On the Power and Universality of Biologically-inspired Models of Computation

PhD Thesis

Sergiu IVANOV

Supervisor: Serghei VERLAN

LACL, Université Paris Est

June 23, 2015

Mimic biological processes

Mimic biological processes

Mimic biological processes

DNA/RNA operations ↓ string rewriting

Mimic biological processes **DNA/RNA** operations string rewriting Chemical reactions multiset rewriting

Focus on formal models

DNA/RNA

Chemical reactions

Mimic biological processes
DNA/RNA operations
↓
string rewriting
Chemical reactions
↓
multiset rewriting

Focus on formal models

Better understanding of complexity

Mimic biological processes **DNA/RNA** operations string rewriting Chemical reactions multiset rewriting

Focus on formal models

DNA/RNA

Chemical reactions

- Better understanding of complexity
- New models of computation

Mimic biological processes **DNA/RNA** operations string rewriting Chemical reactions multiset rewriting

Focus on formal models

DNA/RNA

Chemical reactions

- Better understanding of complexity
- New models of computation

Insertion and Deletion

Insertion and Deletion

Multiset Rewriting

Insertion and Deletion

Leftist insertion-deletion systems

(u, x, v)_{ins/del}

Multiset Rewriting

Insertion and Deletion

Leftist insertion-deletion systems

(u, x, v)_{ins/del}

Insertion-deletion systems with control

Multiset Rewriting

Insertion and Deletion

Leftist insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

-/28

(u, x, v)_{ins/del}

Insertion and Deletion

Leftist insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

Sergiu Ivanov, LACL, Université Paris Est

Insertion and Deletion

Leftist insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

(u, x, v)_{ins/del}

Insertion and Deletion

Leftist insertion-deletion systems

- Introduction and motivation
- One-sided insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphsi for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

 $\binom{7}{r_1}^{\prime 2}$

$(u, x, v)_{ins}$

$$(u, x, v)_{ins}$$

 $\cdots \mathsf{U} \quad \mathsf{V} \cdots \Longrightarrow \cdots \mathsf{U} \mathsf{X} \mathsf{V} \cdots$

$$(\mathbf{u}, \mathbf{x}, \mathbf{v})_{\text{ins}} \qquad (\mathbf{u}, \mathbf{x}, \mathbf{v})_{\text{del}}$$
$$\cdots \mathbf{u} \ \mathbf{v} \cdots \Longrightarrow \cdots \mathbf{u} \ \mathbf{x} \mathbf{v} \cdots \Longrightarrow \cdots \mathbf{u} \ \mathbf{v} \cdots$$

$$\begin{array}{ccc} (u,x,v)_{ins} & (u,x,v)_{del} \\ \cdots & v \cdots \Longrightarrow \cdots & u \, x \, v \cdots & \cdots & v \cdots \end{array}$$

 $\cdots \mathsf{u} \ \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{v} \cdots$

 $\cdots \mathsf{u} \ \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{v} \cdots$

 $\cdots \mathsf{u} \ \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \longrightarrow \cdots \mathsf{u} \mathsf{x} \mathsf{v} \cdots \Longrightarrow \cdots \mathsf{u} \mathsf{v} \cdots$

System size =
$$(n, m, m'; p, q, q')$$

max insertion
rule size max deletion
rule size

- two DNA strands bind
 - ► A T
 - ► C G

- two DNA strands bind
 - ► A T
 - ► C G
- the strands are cleft
 - enzymes

- two DNA strands bind
 - ► A T
 - ► C G
- the strands are cleft
 - enzymes
- both strands are filled in
 - complementarity

Mismatched DNA annealing

- two DNA strands bind
 - ► A T
 - ► C G
- the strands are cleft
 - enzymes
- both strands are filled in
 - complementarity

Context-free insertions and deletions on DNA strands

Context-free insertion = generalised concatenation

insertion of size (n, 0, 0)

Context-free insertion = generalised concatenation

insertion of size (n, 0, 0)
 Concatenation (•):
 abc • d = abc d

Context-free insertion = generalised concatenation

insertion of size (n, 0, 0)
 Concatenation (•):

 $abc \bullet d = abc d$

Context-free insertion (\leftarrow): ab c \leftarrow d = ab d c

Context-free insertion = generalised concatenation

▶ insertion of size (n, 0, 0)
 Concatenation (•): Context-free insertion (←):
 abc • d = abc d
 abc ← d = ab d c

Context-free deletion = generalised quotient

deletion of size (p, 0, 0)

Context-free insertion = generalised concatenation

► insertion of size (n, 0, 0)
 Concatenation (•): Context-free insertion (←):
 abc • d = abc d
 abc ← d = ab d c

Context-free deletion = generalised quotient

deletion of size (p, 0, 0)

Quotient (/):Context-free deletion (\rightarrow): $abc \frac{d}{d} / d = abc$ $ab \frac{d}{d} c \rightarrow d = abc$

Known Results on Insertion-deletion Systems

Context-free systems

- completeness
 - (3, 0, 0; 3, 0, 0) = RE(3, 0, 0; 2, 0, 0) = RE(2, 0, 0; 3, 0, 0) = RE
- incompleteness

 $(\ 2, \ 0, \ 0; \ 2, \ 0, \ 0) \subsetneq \mathsf{CF} \\ (\ m, \ 0, \ 0; \ 1, \ 0, \ 0) \subsetneq \mathsf{CF} \\ (\ 1, \ 0, \ 0; \ p, \ 0, \ 0) \subsetneq \mathsf{REG}$

Known Results on Insertion-deletion Systems

Context-free systems

- completeness
 - (3, 0, 0; 3, 0, 0) = RE(3, 0, 0; 2, 0, 0) = RE(2, 0, 0; 3, 0, 0) = RE
- incompleteness

 $(\ 2, \ 0, \ 0; \ 2, \ 0, \ 0) \subsetneq \mathsf{CF} \\ (\ m, \ 0, \ 0; \ 1, \ 0, \ 0) \subsetneq \mathsf{CF} \\ (\ 1, \ 0, \ 0; \ p, \ 0, \ 0) \subsetneq \mathsf{REG}$

Unconstrained systems

completeness

(1, 1, 1; 2, 0, 0) = RE(2, 0, 0; 1, 1, 1) = RE(1, 1, 1; 1, 1, 0) = RE

Known Results on Insertion-deletion Systems

Context-free systems

- completeness
 - (3, 0, 0; 3, 0, 0) = RE(3, 0, 0; 2, 0, 0) = RE(2, 0, 0; 3, 0, 0) = RE
- incompleteness

 $(\ 2, \ 0, \ 0; \ 2, \ 0, \ 0) \subsetneq \mathsf{CF} \\ (\ m, \ 0, \ 0; \ 1, \ 0, \ 0) \subsetneq \mathsf{CF} \\ (\ 1, \ 0, \ 0; \ p, \ 0, \ 0) \subsetneq \mathsf{REG}$

Unconstrained systems

completeness

(1, 1, 1; 2, 0, 0) = RE(2, 0, 0; 1, 1, 1) = RE(1, 1, 1; 1, 1, 0) = RE

One-sided systems

completeness

$$(1, 1, 2; 1, 1, 0) = RE$$

 $(1, 1, 0; 1, 1, 2) = RE$

$$(2, 0, 2; 1, 1, 0) = RE$$

 $(1, 1, 0; 2, 0, 2) = RE$

$$(2, 0, 1; 2, 0, 0) = RE$$

 $(2, 0, 0; 2, 0, 1) = RE$

incompleteness
$$(1,1,1;1,1,0) \subsetneq RE$$

(1,1,0;1,1,1) ⊊ RE

 $(\mathsf{n},\mathsf{m},\mathsf{m}';\mathsf{p},\mathsf{q},\mathsf{q}')$

- either m = 0 or m' = 0, not both
- either q = 0 or q' = 0, not both

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

- Introduction and motivation
- Leftist insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphs for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

 $\binom{7}{r_1}^{\prime 2}$

RNA: copy of DNA

matrix for protein synthesis

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA
 - guide not modified

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA
 - guide not modified
 - only sequences of U inserted/deleted

RNA: copy of DNA

- matrix for protein synthesis
- **RNA** editing
 - similar to mismatched annealing of DNA
 - guide not modified
 - only sequences of U inserted/deleted

Anchor always on same side

Accessibility graphs

can access

$a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow e$

can access

- can access
- give

- can access
- ► give
- get

- can access
- give
- get

- can access
- give = insertion
- get = deletion

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars (1,1,0;1,1,0)

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars (1,1,0;1,1,0)

► ∌ (ba)+

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars (1,1,0;1,1,0)

- ► ∌ (ba)+
- ► ∋ some CS languages

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars (1,1,0;1,1,0)

- ► ∌ (ba)+
- ► ∋ some CS languages

We are interested in (1, m, 0; 1, q, 0)

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

- Introduction and motivation
- Leftist insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphs for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

 $\binom{7}{r_1}^{\prime 2}$

Generation of regular languages (REG): (1,2,0;1,1,0)

► U S S ◀

Generation of regular languages (REG): (1,2,0;1,1,0)

▶ a u s s ◀

Generation of regular languages (REG): (1,2,0;1,1,0)

▶ gauss ◀

Generation of regular languages (REG): (1,2,0;1,1,0)

similarly for (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1,2,0;1,1,0)

similarly for (1, 1, 0; 1, 2, 0)

Simulate intersection with a REG language

Generation of regular languages (REG): (1,2,0;1,1,0)

similarly for (1, 1, 0; 1, 2, 0)

Simulate intersection with a REG language

 $(1,2,0;1,1,0) \text{ and } (1,1,0;1,2,0) \text{ generate} \\ L_{2^n} = \{ (F_1F_0)^n(a_0a_1)^m \mid n \geq 2^{2m-2} \}$

Generation of regular languages (REG): (1,2,0;1,1,0)

similarly for (1, 1, 0; 1, 2, 0)

Simulate intersection with a REG language

 $(1,2,0;1,1,0) \text{ and } (1,1,0;1,2,0) \text{ generate} \\ L_{2^n} = \{ (F_1F_0)^n(a_0a_1)^m \mid n \geq 2^{2m-2} \}$

(1,1,0;1,1,0) intersected with a REG language generate L_{2ⁿ}

$(1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0) let $(ab, c, \lambda)_{del}$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0) let (ab, c, λ)_{del} (k = 2)

generate the same languages (1, k, 0; 1, 1, 0) ~ (1, 1, 0; 1, k, 0) ~ (1, k, 0; 1, k, 0)(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)let $(ab, c, \lambda)_{del}$ (k = 2)

···abc···

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

 $\begin{array}{l} \textbf{(1,k,0;1,1,0) simulates (1,1,0;1,k,0)} \\ \textbf{let (ab,c,\lambda)_{del}} \quad (k=2) \end{array}$

 $(ab, X, \lambda)_{ins} \\ \cdots \underline{ab}_{c} \cdots \Longrightarrow \cdots \underline{ab}_{X} c \cdots$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

 $\begin{array}{l} \textbf{(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)} \\ \textbf{let (ab, c, \lambda)_{del}} \quad (k = 2) \end{array}$

 $(ab, X, \lambda)_{\text{ins}} \qquad (X, c, \lambda)_{\text{del}} \\ \cdots \underline{a} \underline{b} \underline{c} \cdots \Longrightarrow \cdots \underline{a} \underline{b} \underline{X} \underline{c} \cdots \Longrightarrow \cdots \underline{a} \underline{b} \underline{X} \cdots$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)let $(ab, c, \lambda)_{del}$ (k = 2)

 $(ab, X, \lambda)_{\text{ins}} \xrightarrow{(X, c, \lambda)_{\text{del}}} ab (\lambda, X, \lambda)_{\text{del}} \xrightarrow{(\lambda, X, \lambda)_{\text{del}}} ab X \cdots \Longrightarrow \cdots ab \cdots$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)let $(ab, c, \lambda)_{del}$ (k = 2)

$$\cdots \underbrace{ab}_{c} c \cdots \Longrightarrow \cdots a \underbrace{b}_{X} c' \cdots \Longrightarrow \cdots a \underbrace{b}_{X} x \cdots \Longrightarrow \cdots a \underbrace{b}_{X} \cdots \boxtimes a \underbrace{b}_{x} \cdots \boxtimes \cdots a \underbrace{b}_{x} \cdots \boxtimes \cdots a \underbrace{b}_{x} \cdots \boxtimes \cdots a \underbrace{b}_{x} \cdots \boxtimes$$

Similarly for other simulations

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)let $(ab, c, \lambda)_{del}$ (k = 2)

$$(ab, X, \lambda)_{\text{ins}} (X, c, \lambda)_{\text{del}} (\lambda, X, \lambda)_{\text{del}}$$
$$(\lambda, X, \lambda)_{\text{del}} ab X \cdots \Longrightarrow ab X \cdots \Longrightarrow \cdots ab \cdots$$

Similarly for other simulations

In fact, $(1, k, 0; 1, k, 0) \sim (1, k+1, 0; 1, k+1, 0)$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)let $(ab, c, \lambda)_{del}$ (k = 2)

 $(ab, X, \lambda)_{\text{ins}} (X, c, \lambda)_{\text{del}} (\lambda, X, \lambda)_{\text{del}} \\ \cdots \\ \underline{a} \underbrace{b}_{c} \underbrace{c} \cdots \\ \Longrightarrow \cdots \\ a \underbrace{b}_{X} \underbrace{c}^{(\lambda, z, \lambda)_{\text{del}}} \\ \cdots \\ \underline{a} \underbrace{b}_{X} \cdots \\ \underbrace{c}^{(\lambda, z, \lambda)_{\text{del}}} \\ \cdots \\ \underline{a} \underbrace{b}_{X} \cdots \underbrace{b}_{$

Similarly for other simulations

In fact, $(1, k, 0; 1, k, 0) \sim (1, k + 1, 0; 1, k + 1, 0)$ Therefore $(1, 2, 0; 1, 1, 0) \sim (1, 1, 0; 1, 2, 0) \sim (1, m, 0; 1, q, 0)$

generate the same languages (1, k, 0; 1, 1, 0) \sim (1, 1, 0; 1, k, 0) \sim (1, k, 0; 1, k, 0)

(1, k, 0; 1, 1, 0) simulates (1, 1, 0; 1, k, 0)let $(ab, c, \lambda)_{del}$ (k = 2)

$$(ab, X, \lambda)_{\text{ins}} (X, c, \lambda)_{\text{del}} (\lambda, X, \lambda)_{\text{del}}$$
$$(\lambda, X, \lambda)_{\text{del}} ab X \cdots \Longrightarrow ab X \cdots \Longrightarrow \cdots ab \cdots$$

Similarly for other simulations

In fact, $(1, k, 0; 1, k, 0) \sim (1, k+1, 0; 1, k+1, 0)$ Therefore $(1, 2, 0; 1, 1, 0) \sim (1, 1, 0; 1, 2, 0) \sim (1, m, 0; 1, q, 0)$

Conjecture: (1, m, 0; 1, q, 0) NOt computationally complete

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

- Introduction and motivation
- One-sided insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphs for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

$$\begin{split} r_1 &: (a, a, \lambda)_{ins}, \ r_2 : (a, b, \lambda)_{ins}, \\ r_3 &: (b, a, \lambda)_{del} \end{split}$$

 $\begin{array}{ll} r_1:(a,a,\lambda)_{ins}, \ r_2:(a,b,\lambda)_{ins}, \\ r_3:(b,a,\lambda)_{del} \end{array} \hspace{1.5cm} \mbox{a}$

а

$$\begin{split} r_1 &: (a, a, \lambda)_{ins}, \ r_2 &: (a, b, \lambda)_{ins}, \\ r_3 &: (b, a, \lambda)_{del} \end{split}$$

$$\begin{split} r_1 &: (a, a, \lambda)_{ins}, \ r_2 : (a, b, \lambda)_{ins}, \\ r_3 &: (b, a, \lambda)_{del} \end{split}$$

$$a \xrightarrow{r_1} a \xrightarrow{a} \xrightarrow{r_2} a \xrightarrow{a} b$$

$$\begin{split} r_1 &: (a, a, \lambda)_{\text{ins.}} r_2 : (a, b, \lambda)_{\text{ins.}} \\ r_3 &: (b, a, \lambda)_{\text{del}} \end{split}$$

$$a \stackrel{r_1}{\Longrightarrow} \underbrace{aa}_{\longrightarrow} \stackrel{r_2}{\Longrightarrow} aab \stackrel{r_2}{\longrightarrow} abab$$

$$\begin{split} r_1 &: (a, a, \lambda)_{\text{ins}}, \ r_2 &: (a, b, \lambda)_{\text{ins}}, \\ r_3 &: (b, a, \lambda)_{\text{del}} \end{split}$$

The system generating $L_{2^n} = \{(F_1F_0)^n(a_0a_1)^m \mid n \ge 2^{2m-2}\}$:

• intersection with $(F_1F_0)^*(a_0a_1)^*$

The system generating $L_{2^n} = \{(F_1F_0)^n(a_0a_1)^m \mid n \ge 2^{2m-2}\}$:

intersection with (F₁F₀)*(a₀a₁)*

where $i,j,k\in\{0,1\}$

Derivation Graphs for Generation of L2n

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines

Small universal Petri nets

Add pre-conditions to rules

Add pre-conditions to rules

$$r_2$$

 r_1 r_3

Add pre-conditions to rules

- prescribe language of valid strings
 - require the string to be of a certain form

Add pre-conditions to rules

- prescribe language of valid strings
 - require the string to be of a certain form
- distributed control

Add pre-conditions to rules

- prescribe language of valid strings
 - require the string to be of a certain form
- distributed control

Add pre-conditions to rules

- prescribe language of valid strings
 - require the string to be of a certain form
- distributed control

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines

Small universal Petri nets

$$L = \{w: |w|_a = |w|_b + |w|_c\}$$

$$L = \{W : |W|_a = |W|_b + |W|_c\}$$
(regular rule application language)

$$L = \{w: |w|_a = |w|_b + |w|_c\}$$

(regular rule application language)

Known fact: 4 nodes + (1, 1, 0; 1, 1, 0) – computationally complete

$$L=\{w:|w|_a=|w|_b+|w|_c\}$$

(regular rule application language)

Known fact: 4 nodes + (1, 1, 0; 1, 1, 0) – computationally complete

We showed that:

3 nodes +
$$\binom{(1,2,0;1,1,0)}{(1,1,0;1,2,0)}$$
 - computationally complete

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines

Small universal Petri nets

 $(\lambda, a, \lambda)_{ins}$

permitting forbidding context condition context condition $((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\})$

Semi-conditional and Random Context Systems

Semi-conditional control

 $\begin{array}{l} \mbox{degree} = (1, 2) \\ \mbox{permitting} & \mbox{forbidding} \\ \mbox{context condition} & \mbox{context condition} \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting forbidding} \\ \text{context condition context condition} \\ ((\lambda, a, \lambda)_{\text{ins}}, \{\text{S}\}, \{\text{ab}, \text{ba}\}) \quad ((\lambda, b, \lambda)_{\text{ins}}, \{\text{S}\}, \{\text{ab}, \text{ba}\}) \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting} & \text{forbidding} \\ \text{context condition} & \text{context condition} \\ ((\lambda, a, \lambda)_{\text{ins}}, \{\text{S}\}, \{\text{ab}, \text{ba}\}) & ((\lambda, b, \lambda)_{\text{ins}}, \{\text{S}\}, \{\text{ab}, \text{ba}\}) \\ ((\lambda, S, \lambda)_{\text{del}}, & \varnothing, \ \{\text{ab}, \text{ba}\}) \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting forbidding} \\ \text{context condition context condition} \\ \left((\lambda, a, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) \\ \left((\lambda, S, \lambda)_{\text{del}}, \ \varnothing, \ \{ab, ba\} \right) \\ \left((\lambda, S, \lambda)_{\text{del}}, \ \varnothing, \ \{ab, ba\} \right) \\ aSb \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting forbidding} \\ \text{context condition context condition} \\ \left((\lambda, a, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) \\ \left((\lambda, S, \lambda)_{\text{del}}, \ \varnothing, \ \{ab, ba\} \right) \\ \text{aSb} \Longrightarrow aaSb \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting forbidding} \\ \text{context condition context condition} \\ \left((\lambda, a, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) & \left((\lambda, b, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) \\ \left((\lambda, S, \lambda)_{\text{del}}, \ \varnothing, \ \{ab, ba\} \right) \\ \text{aSb} \Longrightarrow aaSb \Longrightarrow aaSbb \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting forbidding} \\ \text{context condition context condition} \\ \left((\lambda, a, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) & \left((\lambda, b, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) \\ \left((\lambda, S, \lambda)_{\text{del}}, \ \varnothing, \ \{ab, ba\} \right) \\ & \text{aSb} \Longrightarrow \text{aaSb} \Longrightarrow \text{aaSb} \Longrightarrow \text{aabb} \end{array}$

 $\begin{array}{l} \text{degree} = (1, 2) \\ \text{permitting forbidding} \\ \text{context condition context condition} \\ \left((\lambda, a, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) & \left((\lambda, b, \lambda)_{\text{ins}}, \{S\}, \{ab, ba\} \right) \\ \left((\lambda, S, \lambda)_{\text{del}}, \ \varnothing, \ \{ab, ba\} \right) \\ \text{aSb} \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* a^*b^* \end{array}$

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* a^*b^* \\ abaSbb \end{array}$

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \overline{a^*b^*} \\ only terminal strings! & non-terminal \\ abaSbb \end{array}$

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \overline{a^*b^*} \\ Only terminal strings! & non-terminal \\ abaSbb \end{array}$

degree (2,2) + (1,0,0; 1,0,0) - computationally complete

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \widehat{a^*b^*} \\ Only terminal strings! & non-terminal \\ abaSbb \\ \end{array}$

degree (2,2) + (1,0,0;1,0,0) – computationally complete degree (2,2) + (1,0,0;0,0,0) – contained in CS

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \overline{a^*b^*} \\ Only terminal strings! & non-terminal \\ abaSbb \\ degree (2, 2) + (1, 0, 0; 1, 0, 0) - computationally complete \end{array}$

degree (2,2) + (1,0,0;0,0,0) – contained in CS

Random context control = degree (1,1)

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \widetilde{a^*b^*} \\ Only terminal strings! & non-terminal \\ abaSbb \end{array}$

degree (2,2) + (1,0,0;1,0,0) – computationally complete degree (2,2) + (1,0,0;0,0,0) – contained in CS

Random context control = degree (1,1)degree (1,1) + (2,0,0;1,1,0) - computationally complete

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \widetilde{a^*b^*} \\ only terminal strings! & non-terminal \\ abaSbb \end{array}$

degree (2,2) + (1,0,0;1,0,0) – computationally complete degree (2,2) + (1,0,0;0,0,0) – contained in CS

 $\begin{aligned} \text{Random context control} &= \text{degree (1,1)} \\ \text{degree (1,1) + (2,0,0;1,1,0)} &- \text{computationally complete} \\ \text{degree (1,1) + (1,1,0;2,0,0)} &- \text{not computationally complete} \end{aligned}$

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \widetilde{a^*b^*} \\ only terminal strings! & non-terminal \\ abaSbb \end{array}$

degree (2,2) + (1,0,0;1,0,0) – computationally complete degree (2,2) + (1,0,0;0,0,0) – contained in CS

 $\begin{aligned} \text{Random context control} &= \text{degree (1,1)} \\ \text{degree (1,1) + (2,0,0;1,1,0)} &= \text{computationally complete} \\ \text{degree (1,1) + (1,1,0;p,1,1)} &= \text{not computationally complete} \end{aligned}$

 $\begin{array}{l} degree = (1, 2) \\ permitting forbidding \\ context condition context condition \\ ((\lambda, a, \lambda)_{ins}, \{S\}, \{ab, ba\}) & ((\lambda, b, \lambda)_{ins}, \{S\}, \{ab, ba\}) \\ ((\lambda, S, \lambda)_{del}, \varnothing, \{ab, ba\}) & terminals \\ aSb \Longrightarrow aaSb \Longrightarrow aaSbb \Longrightarrow^* \widetilde{a^*b^*} \\ only terminal strings! & non-terminal \\ abaSbb \end{array}$

degree (2,2) + (1,0,0;1,0,0) – computationally complete degree (2,2) + (1,0,0;0,0,0) – contained in CS

Random context control = degree (1,1)degree (1,1) + (2,0,0;1,1,0) - computationally complete degree (1,1) + (1,1,0;p,1,1) - not computationally complete unusual asymmetry

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines

Small universal Petri nets

 $(u,x,v)_{ins/del}$

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Distributed control

- insertion
- deletion
- substitution

Distributed control

- insertion
- deletion
- substitution

- insertion
- deletion
- substitution

M_u universal:

M_u universal:

 M_u can simulate any other M

M_u universal: M_u can simulate any other M h(x)

h – coding function

M_u universal: M_u can simulate any other M h(x),g(M)

- h coding function
- g Gödel enumeration

$\begin{array}{l} M_u \text{ universal:} \\ M_u \text{ can simulate any other M} \\ \langle h(x), g(M) \rangle \end{array}$

- h coding function
- g Gödel enumeration
- $\langle a, b \rangle$ pairing function

M_u universal: M_u can simulate any other M $M_u(\langle h(x), g(M) \rangle)$

- h coding function
- g Gödel enumeration
- $\langle a, b \rangle$ pairing function

 $\begin{array}{l} M_u \text{ universal:} \\ M_u \text{ can simulate any other M} \\ f \big(\, M_u \big(\, \langle h(x), g(M) \rangle \, \big) \, \big) \end{array}$

- h coding function
- g Gödel enumeration
- $\langle a, b \rangle$ pairing function
- f decoding function

M_u universal:

 M_{u} can simulate any other M

 $f\big(\, M_u\big(\, \langle h(x), g(M)\rangle\,\big)\,\big) = M(x)$

- h coding function
- g Gödel enumeration
- $\langle a, b \rangle$ pairing function
- f decoding function

M_u universal:

 M_u can simulate any other M

 $f\big(\, M_u\big(\, \langle h(x), g(M)\rangle\,\big)\,\big) = M(x)$

- h coding function
- g Gödel enumeration
- $\langle a, b \rangle$ pairing function
- f decoding function

M_u universal:

 M_u can simulate any other M

 $f\big(\, M_u\big(\, \langle h(x), g(M)\rangle\,\big)\,\big) = M(x)$

- h coding function
- g Gödel enumeration
- (a, b) pairing function
- f decoding function

computing devices

 $f=h=id \quad \Longrightarrow \quad M_u \text{ - strongly universal}$

otherwise \implies M_u - weakly universal

M_u universal:

 M_u can simulate any other M

 $f\big(\,\mathsf{M}_{\mathsf{u}}\big(\,\langle h(x),g(\mathsf{M})\rangle\,\big)\,\big)=\mathsf{M}(x)$

- h coding function
- g Gödel enumeration
- (a, b) pairing function
- f decoding function

computing devices

 $f = h = id \implies M_u - strongly universal$

otherwise \implies M_u - weakly universal

Distinction especially important for numbers

- 5 rules: strongly universal
- 4 rules: weakly universal
 - ► 3 nodes

- 5 rules: strongly universal
- 4 rules: weakly universal
 - 3 nodes
 - simulate register machines

- 5 rules: strongly universal
- 4 rules: weakly universal
 - 3 nodes
 - simulate register machines
 - exponential slowdown

Minimise the number of rules

- 5 rules: strongly universal
- 4 rules: weakly universal
 - 3 nodes
 - simulate register machines
 - exponential slowdown

7 rules

- 5 rules: strongly universal
- 4 rules: weakly universal
 - 3 nodes
 - simulate register machines
 - exponential slowdown
- 7 rules
 - 4 nodes
 - simulate Turing machines
 - polynomial slowdown

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Small universal Petri nets

Biochemical Reactions as Multiset Rewriting

Biochemical reaction

Multiset rewriting a b \rightarrow c d

Biochemical reaction

 $\begin{array}{c} \text{Multiset rewriting} \\ \text{a } \text{b} \rightarrow \text{ c } \text{d} \end{array}$

Petri nets

Biochemical reaction

 $\begin{array}{c} \text{Multiset rewriting} \\ \text{a } \text{b} \rightarrow \text{ c } \text{d} \end{array}$

Petri nets

Biochemical reaction

Register machines

 $\begin{array}{c} \text{Multiset rewriting} \\ \text{a } \text{b} \rightarrow \text{ c } \text{d} \end{array}$

Petri nets

Biochemical reaction

Register machines

Universality

small systems

Multiset rewriting a b \rightarrow c d

Petri nets

Biochemical reaction

Register machines

Universality

small systems

Presentation as Petri nets

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Universal register machines with 3 and 2 registers

On the Power and Universality of Biologically-inspired Models of Computation

Generalised register machines

Small universal Petri nets

(U, X, V)_{ins/del}

- Registers
 - nonnegative integers

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

Increment, (p, RiP, q):

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

Increment, (p, RiP, q):

Decrement, (p, RiM, q): $-RiM \rightarrow q$

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

RiP and RiZM most often used

- Registers
 - nonnegative integers
- Instructions
 - with labels/states

RiP and RiZM most often used

Computationally complete

 \exists universal register machines (-RIP) and - RIZM

- strongly universal U₂₂ with 22 instructions
 - 8 registers
- weakly universal U₂₀ with 20 instructions
 - 7 registers

 \exists universal register machines (\neg RiP \rightarrow and \neg RiZM

- strongly universal U₂₂ with 22 instructions
 - 8 registers
- weakly universal U₂₀ with 20 instructions
 - 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]

 \exists universal register machines (-<u>RiP</u> and -<u>(RiZM</u>))

- strongly universal U_{22} with 22 instructions
 - 8 registers
- weakly universal U₂₀ with 20 instructions
 - 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]

 \exists universal register machines (-<u>RiP</u> \rightarrow and -<u>(RiZM</u>)

- strongly universal U_{22} with 22 instructions
 - 8 registers
- weakly universal U₂₀ with 20 instructions
 - 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]

 \exists universal register machines (-<u>RiP</u> and -<u>(RiZM</u>))

- strongly universal U_{22} with 22 instructions
 - 8 registers
- weakly universal U₂₀ with 20 instructions
 - 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]

We constructed:

- strongly universal U₃
 - 3 registers
 - 367 instructions

 \exists universal register machines (-<u>RiP</u> and -<u>(RiZM</u>))

- strongly universal U₂₂ with 22 instructions
 - 8 registers
- weakly universal U₂₀ with 20 instructions
 - 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]

We constructed:

- strongly universal U₃
 - 3 registers
 - 367 instructions
- weakly universal U₂
 - 2 registers
 - 277 instructions

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Universal register machines with 3 and 2 registers

On the Power and Universality of Biologically-inspired Models of Computation

Generalised register machines

Small universal Petri nets

(U, X, V)_{ins/del}

- move actions to edges
- allow multiple actions

- move actions to edges
- allow multiple actions

- move actions to edges
- allow multiple actions

- move actions to edges
- allow multiple actions

- move actions to edges
- allow multiple actions

State compression

- move actions to edges
- allow multiple actions

State compression

- $U_{22} \Rightarrow$ strongly universal U_7
 - 7 states

- move actions to edges
- allow multiple actions

State compression

- $U_{22} \Rightarrow$ strongly universal U_7
 - 7 states
- $U_{20} \Rightarrow$ weakly universal U'_7
 - 7 states

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

 $(u,x,v)_{\text{ins/del}}$

places

Sergiu Ivanov, LACL, Université Paris Est

- places
- transitions

- places
- transitions
- normal arcs

- places
- transitions
- normal arcs
- inhibitor arcs

- places
- transitions
- normal arcs
- inhibitor arcs

- places
- transitions

Size =
$$(p, t, i, d)$$

- normal arcs
- inhibitor arcs

- places
- transitions

Size =
$$(p, t, i, d)$$

- normal arcs
- inhibitor arcs

places

transitions

normal arcs Size =
$$(p, t, i, d)$$

~ .

inhibitor arcs

- places
- transitions

inhibitor arcs

Size =
$$(p, t, i, d)$$

- places
- transitions

inhibitor arcs

Size =
$$(p, t, i, d)$$

- places
- transitions

Size =
$$(p, t, i, d)$$

- normal arcs
- inhibitor arcs

Build small universal Petri nets

result in halting configuration

- places
- transitions

Size =
$$(p, t, i, d)$$

normal arcs
 inhibitor arcs

Build small universal Petri nets

result in halting configuration

Simulates (p, RiZM, q, z)

- places
- transitions

Size =
$$(p, t, i, d)$$

normal arcs
 inhibitor arcs

Build small universal Petri nets

result in halting configuration

Simulates (p, RiZM, q, z)

- places
- transitions

Size =
$$(p, t, i, d)$$

normal arcs
 inhibitor arcs

Build small universal Petri nets

result in halting configuration

Direct simulation of U_{22} and U_{20}

Simulates (p, RiZM, q, z)

- places
- transitions

Size =
$$(p, t, i, d)$$

normal arcs
 inhibitor arcs

Build small universal Petri nets

result in halting configuration

Direct simulation of U_{22} and U_{20}

- strongly universal (p: 30, t: 34, i: 12, d: 3)
- weakly universal (p: 27, t: 31, i: 11, d: 3)

Simulates (p, RiZM, q, z)

- places
- transitions
 normal arcs

Size =
$$(p, t, i, d)$$

inhibitor arcs

Build small universal Petri nets

result in halting configuration

Direct simulation of U_{22} and U_{20}

- strongly universal
 - (p: 30, t: 34, i: 12, d: 3)
- weakly universal (p: 27, t: 31, i: 11, d: 3)
- Minimal transition degree

Simulates (p, RiZM, q, z)

$$(\textbf{q}) \xrightarrow{Z(1), NZ(2)} (\textbf{p})$$

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Binary-code the states

 (q_4, RiP, q_6)

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Binary-code the states

 (q_4, RiP, q_6) (100)₂ (110)₂

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Simulate compressed generalised register machines

- strongly universal
 - (p:14,t:23,i:30,d:6)
- weakly universal (p:13,t:21,i:23,d:6)

Binary-code the states

- strongly universal
 (p:11,t:23,i:37,d:10)
- weakly universal (p:10,t:21,i:30,d:10)

(q₄, RiP, q₆) (100)₂ (110)₂

Factor out the inhibitor arc

Factor out the inhibitor arc

checker subnets

Factor out the inhibitor arc

checker subnets

(p, RiZM, q, s)

Factor out the inhibitor arc

checker subnets

Factor out the inhibitor arc

checker subnets

One inhibitor per register

(p, RiZM, q, s)

Factor out the inhibitor arc

checker subnets

One inhibitor per register

Simulate U_3 and U_2

(p, RiZM, q, s)

Factor out the inhibitor arc

checker subnets

One inhibitor per register

Simulate U_3 and U_2

- strong universality
 (p: 525, t: 659, i: 3, d: 3)
- weak universality (p: 397, t: 504, i: 2, d: 3)

(p, RiZM, q, s)

#places = #registers + 2

#places = #registers + 2 Max degree = f(state coding)

$$\begin{array}{c} q_1 \\ \hline R1ZM \rightarrow q_3 \\ q_2 \\ \hline R2P \end{array}$$

#places = #registers + 2 Max degree = f(state coding) $cost(q_i \rightarrow q_i) = code(i) + code(j)$

$$\begin{split} \# places &= \# registers + 2\\ Max \ degree &= f(state \ coding)\\ cost(q_i \rightarrow q_j) &= code(i) + code(j)\\ minimise \quad worst \ cost \end{split}$$

$$\begin{array}{c} q_1 \\ \hline R1ZM \rightarrow q_3 \\ \hline q_2 \\ \hline R2P \end{array}$$

#places = #registers + 2

Max degree = f(state coding)

$$\text{cost}(\textbf{q}_i \rightarrow \textbf{q}_j) = \text{code}(i) + \text{code}(j)$$

 $\begin{array}{ll} \mbox{minimise} & \mbox{worst cost} & \mbox{n} \\ \mbox{subject to} & \mbox{cost}(\mbox{q}_i \rightarrow \mbox{q}_j) < \mbox{worst cost} \end{array}$

$$\begin{array}{c} q_1 \\ \hline R1ZM \rightarrow q_3 \\ \hline q_2 \\ \hline R2P \end{array}$$

$$\#$$
places = $\#$ registers + 2

Max degree = f(state coding)

$$\text{cost}(\textbf{q}_i \rightarrow \textbf{q}_j) = \text{code}(i) + \text{code}(j)$$

 $\begin{array}{lll} \mbox{minimise} & \mbox{worst cost} & \mbox{nondeterminism} \\ \mbox{subject to} & \mbox{cost}(q_i \rightarrow q_j) < \mbox{worst cost} \\ & \mbox{one code per state, one state per code} \end{array}$

$$\begin{array}{c} q_1 \\ \hline R1ZM \rightarrow q_3 \\ \hline q_2 \\ \hline R2P \end{array}$$

$$\#$$
places = $\#$ registers + 2

Max degree = f(state coding)

$$cost(\mathbf{q}_i \rightarrow \mathbf{q}_j) = code(i) + code(j)$$

 $\begin{array}{lll} \mbox{minimise} & \mbox{worst cost} & \mbox{nondeterminism} \\ \mbox{subject to} & \mbox{cost}(q_i \rightarrow q_j) < \mbox{worst cost} \\ & \mbox{one code per state, one state per code} \end{array}$

Simulate U_3 and U_2

$$\begin{array}{c} q_1 \\ \hline R1ZM \rightarrow q_3 \\ \hline q_2 \\ \hline R2P \end{array}$$

$$\#$$
places = $\#$ registers + 2

Max degree = f(state coding)

$$cost(q_i \rightarrow q_j) = code(i) + code(j)$$

minimise worst cost

nondeterminism

subject to $cost(q_i \rightarrow q_j) < worst cost$ one code per state, one state per code (40 000 variables)

Simulate U_3 and U_2

$$\begin{array}{c} q_1 \\ \hline R1ZM \rightarrow q_3 \\ \hline q_2 \\ \hline R2P \end{array}$$

$$\#$$
places = $\#$ registers + 2

Max degree = f(state coding)

$$\mathsf{cost}(\mathsf{q}_\mathsf{i} o \mathsf{q}_\mathsf{j}) = \mathsf{code}(\mathsf{i}) + \mathsf{code}(\mathsf{j})$$

 $\begin{array}{ll} \mbox{minimise} & \mbox{worst cost} & \mbox{nondeterminism} \\ \mbox{subject to} & \mbox{cost}(q_i \rightarrow q_j) < \mbox{worst cost} \\ & \mbox{one code per state, one state per code} \end{array}$

(40 000 variables)

Simulate U₃ and U₂

- strongly universal (p : 5, t : 590, i : 734, d : 208)
- weakly universal (p: 4, t: 452, i: 562, d: 162)

 $\left(q_k, RiP, q_t\right)$

Deterministic Petri Nets with Few Places (q_k, RiP, q_t) R_i n-t n-k Q_0

Deterministic Petri Nets with Few Places (q_k, RiP, q_t) $(k, n - k) \leq (t, n - t)$ Deterministic evolution (q_k, RiP, q_t) $(k, n - k) \leq (t, n - t)$ (n - k)

 \mathcal{L}_0

$\begin{array}{c} \text{Deterministic Petri Nets with Few Places} \\ (q_k, \text{RiP}, q_t) \\ (k, n-k) \not\leq (t, n-t) \\ \text{Deterministic evolution} \end{array} \xrightarrow{R_i} n-t \begin{array}{c} t \\ n-k \\ Q_1 \end{array}$

Simulate U_3 and U_2

 \mathcal{L}_0

 $\begin{aligned} & \left(q_k, RiP, q_t\right) \\ & \left(k, n-k\right) \not\leq (t, n-t) \end{aligned}$

Deterministic evolution

Simulate U₃ and U₂

strongly universal (p : 5, t : 293, i : 146, d : 314)

weakly universal (p: 4, t: 224, i: 112, d: 242)

 (q_k, RiP, q_t) $(k, n - k) \not\leq (t, n - t)$

Deterministic evolution

Simulate U₃ and U₂

- strongly universal (p : 5, t : 293, i : 146, d : 314)
 - nondeterministic: (p: 5, t: 590, i: 734, d: 208)
- weakly universal (p: 4, t: 224, i: 112, d: 242)

nondeterministic: (p: 4, t: 452, i: 562, d: 162)

Deterministic Petri Nets with Few Places

 $\begin{aligned} & \left(q_k, \mathsf{RiP}, q_t\right) \\ & \left(k, n-k\right) \not\leq (t, n-t) \end{aligned}$

Deterministic evolution

Simulate U₃ and U₂

- strongly universal (p : 5, t : 293, i : 146, d : 314)
 - nondeterministic: (p: 5, t: 590, i: 734, d: 208)
- weakly universal (p: 4, t: 224, i: 112, d: 242)
 - nondeterministic: (p:4,t:452,i:562,d:162)

Deterministic vs. Nondeterministic

fewer transitions and inhibitor arcs

Deterministic Petri Nets with Few Places

 (q_k, RiP, q_t) $(k, n - k) \leq (t, n - t)$

Deterministic evolution

Simulate U_3 and U_2

- strongly universal (p : 5, t : 293, i : 146, d : 314)
 - nondeterministic: (p: 5, t: 590, i: 734, d: 208)
- weakly universal (p: 4, t: 224, i: 112, d: 242)
 - nondeterministic: (p:4,t:452,i:562,d:162)

Deterministic vs. Nondeterministic

- fewer transitions and inhibitor arcs
- bigger transition degree

(1, m, 0; 1, q, 0) generate complex languages

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?
- Introduced derivation graphs
 - wave normal form?

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

Constructed universal register machines U_3 and U_2

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

Constructed universal register machines U_3 and U_2

reduce the number of instructions of U₃ and U₂?

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

Constructed universal register machines U₃ and U₂

reduce the number of instructions of U₃ and U₂?

Constructed generalised register machines U_7 and U'_7

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

Constructed universal register machines U_3 and U_2

reduce the number of instructions of U₃ and U₂?

Constructed generalised register machines U_7 and U'_7

Constructed a series of small universal Petri nets

(1, m, 0; 1, q, 0) generate complex languages

computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

(1,2,0;1,1,0) and (1,1,0;1,2,0): universality with graph control with 2 nodes?

Constructed universal register machines U_3 and U_2

reduce the number of instructions of U₃ and U₂?

Constructed generalised register machines U_7 and U'_7

Constructed a series of small universal Petri nets

fewer transitions?

Thank You for Your Attention!

- One-sided insertion-deletion systems
- ▶ $(1,1,0;1,2,0) \sim (1,2,0;1,1,0) \sim (1,m,0;1,q,0), m \cdot q \neq 0, m+q > 2$
 - Derivation graphs
 - Computational completeness with control
- graph control, 3 states
 semi-conditional
 random context
 (1, 2, 0; 1, 1, 0), (1, 1, 0; 1, 2, 0)
 (1, 0, 0; 1, 0, 0)
 (2, 0, 0; 1, 1, 0)
 - Universal NEPs with 4, 5, and 7 rules
 - Universal register machines with 3 and 2 registers
 - Universal generalised register machines with 7 states

Small Universal Petri Nets

	Strong universality								Weak universality							
Places																
Transitions	34	23	23	25	659	438	590	293	31	21	21	23	504	339	452	224
Inhibitor arcs																
Max degree	3	6	10	5	3	22	208	314	3	6	10	5	3	20	162	242