On the Power and Universality of Biologically-inspired Models of Computation

PhD Thesis
Sergiu IVANOV
Supervisor: Serghei Verlan
LACL, Université Paris Est

June 23, 2015

Biologically-inspired Models

Mimic biological processes

Biologically-inspired Models

Mimic biological processes

Biologically-inspired Models

Mimic biological processes
DNA/RNA operations
\Downarrow
string rewriting

Biologically-inspired Models

Mimic biological processes
DNA/RNA operations
string rewriting
Chemical reactions \Downarrow
multiset rewriting

Biologically-inspired Models

Mimic biological processes
DNA/RNA operations
string rewriting
Chemical reactions \Downarrow
multiset rewriting
Focus on formal models

Biologically-inspired Models

Mimic biological processes

string rewriting
Chemical reactions \Downarrow
multiset rewriting
Focus on formal models

- Better understanding of complexity

Biologically-inspired Models

Mimic biological processes
DNA/RNA operations string rewriting

Chemical reactions \Downarrow
multiset rewriting
Focus on formal models

- Better understanding of complexity
- New models of computation

Biologically-inspired Models

Mimic biological processes
DNA/RNA operations
string rewriting
Chemical reactions \Downarrow
multiset rewriting
Focus on formal models

- Better understanding of complexity
- New models of computation

Presentation Map

Insertion and Deletion

Presentation Map

Insertion and Deletion

Multiset Rewriting

Presentation Map

Insertion and Deletion

Leftist insertion-deletion systems

Multiset Rewriting

Presentation Map

Insertion and Deletion

Leftist insertion-deletion systems $(u, x, v)_{\text {ins } / d e l}$

Insertion-deletion systems with control

Multiset Rewriting

Presentation Map

Insertion and Deletion

Leftist insertion-deletion systems $(u, x, v)_{\text {ins } / \text { del }}$

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

Presentation Map

Insertion and Deletion

Leftist insertion-deletion systems $(u, x, v)_{\text {ins } / \text { del }}$

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

$O \rightarrow 0$

Presentation Map

Insertion and Deletion

Leftist insertion-deletion systems
$(u, x, v)_{\text {ins }} /$ del
Insertion-deletion systems with control

Multiset Rewriting
Small universal register machines
Small universal Petri nets

Presentation Map

Insertion and Deletion

Leftist insertion-deletion systems

- Introduction and motivation
- One-sided insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphsi for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

Insertion-deletion Systems

$(u, x, v)_{\text {ins }}$

Insertion-deletion Systems

$(u, x, v)_{\text {ins }}$

$\cdots u \quad$ v... $\Longrightarrow \cdots u \times v \cdots$

Insertion-deletion Systems

$$
\begin{array}{cc}
(u, x, v)_{\text {ins }} & (u, x, v)_{\text {del }} \\
\cdots u \quad v \cdots \Longrightarrow \cdots u x v \cdots & \cdots u x v \cdots \Longrightarrow \cdots u \quad v \cdots
\end{array}
$$

Insertion-deletion Systems

$$
\begin{array}{cc}
(u, x, v)_{\text {ins }} & (u, x, v)_{\text {del }} \\
\cdots u \mathrm{v} \cdots \Longrightarrow \cdots u x v \cdots & \cdots u x v \cdots \Longrightarrow \cdots u \quad v \cdots
\end{array}
$$

Insertion-deletion system = \{insertion rules, deletion rules, axioms\}

Insertion-deletion Systems

Insertion-deletion system = \{insertion rules, deletion rules, axioms\}

Insertion-deletion Systems

Insertion-deletion system = \{insertion rules, deletion rules, axioms\}

Insertion-deletion Systems

Insertion-deletion system = \{insertion rules, deletion rules, axioms $\}$

$$
\text { System size }=(\underbrace{\mathrm{n}, \mathrm{~m}, \mathrm{~m}^{\prime}}_{\begin{array}{c}
\text { max insertion } \\
\text { rule size }
\end{array}} ; \underbrace{p, q, q^{\prime}}_{\begin{array}{c}
\text { max deletion } \\
\text { rule size }
\end{array}})
$$

Biological Motivation

Mismatched DNA annealing

Biological Motivation

Mismatched DNA annealing

Biological Motivation

Mismatched DNA annealing

- two DNA strands bind
- A-T
- C-C

Biological Motivation

Mismatched DNA annealing

- two DNA strands bind
- A T
- C-C
- the strands are cleft

- enzymes

Biological Motivation

Mismatched DNA annealing

- two DNA strands bind
- A-T
- C-C
- the strands are cleft

- enzymes
- both strands are filled in
- complementarity

Biological Motivation

Mismatched DNA annealing

- two DNA strands bind
- $\mathrm{A}-\mathrm{T}$
- C-C
- the strands are cleft

- enzymes
- both strands are filled in
- complementarity

Context-free insertions and deletions on DNA strands

Formal Language Motivation

Context-free insertion = generalised concatenation

- insertion of size (n, O, O)

Formal Language Motivation

Context-free insertion = generalised concatenation

- insertion of size ($\mathrm{n}, \mathrm{O}, 0$)

Concatenation (•): $a b c \bullet d=a b c d$

Formal Language Motivation

Context-free insertion = generalised concatenation

- insertion of size (n, O, O)

Concatenation (•): $a b c \bullet d=a b c d$

Context-free insertion (\leftarrow): $a b c \leftarrow d=a b d c$

Formal Language Motivation

Context-free insertion = generalised concatenation

- insertion of size (n, O, O)

Concatenation (•): $a b c \bullet d=a b c d$

Context-free insertion (\leftarrow): $a b c \leftarrow d=a b d c$

Context-free deletion = generalised quotient

- deletion of size ($\mathrm{p}, \mathrm{O}, 0$)

Formal Language Motivation

Context-free insertion = generalised concatenation

- insertion of size (n, O, O)

Concatenation (•): $a b c \bullet d=a b c d$

Context-free insertion (\leftarrow): $a b c \leftarrow d=a b d c$

Context-free deletion = generalised quotient

- deletion of size ($\mathrm{p}, \mathrm{O}, 0$)

Quotient (/):
abced/d=abc

Context-free deletion (\rightarrow) : $a b \& c \rightarrow d=a b c$

Known Results on Insertion-deletion Systems

Context-free systems

- completeness
(3, O, 0; 3, 0, 0) $=\mathrm{RE}$
$(3,0,0 ; 2,0,0)=R E$
$(2,0,0 ; 3,0,0)=R E$
- incompleteness

$$
\begin{aligned}
& \text { (2, O, 0; 2, O, O) } \subsetneq C F \\
& (\mathrm{~m}, \mathrm{O}, \mathrm{O} ; 1, \mathrm{O}, \mathrm{O}) \subsetneq \mathrm{CF} \\
& (1,0, o ; p, o, o) \subsetneq R E G
\end{aligned}
$$

Known Results on Insertion-deletion Systems

Context-free systems

- completeness
(3, O, 0; 3, 0, 0) $=\mathrm{RE}$
$(3,0,0 ; 2,0,0)=R E$
$(2,0,0 ; 3,0,0)=R E$
- incompleteness
($2,0,0 ; 2,0,0) \subsetneq C F$
($\mathrm{m}, \mathrm{O}, \mathrm{O} ; 1, \mathrm{O}, \mathrm{O}$) $\subsetneq \mathrm{CF}$
$(1,0, o ; p, o, o) \subsetneq R E G$

Unconstrained systems

- completeness

$$
\begin{aligned}
& (1,1,1 ; 2,0,0)=\mathrm{RE} \\
& (2,0,0 ; 1,1,1)=\mathrm{RE} \\
& (1,1,1 ; 1,1,0)=\mathrm{RE}
\end{aligned}
$$

Known Results on Insertion-deletion Systems

Context-free systems

- completeness

$$
\begin{aligned}
& (3,0,0 ; 3,0,0)=R E \\
& (3,0,0 ; 2,0,0)=R E \\
& (2,0,0 ; 3,0,0)=R E
\end{aligned}
$$

- incompleteness

$$
\begin{aligned}
& (2, \mathrm{O}, \mathrm{o} ; 2, \mathrm{O}, \mathrm{o}) \subsetneq \mathrm{CF} \\
& (\mathrm{~m}, \mathrm{o}, \mathrm{o} ; 1, \mathrm{O}, \mathrm{o}) \subsetneq \mathrm{CF} \\
& (1, \mathrm{O}, \mathrm{o} ; \mathrm{p}, \mathrm{o}, \mathrm{o}) \subsetneq \mathrm{REG}
\end{aligned}
$$

Unconstrained systems

- completeness

$$
\begin{aligned}
& (1,1,1 ; 2,0,0)=R E \\
& (2,0,0 ; 1,1,1)=R E \\
& (1,1,1 ; 1,1,0)=R E
\end{aligned}
$$

One-sided systems

- completeness
$(1,1,2 ; 1,1,0)=R E$
$(1,1,0 ; 1,1,2)=R E$
$(2,0,2 ; 1,1,0)=R E$
$(1,1,0 ; 2,0,2)=R E$
$(2,0,1 ; 2,0,0)=R E$
$(2,0,0 ; 2,0,1)=R E$
- incompleteness
($1,1,1 ; 1,1,0) \subsetneq R E$
$(1,1,0 ; 1,1,1) \subsetneq R E$
($\mathrm{n}, \mathrm{m}, \mathrm{m}^{\prime} ; \mathrm{p}, \mathrm{q}, \mathrm{q}^{\prime}$)
- either $\mathrm{m}=0$ or $\mathrm{m}^{\prime}=0$, not both
- either $\mathrm{q}=0$ or $\mathrm{q}^{\prime}=0$, not both

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

- Introduction and motivation
- Leftist insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphs for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA
- guide not modified

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA
- guide not modified
- only sequences of U inserted/deleted

One-sided Systems: RNA Editing

RNA: copy of DNA

- matrix for protein synthesis

RNA editing

- similar to mismatched annealing of DNA
- guide not modified
- only sequences of U inserted/deleted

Anchor always on same side

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access

can access

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give
whoever can access e can access new f

can access

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give
- get

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give
- get

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give = insertion
- get = deletion

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars
(1, 1, 0; 1, 1, 0)
whoever can access e can access new f

can access
\Downarrow

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars
(1,, $0 ; 1,1,0)$

- $\nexists(\mathrm{ba})^{+}$
whoever can access e can access new f

can access
\Downarrow

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars
(1, 1, 0; 1, 1, 0)

- $\nexists(\mathrm{ba})^{+}$
- \ni some CS languages
whoever can access e can access new f

can access
\Downarrow
$\mathrm{a} \longrightarrow \mathrm{c} \longrightarrow \mathrm{d} \longrightarrow \mathrm{f} \longrightarrow \mathrm{e}$

One-sided Systems: Accessibility Problems

Accessibility graphs

- can access
- give = insertion
- get = deletion

Leftist grammars
(1, 1, 0; 1, 1, 0)

- $\nexists(\mathrm{ba})^{+}$
- \ni some CS languages
whoever can access e can access new f

can access
\Downarrow
$\mathrm{a} \longrightarrow \mathrm{c} \longrightarrow \mathrm{d} \longrightarrow \mathrm{f} \longrightarrow \mathrm{e}$

We are interested in (1, m, 0; 1, q, O)

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

- Introduction and motivation
- Leftist insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphs for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)
\square

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)
$g \quad$ a $u \quad$ s \quad s

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

- similarly for (1, 1, 0; 1, 2, 0)

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

- similarly for (1, 1, 0; 1, 2, 0)

Simulate intersection with a REG language

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

- similarly for (1, 1, 0; 1, 2, 0)

Simulate intersection with a REG language

$$
\begin{gathered}
(1,2,0 ; 1,1,0) \text { and }(1,1,0 ; 1,2,0) \text { generate } \\
L_{2^{n}}=\left\{\left(F_{1} F_{0}\right)^{n}\left(a_{0} a_{1}\right)^{m} \mid n \geq 2^{2 m-2}\right\}
\end{gathered}
$$

Systems of Sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)

Generation of regular languages (REG): (1, 2, 0; 1, 1, 0)

- similarly for ($1,1,0 ; 1,2,0$)

Simulate intersection with a REG language

$$
\begin{gathered}
(1,2,0 ; 1,1,0) \text { and }(1,1,0 ; 1,2,0) \text { generate } \\
L_{2^{n}}=\left\{\left(F_{1} F_{0}\right)^{n}\left(a_{0} a_{1}\right)^{m} \mid n \geq 2^{2 m-2}\right\}
\end{gathered}
$$

- $(1,1,0 ; 1,1,0)$ intersected with a REG language generate $\mathrm{L}_{2^{n}}$

(1, m, 0; 1, q, 0): Longer Contexts

$(1, k, 0 ; 1,1,0) \sim(1,1,0 ; 1, k, O) \sim(1, k, 0 ; 1, k, O)$

(1, m, 0; 1, q, 0): Longer Contexts

 generate the same languages[^0]
(1, m, 0; 1, q, 0): Longer Contexts

 generate the same languages$$
(1, k, 0 ; 1,1,0) \stackrel{\downarrow}{\sim}(1,1,0 ; 1, k, 0) \stackrel{\sim}{\sim}(1, k, 0 ; 1, k, 0)
$$

($1, \mathrm{k}, \mathrm{O} ; \mathrm{l}, \mathrm{l}, \mathrm{O}$) simulates ($1,1, \mathrm{O} ; \mathrm{l}, \mathrm{k}, \mathrm{O}$)

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages
$(1, k, 0 ; 1,1,0) \underset{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, 0 ; 1, k, 0)$
($1, \mathrm{k}, \mathrm{O} ; \mathrm{l}, \mathrm{l}, \mathrm{O}$) simulates ($1,1, \mathrm{O} ; \mathrm{l}, \mathrm{k}, \mathrm{O}$)
let $(a b, c, \lambda)_{\text {del }}$

(1, m, 0; 1, q, 0): Longer Contexts

 generate the same languages$(1, k, 0 ; 1,1,0) \underset{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, 0 ; 1, k, 0)$
(1, $, \mathrm{O}, \mathrm{O}, \mathrm{l}, \mathrm{l}, \mathrm{O}$) simulates ($1,1,0 ; 1, \mathrm{k}, \mathrm{O}$)

$$
\text { let }(a b, c, \lambda)_{\text {del }} \quad(k=2)
$$

(1, m, 0; 1, q, 0): Longer Contexts

 generate the same languages
$(1, k, O ; 1,1,0) \underset{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, O ; 1, k, 0)$

(1, k, $0 ; 1,1,0$) simulates ($1,1,0 ; 1, \mathrm{k}, 0$)

$$
\text { let }(a b, c, \lambda)_{\text {del }} \quad(k=2)
$$

...abc...

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages
$(1, k, 0 ; 1,1,0) \stackrel{(1,1,0 ; 1, k, 0)}{\sim}(1, k, 0 ; 1, k, 0)$
(1, k, $0 ; 1,1,0$) simulates ($1,1,0 ; 1, \mathrm{k}, \mathrm{O}$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$(\mathrm{ab}, \mathrm{X}, \lambda)_{\text {ins }}$
$\cdots a b c \cdots \Longrightarrow \cdots a b \times c \cdots$

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages
$(1, k, O ; 1,1,0) \underset{\sim}{\sim}(1,1,0 ; 1, k, O) \sim(1, k, O ; 1, k, O)$
($1, \mathrm{k}, \mathrm{O} ; 1,1,0$) simulates ($1,1,0 ; 1, \mathrm{k}, 0$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$\cdots a b c \cdots \stackrel{(a b, x, \lambda)_{\text {ins }}}{\Longrightarrow} \cdots a b x \not \subset \stackrel{(X, c, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b x \cdots$

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages
$(1, k, 0 ; 1,1,0) \stackrel{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, 0 ; 1, k, 0)$
($1, \mathrm{k}, \mathrm{O} ; 1,1,0$) simulates ($1,1,0 ; 1, \mathrm{k}, 0$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$\cdots a b c \cdots \stackrel{(\mathrm{ab}, \mathrm{x}, \lambda)_{\text {ins }}}{\Longrightarrow} \cdots \mathrm{ab} \times \not \subset \propto \stackrel{(X, \mathrm{c}, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b x \cdots \stackrel{(\lambda, X, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b \cdots$

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages
$(1, k, 0 ; 1,1,0) \stackrel{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, 0 ; 1, k, 0)$
(1, k, $0 ; 1,1,0$) simulates ($1,1,0 ; 1, \mathrm{k}, \mathrm{O}$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$\cdots a b c \cdots \stackrel{(a b, X, \lambda)_{\text {ins }}}{\Longrightarrow} \cdots a b x \phi \cdots \stackrel{(X, c, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b x \cdots \stackrel{(\lambda, X, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b \cdots$

- Similarly for other simulations

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages
$(1, k, 0 ; 1,1,0) \underset{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, 0 ; 1, k, 0)$
($1, \mathrm{k}, \mathrm{O} ; 1,1,0$) simulates ($1,1,0 ; 1, \mathrm{k}, \mathrm{O}$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$\cdots a b c \cdots \stackrel{(a b, X, \lambda)_{\text {ins }}}{\Longrightarrow} \cdots a b x \phi \cdots \stackrel{(X, c, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b x \cdots \stackrel{(\lambda, X, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b \cdots$

- Similarly for other simulations

In fact, ($1, \mathrm{k}, \mathrm{O} ; 1, \mathrm{k}, \mathrm{O}) \sim(1, \mathrm{k}+1,0 ; 1, \mathrm{k}+1,0)$

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages

$$
(1, k, 0 ; 1,1,0) \stackrel{\downarrow}{\sim}(1,1,0 ; 1, k, 0) \stackrel{\sim}{\sim}(1, k, 0 ; 1, k, 0)
$$

(1, k, $0 ; 1,1,0$) simulates ($1,1,0 ; 1, k, 0$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$\cdots a b c \cdots \stackrel{(\mathrm{ab}, \mathrm{X}, \lambda)_{\text {ins }}}{\Longrightarrow} \cdots a b \times \not \subset \cdots \stackrel{(X, \mathrm{c}, \lambda)_{\mathrm{del}}}{\Longrightarrow} \cdots a b x \cdots \stackrel{(\lambda, X, \lambda)_{\mathrm{del}}}{\Longrightarrow} \cdots a b \cdots$

- Similarly for other simulations

In fact, (1, k, 0; 1, k, 0) ~ (1, k+1, O; 1, k+1, 0)
Therefore (1, 2, 0; 1, 1, 0) ~ (1, 1, 0; 1, 2, 0) ~ (1, m, 0; 1, q, 0)

(1, m, 0; 1, q, 0): Longer Contexts

generate the same languages

$$
(1, k, 0 ; 1,1,0) \stackrel{\downarrow}{\sim}(1,1,0 ; 1, k, 0) \stackrel{\sim}{\sim}(1, k, 0 ; 1, k, 0)
$$

(1, k, $0 ; 1,1,0$) simulates ($1,1,0 ; 1, k, 0$)
let $(a b, c, \lambda)_{\text {del }} \quad(k=2)$
$\cdots a b c \stackrel{(a b, X, \lambda)_{\text {ins }}}{\Longrightarrow} \cdots a b x \not \subset \cdots \stackrel{(X, c, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b x \cdots \stackrel{(\lambda, X, \lambda)_{\text {del }}}{\Longrightarrow} \cdots a b \cdots$

- Similarly for other simulations

In fact, (1, k, 0; 1, k, 0) ~ (1, k+1, O; 1, k+1, 0)
Therefore ($1,2,0 ; 1,1,0$) $\sim(1,1,0 ; 1,2,0) \sim(1, \mathrm{~m}, 0 ; 1, \mathrm{q}, 0)$
Conjecture:
(1, m, $0 ; 1, \mathrm{q}, \mathrm{O}$) not computationally complete

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems

- Introduction and motivation
- One-sided insertion-deletion systems
- Systems of sizes (1, m, 0; 1, q, 0)
- Derivation graphs for (1, 1, 0; 1, 1, 0)

Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

Derivation Graphs for (1, 1, 0; 1, 1, 0)

$r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }}$,
$r_{3}:(b, a, \lambda)_{\text {del }}$

Derivation Graphs for (1, 1, 0; 1, 1, 0)

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }} \\
& r_{3}:(b, a, \lambda)_{\text {del }} \\
& a
\end{aligned}
$$

Derivation Graphs for (1, 1,$0 ; 1,1,0)$

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }} \\
& r_{3}:(b, a, \lambda)_{\text {del }} \\
& a \stackrel{r_{1}}{\Longrightarrow} a a
\end{aligned}
$$

Derivation Graphs for (1, 1, 0; 1, 1, 0)

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }}, \\
& r_{3}:(b, a, \lambda)_{\text {del }} \\
& a \stackrel{r_{1}}{\Longrightarrow} \text { aa } \xlongequal{r_{2}} \text { aab }
\end{aligned}
$$

a
a
b

Derivation Graphs for (1, 1, 0; 1, 1, 0)

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }}, \\
& r_{3}:(b, a, \lambda)_{\text {del }} \\
& a \stackrel{r_{1}}{\Longrightarrow} a \underset{ }{r_{2}} \text { aab } \xlongequal{r_{2}} \text { abab }
\end{aligned}
$$

b

Derivation Graphs for ($1,1,0 ; 1,1,0$)

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }}, \\
& r_{3}:(b, a, \lambda)_{\text {del }} \\
& a \stackrel{r_{1}}{\Longrightarrow} a \underset{a}{r_{2}} \text { aab } \xlongequal{r_{2}} a a_{a}{ }^{x} b \stackrel{r_{3}}{\Longrightarrow} a b b
\end{aligned}
$$

b

Derivation Graphs for (1, 1, 0; 1, 1, 0)

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }}, \\
& r_{3}:(b, a, \lambda) \text { del } \\
& a \stackrel{r_{1}}{\Longrightarrow} \text { aa } \xlongequal{r_{2}} \text { aab } \xlongequal{r_{2}} \text { aba }{ }^{*} b \stackrel{r_{3}}{\Longrightarrow} \text { abb }
\end{aligned}
$$

b

The system generating $L_{2^{n}}=\left\{\left(F_{1} F_{0}\right)^{n}\left(a_{o} a_{1}\right)^{m} \mid n \geq 2^{2 m-2}\right\}$:

- intersection with $\left(F_{1} F_{0}\right)^{*}\left(a_{0} a_{1}\right)^{*}$

Derivation Graphs for (1, 1, 0; 1, 1, 0)

$$
\begin{aligned}
& r_{1}:(a, a, \lambda)_{\text {ins }}, r_{2}:(a, b, \lambda)_{\text {ins }} . \\
& r_{3}:(b, a, \lambda)_{\text {del }} \\
& a \xlongequal{r_{1}} \mathrm{aa} \stackrel{r_{2}}{\Longrightarrow} \mathrm{aab} \stackrel{r_{2}}{\Rightarrow} \mathrm{ab} \mathrm{~b}^{*} \mathrm{~b} \stackrel{r_{3}}{\Longrightarrow} \mathrm{abb}
\end{aligned}
$$

The system generating $L_{2^{n}}=\left\{\left(F_{1} F_{0}\right)^{n}\left(a_{0} a_{1}\right)^{m} \mid n \geq 2^{2 m-2}\right\}$:

- intersection with $\left(\mathrm{F}_{1} \mathrm{~F}_{0}\right)^{*}\left(\mathrm{a}_{0} \mathrm{a}_{1}\right)^{*}$
$\left(a_{i}, \quad B_{i}, \quad \lambda\right)_{d e l}$,
$\left(B_{i}, \quad a_{1-i}, \quad \lambda\right)_{\text {ins }}$,
$\left(F_{0}, a_{0}, \lambda\right)_{\text {ins }}$,
$\left(a_{i}, \quad X_{i, 0}, \quad \lambda\right)_{\text {del }}, \quad\left(D_{i, j}, \quad B_{i}, \quad \lambda\right)_{\text {ins }}$,
($\left.\mathrm{Fo}_{\mathrm{o}}, \mathrm{X}_{\mathrm{oj}, \mathrm{j}}, \lambda\right)_{\text {ins }}$,
$\left(X_{i, j}, Y_{i, j}, \quad \lambda\right)_{\text {del }}$
$\left(D_{i, 1-j}, D_{i, j}, \quad \lambda\right)_{\text {ins }}$
$\left(F_{1}, Y_{o, j}, \lambda\right)_{\text {ins }}$,
$\left(Y_{i, j}, D_{i, j}, \quad \lambda\right)_{\text {del }}$
$\left(D_{i, 0}, \quad X_{1-i, k}, \lambda\right)_{\text {ins }}$
$\left(F_{i}, F_{1-i}, \lambda\right)_{\text {ins }}$,
$\left(Y_{i, j}, X_{i, 1-\mathrm{j}}, \lambda\right)_{\text {del }}$
$\left(D_{i, 1}, \quad Y_{1-i, k}, \lambda\right)_{\text {ins }}$
$\left(x, \quad F_{1}, \lambda\right)_{\text {ins }}$,
$\left(x, \quad D_{i, j}, \lambda\right)_{i n s}$,
where $\mathrm{i}, \mathrm{j}, \mathrm{k} \in\{0,1\}$

Derivation Graphs for Generation of $L_{2^{n}}$

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines
Small universal Petri nets
$(u, x, v)_{\text {ins } / \text { del }}$

Control Mechanisms

Add pre-conditions to rules

Control Mechanisms

Add pre-conditions to rules

- prescribe rule application language

Control Mechanisms

Add pre-conditions to rules

- prescribe rule application language

- prescribe language of valid strings
- require the string to be of a certain form

Control Mechanisms

Add pre-conditions to rules

- prescribe rule application language

- prescribe language of valid strings
- require the string to be of a certain form
- distributed control

Control Mechanisms

Add pre-conditions to rules

- prescribe rule application language

- prescribe language of valid strings
- require the string to be of a certain form
- distributed control

Control Mechanisms

Add pre-conditions to rules

- prescribe rule application language

- prescribe language of valid strings
- require the string to be of a certain form
- distributed control

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines
Small universal Petri nets
$(u, x, v)_{\text {ins }} /$ del
$\prod_{r_{1}}^{r_{2}} \underset{r_{3}}{\downarrow}$

Graph-controlled Insertion-deletion Systems

Consider the system of size ($1,1,0 ; 1,1,0$):

Graph-controlled Insertion-deletion Systems

Consider the system of size ($1,1,0 ; 1,1,0$):

Graph-controlled Insertion-deletion Systems

Consider the system of size ($1,1,0 ; 1,1,0$):

Graph-controlled Insertion-deletion Systems

Consider the system of size ($1,1,0 ; 1,1,0$):

Known fact:
4 nodes + (1, 1, 0;1, 1, 0) - computationally complete

Graph-controlled Insertion-deletion Systems

Consider the system of size ($1,1,0 ; 1,1,0$):

Known fact:
4 nodes + (1, 1, 0;1, 1, 0) - computationally complete
We showed that:
3 nodes $+\frac{(1,2,0 ; 1,1,0)}{(1,1,0 ; 1,2,0)}-$ computationally complete

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines
Small universal Petri nets
$(u, x, v)_{\text {ins }} /$ del
$\pi_{r_{1}}^{r_{2}} \underset{r_{3}}{\downarrow}$

Semi-conditional and Random Context Systems Semi-conditional control

$(\lambda, a, \lambda)_{\mathrm{ins}}$

Semi-conditional and Random Context Systems Semi-conditional control

permitting forbidding
context condition context condition
$\left((\lambda, a, \lambda)_{\text {ins }},\{S\},\{a b, b a\}\right)$

Semi-conditional and Random Context Systems

Semi-conditional control degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, a, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$

Semi-conditional and Random Context Systems Semi-conditional control

degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, a, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$

Semi-conditional and Random Context Systems Semi-conditional control

degree $=(1,2)$

permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right)$

Semi-conditional and Random Context Systems

Semi-conditional control
degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing,\{\mathrm{ab}, \mathrm{ba}\}\right)$
aSb

Semi-conditional and Random Context Systems

Semi-conditional control
degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\mathrm{aSb} \Longrightarrow \mathrm{aaSb}$

Semi-conditional and Random Context Systems

Semi-conditional control
degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\text {ins }},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right)$ $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow$ aaSbb

Semi-conditional and Random Context Systems

Semi-conditional control
degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right)$ $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow$ aaSbb \Longrightarrow aabb

Semi-conditional and Random Context Systems

Semi-conditional control

degree $=(1,2)$

permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right)$ $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow \mathrm{aaSbb} \Longrightarrow^{*} \mathrm{a}^{*} \mathrm{~b}^{*}$

Semi-conditional and Random Context Systems

Semi-conditional control

degree $=(1,2)$

permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right)$ $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow \mathrm{aaSbb} \Longrightarrow *{ }^{*} \mathrm{a}^{*}$
abaSbb

Semi-conditional and Random Context Systems

Semi-conditional control
degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right) \quad$ terminals $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow \mathrm{aaSbb} \Longrightarrow *{ }^{*} \mathrm{a}^{*}$
Only terminal strings!

non-terminal
abaŚbb

Semi-conditional and Random Context Systems

Semi-conditional control

degree $=(1,2)$

Semi-conditional and Random Context Systems

Semi-conditional control

degree $=(1,2)$

Semi-conditional and Random Context Systems

Semi-conditional control

degree $=(1,2)$

permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing,\{\mathrm{ab}, \mathrm{ba}\}\right) \quad$ terminals $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow$ aaSbb $\Longrightarrow * \overbrace{}^{*} \mathrm{~b}^{*}$

Only terminal strings! \qquad
degree $(2,2)+(1,0,0 ; 1,0,0)$ - computationally complete degree $(2,2)+(1,0,0 ; 0,0,0)-$ contained in CS

Random context control $=$ degree $(1,1)$

Semi-conditional and Random Context Systems Semi-conditional control

degree $=(1,2)$

 permitting forbiddingcontext condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right) \quad$ terminals $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow \mathrm{aaSbb} \Longrightarrow *{ }^{*} \mathrm{a}^{*}$

Only terminal strings!
degree $(2,2)+(1,0,0 ; 1,0,0)$ - computationally complete degree $(2,2)+(1,0,0 ; 0,0,0)$ - contained in CS

Random context control $=$ degree $(1,1)$ degree (1,1) + (2, 0, 0; 1, 1, 0) - computationally complete

Semi-conditional and Random Context Systems Semi-conditional control

degree $=(1,2)$

permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right) \quad$ terminals $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow$ aaSbb $\Longrightarrow *{ }^{*} \mathrm{a}^{*}$

Only terminal strings!
degree $(2,2)+(1,0,0 ; 1,0,0)$ - computationally complete degree (2, 2) + (1, 0, 0; 0, 0, 0) - contained in CS

Random context control $=$ degree $(1,1)$
degree (1, 1) + (2, 0, 0; 1, 1, 0) - computationally complete degree (1,1) + (1, 1, 0;2,0,0) - not computationally complete

Semi-conditional and Random Context Systems Semi-conditional control

degree $=(1,2)$

permitting forbidding
context condition context condition
$\left((\lambda, \mathrm{a}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right) \quad$ terminals $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow$ aaSbb $\Longrightarrow *{ }^{*} \mathrm{a}^{*}$

Only terminal strings!
degree $(2,2)+(1,0,0 ; 1,0,0)$ - computationally complete degree $(2,2)+(1,0,0 ; 0,0,0)-$ contained in CS

Random context control $=$ degree $(1,1)$
degree (1,1) + (2, 0, 0; 1, 1, 0) - computationally complete degree (1,1) + (1, 1, 0; $p, 1,1$) - not computationally complete

Semi-conditional and Random Context Systems Semi-conditional control

degree $=(1,2)$
permitting forbidding
context condition context condition
$\left((\lambda, a, \lambda)_{\text {ins }},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right) \quad\left((\lambda, \mathrm{b}, \lambda)_{\mathrm{ins}},\{\mathrm{S}\},\{\mathrm{ab}, \mathrm{ba}\}\right)$
$\left((\lambda, \mathrm{S}, \lambda)_{\text {del }}, \quad \varnothing, \quad\{\mathrm{ab}, \mathrm{ba}\}\right) \quad$ terminals $\mathrm{aSb} \Longrightarrow \mathrm{aaSb} \Longrightarrow$ aaSbb $\Longrightarrow *{ }^{*} \mathrm{a}^{*}$

Only terminal strings!
degree $(2,2)+(1,0,0 ; 1,0,0)$ - computationally complete degree (2, 2) + (1, 0, 0; 0, 0, 0) - contained in CS

Random context control $=$ degree $(1,1)$
degree (1,1) + (2, 0, 0; 1, 1, 0) - computationally complete degree (1,1) + (1, 1, 0;p, 1, 1) - not computationally complete unusual asymmetry

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
Insertion-deletion systems with control

- Introduction and motivation
- Graph-controlled systems
- Semi-conditional and random context systems
- Networks of evolutionary processors

Multiset Rewriting

Small universal register machines
Small universal Petri nets

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

output here

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

output here

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Networks of Evolutionary Processors (NEPs)

Distributed control

- insertion
- deletion
- substitution

Universality

computing devices

Universality

computing devices

Universality

M_{u} universal:

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M
$h(x)$

- h - coding function

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M

$$
h(x), g(M)
$$

- h - coding function
- g-Gödel enumeration

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M

$$
\langle h(x), g(M)\rangle
$$

- h - coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M $M_{u}(\langle h(x), g(M)\rangle)$

- h - coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M
$\mathrm{f}\left(\mathrm{M}_{\mathrm{u}}(\langle\mathrm{h}(\mathrm{x}), \mathrm{g}(\mathrm{M})\rangle)\right)$

- h -coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function
- f-decoding function

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M
$\mathrm{f}(\mathrm{Mu}(\langle\mathrm{h}(\mathrm{x}), \mathrm{g}(\mathrm{M})\rangle))=\mathrm{M}(\mathrm{x})$

- h -coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function
- f-decoding function

computing devices

Universality

M_{u} universal:
M_{u} can simulate any other M
$\mathrm{f}(\mathrm{Mu}(\langle\mathrm{h}(\mathrm{x}), \mathrm{g}(\mathrm{M})\rangle))=\mathrm{M}(\mathrm{x})$

- h -coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function
- f-decoding function

computing devices
$f=h=$ id $\Longrightarrow M_{u}$ - strongly universal

Universality

M_{u} universal:
M_{u} can simulate any other M
$\mathrm{f}(\mathrm{Mu}(\langle\mathrm{h}(\mathrm{x}), \mathrm{g}(\mathrm{M})\rangle))=\mathrm{M}(\mathrm{x})$

- h -coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function
- f-decoding function

computing devices
$f=h=i d \Longrightarrow M_{u}$ - strongly universal
otherwise $\Longrightarrow M_{u}$ - weakly universal

Universality

M_{u} universal:
M_{u} can simulate any other M
$f\left(M_{u}(\langle h(x), g(M)\rangle)\right)=M(x)$

- h -coding function
- g-Gödel enumeration
- $\langle a, b\rangle$ - pairing function
- f-decoding function

computing devices
$f=h=i d \Longrightarrow M_{u}$ - strongly universal
otherwise $\Longrightarrow M_{u}$-weakly universal
Distinction especially important for numbers

Universal NEPs

Minimise the number of rules

Evolutionary processor

Universal NEPs

Minimise the number of rules
5 rules: strongly universal
4 rules: weakly universal

- 3 nodes

Evolutionary processor

Universal NEPs

Minimise the number of rules
5 rules: strongly universal
4 rules: weakly universal

- 3 nodes
- simulate register machines

Evolutionary processor

Universal NEPs

Minimise the number of rules
5 rules: strongly universal
4 rules: weakly universal

- 3 nodes
- simulate register machines
- exponential slowdown

Evolutionary processor

Universal NEPs

Minimise the number of rules

5 rules: strongly universal
4 rules: weakly universal

- 3 nodes
- simulate register machines
- exponential slowdown

7 rules

Evolutionary processor

Universal NEPs

Minimise the number of rules

5 rules: strongly universal
4 rules: weakly universal

- 3 nodes
- simulate register machines
- exponential slowdown

7 rules

- 4 nodes
- simulate Turing machines
- polynomial slowdown

Evolutionary processor

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
$(u, x, v)_{\text {ins }} /$ del
Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

$O \rightarrow 0$

Biochemical Reactions as Multiset Rewriting

Biochemical reaction

Biochemical Reactions as Multiset Rewriting

Multiset rewriting
$\mathrm{ab} \rightarrow \mathrm{cd}$

Biochemical reaction

Biochemical Reactions as Multiset Rewriting

Multiset rewriting
$\mathrm{ab} \rightarrow \mathrm{cd}$

Petri nets

Biochemical reaction

Biochemical Reactions as Multiset Rewriting

Multiset rewriting

$a \mathrm{~b} \rightarrow \mathrm{c} d$

Petri nets

Biochemical reaction

Register machines

Biochemical Reactions as Multiset Rewriting

Multiset rewriting
$\mathrm{ab} \rightarrow \mathrm{cd}$

Petri nets

Register machines

Biochemical reaction

Universality

- small systems

Biochemical Reactions as Multiset Rewriting

Multiset rewriting
$\mathrm{ab} \rightarrow \mathrm{cd}$

Petri nets

Register machines

Biochemical reaction

Universality

- small systems

Presentation as Petri nets

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
$(u, x, v)_{\text {ins }} /$ del
Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

- Universal register machines with 3 and 2 registers

- Generalised register machines

Small universal Petri nets

Register Machines

- Registers
- nonnegative integers

R_{1}

R_{2}
R_{n}

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

Increment, (p, RiP, q): $\quad \stackrel{p}{R \mathrm{RiP}} \rightarrow q$

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

Increment, (p, RiP, q): $\quad \stackrel{p}{R i P} \rightarrow q$
Decrement, ($\mathrm{p}, \mathrm{RiM}, \mathrm{q}$): $\stackrel{\mathrm{p}}{-\mathrm{RiM}} \rightarrow \mathrm{q}$
Zero check, $(\mathrm{p}, \mathrm{Ri}, \mathrm{q}, \mathrm{z}): \xrightarrow[\underset{\sim}{\frac{1}{2}}]{\substack{\mathrm{Ri}} \mathrm{q}}$

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

Increment, (p, RiP, q): $\quad \stackrel{p}{R i P} \rightarrow q$
Decrement, (p, RiM, q): $\stackrel{p}{-\quad \operatorname{RiM}} \rightarrow q$
Zero check, $(\mathrm{p}, \mathrm{Ri}, \mathrm{q}, \mathrm{z}): \xrightarrow[\underbrace{\mathrm{Ri}}_{\frac{1}{\mathrm{~L}}}]{\mathrm{p}} \rightarrow \mathrm{q}$
Ri \& RiM, $(p$, RiZM, $q, z): \xlongequal[\underbrace{\frac{1}{z}}_{z}]{\frac{p}{\text { RiZM }}} \longrightarrow q$

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

Increment, $(p$, RiP, $q): \quad \stackrel{p}{R i P} \rightarrow q$
Decrement, $(p, \operatorname{RiM}, q):-\stackrel{p}{\operatorname{RiM}} \rightarrow q$
Zero check, (p, Ri, q, z): $\xlongequal[\underbrace{\mathrm{Ri}}_{\frac{1}{\mathrm{~L}}} \rightarrow \mathrm{q}, ~]{\mathrm{p}} \rightarrow$
RiP and RiZM most often used

Ri \& RiM, $(p$, RiZM, $q, z):-\underbrace{\frac{p}{\operatorname{RiZM}}}_{\frac{\downarrow}{\frac{1}{2}}} \longrightarrow q$

Register Machines

- Registers
- nonnegative integers
- Instructions
- with labels/states

RiP and RiZM most often used

Computationally complete

Universal Register Machines

\exists universal register machines $(-\sqrt{\mathrm{RiP}} \rightarrow$ and $\xlongequal[\text { RiZM }]{\downarrow} \rightarrow)$

- strongly universal U_{22} with 22 instructions
- 8 registers
- weakly universal U_{20} with 20 instructions
- 7 registers

Universal Register Machines

\exists universal register machines ($-\boxed{\text { RiP }} \rightarrow$ and $\langle\widehat{\text { RiZM }}>$)

- strongly universal U_{22} with 22 instructions
- 8 registers
- weakly universal U_{20} with 20 instructions
- 7 registers
[I. Korec 1996]

Reduce the number of registers to 2 [M. Minsky 1967]

Universal Register Machines

\exists universal register machines $(-\sqrt[\text { RiP }]{ } \rightarrow$ and $\langle\widehat{\text { RiZM }}\rangle)$

- strongly universal U_{22} with 22 instructions
- 8 registers
- weakly universal U_{20} with 20 instructions
- 7 registers
[I. Korec 1996]

Reduce the number of registers to 2 [M. Minsky 1967]

Universal Register Machines

\exists universal register machines $(-\boxed{R i P} \rightarrow$ and $\langle\widehat{\text { RiZM }} \rightarrow)$

- strongly universal U_{22} with 22 instructions
- 8 registers
- weakly universal U_{20} with 20 instructions
- 7 registers
[I. Korec 1996]

Reduce the number of registers to 2 [M. Minsky 1967]

Universal Register Machines

\exists universal register machines ($-\boxed{\mathrm{RiP}} \rightarrow$ and $\langle\widehat{\text { RiZM }}\rangle$)

- strongly universal U_{22} with 22 instructions
- 8 registers
- weakly universal U_{20} with 20 instructions
- 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]
We constructed:

- strongly universal U_{3}
- 3 registers
- 367 instructions

Universal Register Machines

\exists universal register machines $(-\sqrt[\text { RiP }]{ } \rightarrow$ and $\langle\widehat{\text { RiZM }}\rangle)$

- strongly universal U_{22} with 22 instructions
- 8 registers
- weakly universal U_{20} with 20 instructions
- 7 registers

Reduce the number of registers to 2 [M. Minsky 1967]
We constructed:

- strongly universal U_{3}
- 3 registers
- 367 instructions
- weakly universal U_{2}
- 2 registers
- 277 instructions

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
$(u, x, v)_{\text {ins } / \text { del }}$
Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines

- Universal register machines with 3 and 2 registers

- Generalised register machines

Small universal Petri nets

Generalised Register Machines

Generalised Register Machines

- move actions to edges

Generalised Register Machines

- move actions to edges

Generalised Register Machines

- move actions to edges

Generalised Register Machines

- move actions to edges

Generalised Register Machines

- move actions to edges

Generalised Register Machines

- move actions to edges

Generalised Register Machines

- move actions to edges
- allow multiple actions

Generalised Register Machines

- move actions to edges
- allow multiple actions

\Downarrow

Generalised Register Machines

- move actions to edges
- allow multiple actions

\Downarrow

Generalised Register Machines

- move actions to edges
- allow multiple actions

\Downarrow

Generalised Register Machines

- move actions to edges
- allow multiple actions

State compression

\Downarrow

Generalised Register Machines

- move actions to edges
- allow multiple actions

State compression

- $\mathrm{U}_{22} \Rightarrow$ strongly universal U_{7}
- 7 states

Generalised Register Machines

- move actions to edges
- allow multiple actions

State compression

- $\mathrm{U}_{22} \Rightarrow$ strongly universal U_{7}
- 7 states
- $\mathrm{U}_{20} \Rightarrow$ weakly universal U_{7}^{\prime}
- 7 states

Presentation Map

Insertion and Deletion

One-sided insertion-deletion systems
$(u, x, v)_{\text {ins }} /$ del
Insertion-deletion systems with control

Multiset Rewriting

Small universal register machines
Small universal Petri nets

Petri Nets with Inhibitor Arcs

Petri Nets with Inhibitor Arcs

- places

Petri Nets with Inhibitor Arcs

- places
- transitions

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

Size $=(p, t, i, d)$

- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

Size $=(p, t, i, d)$

- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

Size $=(p, t, i, d)$

- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

Size $=(p, t, i, d)$

- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

Size $=(p, t, i, d)$

- inhibitor arcs

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs

$$
\text { Size }=(p, t, i, d)
$$

- inhibitor arcs

Build small universal Petri nets

- result in halting configuration

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Build small universal Petri nets

- result in halting configuration

Simulates (p, RiZM, q, z)

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Build small universal Petri nets

- result in halting configuration

Simulates ($\mathrm{p}, \mathrm{Ri} \mathrm{ZM}, \mathrm{q}, \mathrm{z}$)

Simulates (p, RiP, q)

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Build small universal Petri nets

- result in halting configuration

Simulates (p, RiZM, q, z)
Direct simulation of U_{22} and U_{20}

Simulates (p, RiP, q)

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Build small universal Petri nets

- result in halting configuration

Simulates ($\mathrm{p}, \mathrm{Ri} \mathrm{ZM}, \mathrm{q}, \mathrm{z}$)
Direct simulation of U_{22} and U_{20}

- strongly universal
(p:30,t:34, i:12, d:3)
- weakly universal
(p:27, t:31, i:11, d:3)

Simulates (p, RiP, q)

Petri Nets with Inhibitor Arcs

- places
- transitions
- normal arcs
- inhibitor arcs

Build small universal Petri nets

- result in halting configuration

Simulates (p, RiZM, q, z)

Direct simulation of U_{22} and U_{20}

- strongly universal

$$
(p: 30, t: 34, i: 12, d: 3)
$$

- weakly universal

$$
(p: 27, t: 31, i: 11, d: 3)
$$

Minimal transition degree

Simulates (p, RiP, q)

Minimising the Number of Transitions

Simulate compressed generalised register machines

Minimising the Number of Transitions

Simulate compressed generalised register machines

Minimising the Number of Transitions

Simulate compressed generalised register machines

$\bigcirc R_{1}$

Minimising the Number of Transitions

Simulate compressed generalised register machines

Minimising the Number of Transitions

Simulate compressed generalised register machines

Minimising the Number of Transitions

Simulate compressed generalised register machines

Minimising the Number of Transitions

Simulate compressed generalised register machines

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal
(p : 14, t: 23, i: 30, d : 6)
- weakly universal
(p:13, t:21, i:23, d:6)

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal
($p: 14, t: 23, i: 30, d: 6$)
- weakly universal
(p:13, t:21, i: 23, d:6)

Binary-code the states

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal
(p : 14, t: 23, i : 30, d : 6)
- weakly universal
(p : 13, t: 21, i: 23, d: 6)

Binary-code the states

$$
\left(q_{4}, R i P, q_{6}\right)
$$

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal

$$
(p: 14, t: 23, i: 30, d: 6)
$$

- weakly universal
(p:13, t:21, i:23, d:6)

Binary-code the states

$$
\begin{aligned}
& \left(q_{4}, \mathrm{RiP}, \mathrm{q}_{6}\right) \\
& (100)_{2} \\
& (110)_{2}
\end{aligned}
$$

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal

$$
(p: 14, t: 23, i: 30, d: 6)
$$

- weakly universal
(p : 13, t: 21, i: 23, d: 6)

Binary-code the states

$$
\begin{aligned}
& \left(q_{4}, \mathrm{RiP}, \mathrm{q}_{6}\right) \\
& (100)_{2} \quad(110)_{2}
\end{aligned}
$$

${ }^{\downarrow} R_{i}$

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal

$$
(p: 14, t: 23, i: 30, d: 6)
$$

- weakly universal
(p:13, t:21, i:23, d:6)

Binary-code the states

$$
\begin{aligned}
& \left(q_{4}, \mathrm{RiP}, \mathrm{q}_{6}\right) \\
& (100)_{2} \quad(110)_{2}
\end{aligned}
$$

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal

$$
(p: 14, t: 23, i: 30, d: 6)
$$

- weakly universal
(p:13, t:21, i:23, d:6)

Binary-code the states

$$
\begin{aligned}
& \left(q_{4}, \mathrm{RiP}, \mathrm{q}_{6}\right) \\
& (100)_{2} \quad(110)_{2}
\end{aligned}
$$

Minimising the Number of Transitions

Simulate compressed generalised register machines

- strongly universal

$$
(p: 14, t: 23, i: 30, d: 6)
$$

- weakly universal
(p:13, t:21, i: 23, d:6)

Binary-code the states

- strongly universal
(p : 11, t:23, i:37, d:10)
- weakly universal
($q_{4}, \mathrm{RiP}, \mathrm{q}_{6}$)
$(100)_{2} \quad(110)_{2}$
(p : 10, t : 21, i : 30, d : 10)

Minimising the Number of Inhibitor Arcs

> (p, RiZM, q, s)

Minimising the Number of Inhibitor Arcs

> (p, RiZM, q, s)

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc
(p, RiZM, q, s)

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc

- checker subnets

$$
(\mathrm{p}, \operatorname{RiZM}, \mathrm{q}, \mathrm{~s})
$$

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc

- checker subnets

$$
(\mathrm{p}, \operatorname{RiZM}, \mathrm{q}, \mathrm{~s})
$$

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc

- checker subnets
(p, RiZM, q, s)

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc

- checker subnets

One inhibitor per register
(p, RiZM, q, s)

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc

- checker subnets

One inhibitor per register
Simulate U_{3} and U_{2}
(p, RiZM, q, s)

Minimising the Number of Inhibitor Arcs

Factor out the inhibitor arc

- checker subnets

One inhibitor per register
Simulate U_{3} and U_{2}

- strong universality
(p:525, t:659, i:3, d:3)
- weak universality

$$
(p: 397, t: 504, i: 2, d: 3)
$$

(p, RiZM, q, s)

Minimising the Number of Places

Minimising the Number of Places

$$
\mathrm{R}_{2} \bigcirc
$$

Minimising the Number of Places

Minimising the Number of Places

$\mathrm{R}_{2} \bigcirc$

Minimising the Number of Places

nondeterminism

Minimising the Number of Places

\#places $=$ \#registers +2

nondeterminism

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

nondeterminism

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

nondeterminism

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

minimise worst cost

nondeterminism

Minimising the Number of Places

\#places $=$ \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

minimise worst cost

nondeterminism
subject to $\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)<$ worst cost

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

minimise worst cost

nondeterminism
subject to $\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)<$ worst cost one code per state, one state per code

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

minimise worst cost

nondeterminism
subject to $\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)<$ worst cost one code per state, one state per code
Simulate U_{3} and U_{2}

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

minimise worst cost

nondeterminism
subject to $\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)<$ worst cost one code per state, one state per code
Simulate U_{3} and U_{2} (40 000 variables)

Minimising the Number of Places

\#places = \#registers +2
Max degree $=\mathrm{f}($ state coding $)$

$$
\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)=\operatorname{code}(i)+\operatorname{code}(j)
$$

minimise worst cost

nondeterminism
subject to $\operatorname{cost}\left(q_{i} \rightarrow q_{j}\right)<$ worst cost one code per state, one state per code
Simulate U_{3} and U_{2} (40 000 variables)

- strongly universal ($p: 5, t: 590, i: 734, d: 208$)
- weakly universal ($p: 4, t: 452, i: 562, d: 162$)

Deterministic Petri Nets with Few Places

$\left(q_{k}, \operatorname{RiP}, q_{t}\right)$

Deterministic Petri Nets with Few Places

$\left(q_{k}, R i P, q_{t}\right)$

Deterministic Petri Nets with Few Places

$\left(q_{k}, R i P, q_{t}\right)$

Deterministic Petri Nets with Few Places

$\left(q_{k}, \operatorname{RiP}, q_{t}\right)$

Deterministic Petri Nets with Few Places
$\left(q_{k}, \operatorname{RiP}, q_{t}\right)$

$$
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \nsubseteq(\mathrm{t}, \mathrm{n}-\mathrm{t})
$$

Deterministic Petri Nets with Few Places

$\left(q_{k}, \operatorname{RiP}, q_{t}\right)$

$$
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \not \leq(\mathrm{t}, \mathrm{n}-\mathrm{t})
$$

Deterministic evolution

Deterministic Petri Nets with Few Places

$\left(q_{k}, \operatorname{RiP}, q_{t}\right)$

$$
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \not \leq(\mathrm{t}, \mathrm{n}-\mathrm{t})
$$

Deterministic evolution

Simulate U_{3} and U_{2}

Deterministic Petri Nets with Few Places

$$
\left(\mathrm{q}_{\mathrm{k}}, \operatorname{RiP}, \mathrm{q}_{\mathrm{t}}\right)
$$

$$
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \not \leq(\mathrm{t}, \mathrm{n}-\mathrm{t})
$$

Deterministic evolution

Simulate U_{3} and U_{2}

- strongly universal (p :5, t:293, i : 146, d : 314)
- weakly universal (p : 4, t:224, i: 112, d:242)

Deterministic Petri Nets with Few Places

$\left(q_{k}, \operatorname{RiP}, q_{t}\right)$

$$
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \not \leq(\mathrm{t}, \mathrm{n}-\mathrm{t})
$$

Deterministic evolution

Simulate U_{3} and U_{2}

- strongly universal (p : 5, t: 293, i : 146, d : 314)
- nondeterministic: ($p: 5, t: 590, i: 734, d: 208)$
- weakly universal (p:4,t:224,i:112, d:242)
- nondeterministic: (p:4,t:452, i:562, d:162)

Deterministic Petri Nets with Few Places

$$
\begin{gathered}
\left(\mathrm{q}_{\mathrm{k}}, \operatorname{RiP}, \mathrm{q}_{\mathrm{t}}\right) \\
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \nsucceq(\mathrm{t}, \mathrm{n}-\mathrm{t})
\end{gathered}
$$

Deterministic evolution

Simulate U_{3} and U_{2}

- strongly universal (p : 5, t: 293, i : 146, d : 314)
- nondeterministic: ($p: 5, t: 590, i: 734, d: 208)$
- weakly universal (p:4,t:224,i:112, d:242)
- nondeterministic: (p:4,t:452, i:562, d:162)

Deterministic vs. Nondeterministic

- fewer transitions and inhibitor arcs

Deterministic Petri Nets with Few Places

$$
\begin{gathered}
\left(\mathrm{q}_{\mathrm{k}}, \mathrm{RiP}, \mathrm{q}_{\mathrm{t}}\right) \\
(\mathrm{k}, \mathrm{n}-\mathrm{k}) \nsucceq(\mathrm{t}, \mathrm{n}-\mathrm{t})
\end{gathered}
$$

Deterministic evolution

Simulate U_{3} and U_{2}

- strongly universal (p : 5, t: 293, i : 146, d : 314)
- nondeterministic: (p:5,t:590,i:734, d:208)
- weakly universal (p:4,t:224,i:112, d:242)
- nondeterministic: (p:4, t:452, i:562, d:162)

Deterministic vs. Nondeterministic

- fewer transitions and inhibitor arcs
- bigger transition degree

Conclusions and Open Questions

($1, \mathrm{~m}, \mathrm{O} ; 1, \mathrm{q}, \mathrm{O}$) generate complex languages

Conclusions and Open Questions

(1, m, O; 1, q, O) generate complex languages

- computational completeness?

Conclusions and Open Questions

(1, m, O; 1, q, O) generate complex languages

- computational completeness?

Introduced derivation graphs

Conclusions and Open Questions

(1, m, O; 1, q, O) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?

Conclusions and Open Questions

(1, m, O; 1, q, O) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Conclusions and Open Questions

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

Conclusions and Open Questions

(1, m, O; 1, q, O) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- ($1,2,0 ; 1,1,0$) and ($1,1,0 ; 1,2,0$): universality with graph control with 2 nodes?

Conclusions and Open Questions

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- ($1,2,0 ; 1,1,0$) and ($1,1,0 ; 1,2,0$): universality with graph control with 2 nodes? Yes!

Conclusions and Open Questions

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- ($1,2,0 ; 1,1,0$) and ($1,1,0 ; 1,2,0$): universality with graph control with 2 nodes? Yes!

Constructed universal register machines U_{3} and U_{2}

Conclusions and Open Questions

(1, m, 0; 1, q, O) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- ($1,2,0 ; 1,1,0$) and ($1,1,0 ; 1,2,0$): universality with graph control with 2 nodes? Yes!

Constructed universal register machines U_{3} and U_{2}

- reduce the number of instructions of U_{3} and U_{2} ?

Conclusions and Open Questions

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- ($1,2,0 ; 1,1,0$) and ($1,1,0 ; 1,2,0$): universality with graph control with 2 nodes? Yes!

Constructed universal register machines U_{3} and U_{2}

- reduce the number of instructions of U_{3} and U_{2} ?

Constructed generalised register machines U_{7} and U_{7}^{\prime}

Conclusions and Open Questions

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0): universality with graph control with 2 nodes? Yes!

Constructed universal register machines U_{3} and U_{2}

- reduce the number of instructions of U_{3} and U_{2} ?

Constructed generalised register machines U_{7} and U_{7}^{\prime}
Constructed a series of small universal Petri nets

Conclusions and Open Questions

(1, m, 0; 1, q, 0) generate complex languages

- computational completeness?

Introduced derivation graphs

- wave normal form?
- further applications?

Control mechanisms increase the computational power

- ($1,2,0 ; 1,1,0$) and ($1,1,0 ; 1,2,0$): universality with graph control with 2 nodes? Yes!

Constructed universal register machines U_{3} and U_{2}

- reduce the number of instructions of U_{3} and U_{2} ?

Constructed generalised register machines U_{7} and U_{7}^{\prime}
Constructed a series of small universal Petri nets

- fewer transitions?

Thank You for Your Attention!

- One-sided insertion-deletion systems
- $(1,1,0 ; 1,2,0) \sim(1,2,0 ; 1,1,0) \sim(1, m, 0 ; 1, q, 0), m \cdot q \neq 0, m+q>2$
- Derivation graphs
- Computational completeness with control
- graph control, 3 states - semi-conditional random context $(1,2,0 ; 1,1,0),(1,1,0 ; 1,2,0) \quad(1,0,0 ; 1,0,0) \quad(2,0,0 ; 1,1,0)$
- Universal NEPs with 4, 5, and 7 rules
- Universal register machines with 3 and 2 registers
- Universal generalised register machines with 7 states
- Small Universal Petri Nets

								Whivak universality								
Places	30	14	11	21	525	304	5	5	27	13	10	19	397	232	4	4
Transitions	34	23	23	25	659	438	590	293	31	21	21	23	504	339	452	224
Inhibitor arcs	12	30	37	12	3	3	734	146	11	23	30	11	2	2	562	112
Max degree	3	6	10	5	3	22	208	314	3	6	10	5	3	20	162	242

[^0]: $(1, k, 0 ; 1,1,0) \stackrel{\sim}{\sim}(1,1,0 ; 1, k, 0) \sim(1, k, 0 ; 1, k, 0)$

