199, S(1), q192, q1) (q200, S(1), q201, q258) (q201, A(0), q200)
(q202, S(0), q203, q230) (q203, S(0), q204, q228) (q204, S(0), q205, q227)
(q205, S(0), q206, q226) (q206, S(0), q207, q225) (q207, S(0), q208, q224)
(q208, S(0), q209, q223) (q209, S(0), q210, q222) (q210, S(0), q211, q221)
(q211, S(0), q212, q220) (q212, S(0), q213, q219) (q213, S(0), q214, q218)
(q214, S(0), q215, q217) (q215, A(1), q202) (q216, A(0), q217)
(q217, A(0), q218) (q218, A(0), q219) (q219, A(0), q220)
(q220, A(0), q221) (q221, A(0), q222) (q222, A(0), q223)
(q223, A(0), q224) (q224, A(0), q225) (q225, A(0), q226)
(q226, A(0), q227) (q227, A(0), q228) (q228, A(0), q229)
(q229, S(1), q216, q1) (q230, S(1), q231, q258) (q231, A(0), q230)
(q232, S(0), q233, q240) (q233, A(1), q234) (q234, A(1), q235)
(q235, A(1), q236) (q236, A(1), q237) (q237, A(1), q238)
(q238, A(1), q239) (q239, A(1), q232) (q240, S(1), q241, q242)
(q241, A(0), q240) (q242, S(0), q243, q256) (q243, A(1), q244)
(q244, A(1), q245) (q245, A(1), q246) (q246, A(1), q247)
(q247, A(1), q248) (q248, A(1), q249) (q249, A(1), q250)
(q250, A(1), q251) (q251, A(1), q252) (q252, A(1), q253)
(q253, A(1), q254) (q254, A(1), q255) (q255, A(1), q242)
(q256, S(1), q257, q258) (q257, A(0), q256) (q258, S(0), q259, q270)
(q259, S(0), q260, q268) (q260, S(0), q261, q267) (q261, S(0), q262, q266)
(q262, S(0), q263, q265) (q263, A(1), q258) (q264, A(0), q265)
(q265, A(0), q266) (q266, A(0), q267) (q267, A(0), q268)
(q268, A(0), q269) (q269, S(1), q264, q278) (q270, S(1), q271, q1)
(q271, A(0), q270) (q272, S(0), q273, q276) (q273, A(1), q274)
(q274, A(1), q275) (q275, A(1), q272) (q276, S(1), q277, q138)
(q277, A(0), q276) (q278, Stop)

130 APPENDIX

The following is the program of the strongly universal 3-register machine U3

simulating the strongly universal U22 from [71].

(q1, S(2), q2, q16) (q2, S(0), q3, q14) (q3, A(1), q4)
(q4, A(1), q5) (q5, A(1), q6) (q6, A(1), q7)
(q7, A(1), q8) (q8, A(1), q9) (q9, A(1), q10)
(q10, A(1), q11) (q11, A(1), q12) (q12, A(1), q13)
(q13, A(1), q2) (q14, S(1), q14, q1) (q15, A(0), q14)
(q16, S(0), q17, q44) (q17, S(0), q18, q42) (q18, S(0), q19, q41)
(q19, S(0), q20, q40) (q20, S(0), q21, q39) (q21, S(0), q22, q38)
(q22, S(0), q23, q37) (q23, S(0), q24, q36) (q24, S(0), q25, q35)
(q25, S(0), q26, q34) (q26, S(0), q27, q33) (q27, S(0), q28, q32)
(q28, S(0), q29, q31) (q29, A(1), q16) (q30, A(0), q31)
(q31, A(0), q32) (q32, A(0), q33) (q33, A(0), q34)
(q34, A(0), q35) (q35, A(0), q36) (q36, A(0), q37)
(q37, A(0), q38) (q38, A(0), q39) (q39, A(0), q40)
(q40, A(0), q41) (q41, A(0), q42) (q42, A(0), q43)
(q43, S(1), q30, q76) (q44, S(1), q45, q46) (q45, A(0), q44)
(q46, S(0), q47, q66) (q47, A(1), q48) (q48, A(1), q49)
(q49, A(1), q50) (q50, A(1), q51) (q51, A(1), q52)
(q52, A(1), q53) (q53, A(1), q54) (q54, A(1), q55)
(q55, A(1), q56) (q56, A(1), q57) (q57, A(1), q58)
(q58, A(1), q59) (q59, A(1), q60) (q60, A(1), q61)
(q61, A(1), q62) (q62, A(1), q63) (q63, A(1), q64)
(q64, A(1), q65) (q65, A(1), q46) (q66, S(1), q67, q16)
(q67, A(0), q66) (q68, S(0), q69, q74) (q69, S(0), q70, q72)
(q70, A(1), q68) (q71, A(0), q72) (q72, A(0), q73)
(q73, S(1), q71, q82) (q74, S(1), q75, q76) (q75, A(0), q74)
(q76, S(0), q77, q80) (q77, A(1), q78) (q78, A(1), q79)
(q79, A(1), q76) (q80, S(1), q81, q68) (q81, A(0), q80)
(q82, S(0), q83, q90) (q83, S(0), q84, q88) (q84, S(0), q85, q87)
(q85, A(1), q82) (q86, A(0), q87) (q87, A(0), q88)
(q88, A(0), q89) (q89, S(1), q86, q68) (q90, S(1), q91, q92)
(q91, A(0), q90) (q92, S(0), q93, q95) (q93, A(1), q94)
(q94, A(1), q92) (q95, S(1), q96, q97) (q96, A(0), q95)
(q97, S(0), q98, q137) (q98, S(0), q99, q135) (q99, S(0), q100, q134)
(q100, S(0), q101, q133) (q101, S(0), q102, q132) (q102, S(0), q103, q131)
(q103, S(0), q104, q130) (q104, S(0), q105, q129) (q105, S(0), q106, q128)
(q106, S(0), q107, q127) (q107, S(0), q108, q126) (q108, S(0), q109, q125)
(q109, S(0), q110, q124) (q110, S(0), q111, q123) (q111, S(0), q112, q122)
(q112, S(0), q113, q121) (q113, S(0), q114, q120) (q114, S(0), q115, q119)
(q115, S(0), q116, q118) (q116, A(1), q97) (q117, A(0), q118)
(q118, A(0), q119) (q119, A(0), q120) (q120, A(0), q121)
(q121, A(0), q122) (q122, A(0), q123) (q123, A(0), q124)
(q124, A(0), q125) (q125, A(0), q126) (q126, A(0), q127)
(q127, A(0), q128) (q128, A(0), q129) (q129, A(0), q130)
(q130, A(0), q131) (q131, A(0), q132) (q132, A(0), q133)
(q133, A(0), q134) (q134, A(0), q135) (q135, A(0), q136)
(q136, S(1), q117, q155) (q137, S(1), q138, q139) (q138, A(0), q137)

APPENDIX 131

(q139, S(0), q140, q153) (q140, A(1), q141) (q141, A(1), q142)
(q142, A(1), q143) (q143, A(1), q144) (q144, A(1), q145)
(q145, A(1), q146) (q146, A(1), q147) (q147, A(1), q148)
(q148, A(1), q149) (q149, A(1), q150) (q150, A(1), q151)
(q151, A(1), q152) (q152, A(1), q139) (q153, S(1), q154, q82)
(q154, A(0), q153) (q155, S(0), q156, q163) (q156, S(0), q157, q161)
(q157, S(0), q158, q160) (q158, A(1), q155) (q159, A(0), q160)
(q160, A(0), q161) (q161, A(0), q162) (q162, S(1), q159, q16)
(q163, S(1), q164, q351) (q164, A(0), q163) (q165, S(0), q166, q177)
(q166, S(0), q167, q175) (q167, S(0), q168, q174) (q168, S(0), q169, q173)
(q169, S(0), q170, q172) (q170, A(1), q165) (q171, A(0), q172)
(q172, A(0), q173) (q173, A(0), q174) (q174, A(0), q175)
(q175, A(0), q176) (q176, S(1), q171, q179) (q177, S(1), q178, q16)
(q178, A(0), q177) (q179, S(0), q180, q185) (q180, S(0), q181, q183)
(q181, A(1), q179) (q182, A(0), q183) (q183, A(0), q184)
(q184, S(1), q182, q211) (q185, S(1), q186, q187) (q186, A(0), q185)
(q187, S(0), q188, q193) (q188, S(0), q189, q191) (q189, A(1), q187)
(q190, A(0), q191) (q191, A(0), q192) (q192, S(1), q190, q255)
(q193, S(1), q194, q195) (q194, A(0), q193) (q195, S(0), q196, q201)
(q196, S(0), q197, q199) (q197, A(1), q195) (q198, A(0), q199)
(q199, A(0), q200) (q200, S(1), q198, q303) (q201, S(1), q202, q203)
(q202, A(0), q201) (q203, S(0), q204, q209) (q204, A(1), q205)
(q205, A(1), q206) (q206, A(1), q207) (q207, A(1), q208)
(q208, A(1), q203) (q209, S(1), q210, q179) (q210, A(0), q209)
(q211, S(0), q212, q235) (q212, S(0), q213, q233) (q213, S(0), q214, q232)
(q214, S(0), q215, q231) (q215, S(0), q216, q230) (q216, S(0), q217, q229)
(q217, S(0), q218, q228) (q218, S(0), q219, q227) (q219, S(0), q220, q226)
(q220, S(0), q221, q225) (q221, S(0), q222, q224) (q222, A(1), q211)
(q223, A(0), q224) (q224, A(0), q225) (q225, A(0), q226)
(q226, A(0), q227) (q227, A(0), q228) (q228, A(0), q229)
(q229, A(0), q230) (q230, A(0), q231) (q231, A(0), q232)
(q232, A(0), q233) (q233, A(0), q234) (q234, S(1), q223, q237)
(q235, S(1), q236, q337) (q236, A(0), q235) (q237, S(0), q238, q253)
(q238, S(0), q239, q251) (q239, S(0), q240, q250) (q240, S(0), q241, q249)
(q241, S(0), q242, q248) (q242, S(0), q243, q247) (q243, S(0), q244, q246)
(q244, A(1), q237) (q245, A(0), q246) (q246, A(0), q247)
(q247, A(0), q248) (q248, A(0), q249) (q249, A(0), q250)
(q250, A(0), q251) (q251, A(0), q252) (q252, S(1), q245, q337)
(q253, S(1), q254, q16) (q254, A(0), q253) (q255, S(0), q256, q291)
(q256, S(0), q257, q289) (q257, S(0), q258, q288) (q258, S(0), q259, q287)
(q259, S(0), q260, q286) (q260, S(0), q261, q285) (q261, S(0), q262, q284)
(q262, S(0), q263, q283) (q263, S(0), q264, q282) (q264, S(0), q265, q281)
(q265, S(0), q266, q280) (q266, S(0), q267, q279) (q267, S(0), q268, q278)
(q268, S(0), q269, q277) (q269, S(0), q270, q276) (q270, S(0), q271, q275)
(q271, S(0), q272, q274) (q272, A(1), q255) (q273, A(0), q274)
(q274, A(0), q275) (q275, A(0), q276) (q276, A(0), q277)
(q277, A(0), q278) (q278, A(0), q279) (q279, A(0), q280)
(q280, A(0), q281) (q281, A(0), q282) (q282, A(0), q283)

132 APPENDIX

(q283, A(0), q284) (q284, A(0), q285) (q285, A(0), q286)
(q286, A(0), q287) (q287, A(0), q288) (q288, A(0), q289)
(q289, A(0), q290) (q290, S(1), q273, q293) (q291, S(1), q292, q337)
(q292, A(0), q291) (q293, S(0), q294, q301) (q294, A(1), q295)
(q295, A(1), q296) (q296, A(1), q297) (q297, A(1), q298)
(q298, A(1), q299) (q299, A(1), q300) (q300, A(1), q293)
(q301, S(1), q302, q16) (q302, A(0), q301) (q303, S(0), q304, q315)
(q304, A(1), q305) (q305, A(1), q306) (q306, A(1), q307)
(q307, A(1), q308) (q308, A(1), q309) (q309, A(1), q310)
(q310, A(1), q311) (q311, A(1), q312) (q312, A(1), q313)
(q313, A(1), q314) (q314, A(1), q303) (q315, S(1), q316, q317)
(q316, A(0), q315) (q317, S(0), q318, q335) (q318, A(1), q319)
(q319, A(1), q320) (q320, A(1), q321) (q321, A(1), q322)
(q322, A(1), q323) (q323, A(1), q324) (q324, A(1), q325)
(q325, A(1), q326) (q326, A(1), q327) (q327, A(1), q328)
(q328, A(1), q329) (q329, A(1), q330) (q330, A(1), q331)
(q331, A(1), q332) (q332, A(1), q333) (q333, A(1), q334)
(q334, A(1), q317) (q335, S(1), q336, q337) (q336, A(0), q335)
(q337, S(0), q338, q349) (q338, S(0), q339, q347) (q339, S(0), q340, q346)
(q340, S(0), q341, q345) (q341, S(0), q342, q344) (q342, A(1), q337)
(q343, A(0), q344) (q344, A(0), q345) (q345, A(0), q346)
(q346, A(0), q347) (q347, A(0), q348) (q348, S(1), q343, q357)
(q349, S(1), q350, q16) (q350, A(0), q349) (q351, S(0), q352, q355)
(q352, A(1), q353) (q353, A(1), q354) (q354, A(1), q351)
(q355, S(1), q356, q165) (q356, A(0), q355) (q357, S(0), q358, q365)
(q358, S(0), q359, q368) (q359, S(0), q360, q368) (q360, S(0), q361, q368)
(q361, S(0), q362, q368) (q362, S(0), q363, q368) (q363, S(0), q364, q368)
(q364, A(1), q357) (q365, S(1), q366, q367) (q366, A(0), q365)
(q367, A(2), q357) (q368, Stop)

	Introduction
	State of the Art
	Insertion-deletion Systems
	Networks of Evolutionary Processors
	Universal Petri Nets

	Preliminaries
	Formal Languages
	Computing Devices
	Computational Completeness and Universality

	One-sided Insertion-deletion Systems
	Definitions
	Systems of Size (1,1,0; 1,1,0) and Leftist Grammars
	Systems of Sizes (1,m,0; 1,q,0)
	Derivation Graphs
	Definition and Motivation
	Multiplication and Division by Two
	Simulation of an LBA
	Generation of an Exponential Language

	Insertion-deletion Systems with Control
	Definitions
	Sequential Rewriting Systems
	Graph Control
	Semi-conditional and Random Context Control

	Graph-controlled Insertion-deletion Systems
	Semi-conditional Insertion-deletion Systems
	Random Context Insertion-deletion Systems
	Small Universal NEPs
	Definitions
	Simulation of Register Machines
	Simulation of Turing Machines

	Small Universal Register Machines
	Generalised Register Machines
	Definition and Motivation
	State Compression and Universality

	Universal 2- and 3-Register Machines

	Small Universal Petri Nets
	Definitions
	Minimising the Transition Degree
	Minimising the Number of Transitions
	Minimising the Number of Places
	Non-deterministic Simulation
	Deterministic Simulations

	Minimising the Number of Inhibitor Arcs
	Final Remarks

	Conclusions
	Bibliography
	Appendix

