Browse Source

Add functions from the section Generic Graph Interface.

master
Sergiu Ivanov 1 year ago
parent
commit
74da362dfc
  1. 88
      graph.rkt

88
graph.rkt

@ -20,7 +20,11 @@
(module graph-wrapper racket
(require (prefix-in g: graph))
(provide graph? has-vertex? has-edge?
(provide graph? has-vertex? has-edge? vertex=? add-vertex! remove-vertex!
rename-vertex! add-edge! add-directed-edge! remove-edge!
remove-directed-edge! get-vertices in-vertices get-neighbors
in-neighbors get-edges in-edges edge-weight transpose graph-copy
graph-union!
directed-graph
@ -31,10 +35,47 @@
(struct graph (g))
(define gg graph-g)
;; 1 Generic Graph Interface
(define (has-vertex? g v)
(g:has-vertex? (gg g) v))
(define (has-edge? g u v)
(g:has-edge? (gg g) u v))
(define (vertex=? g u v)
(g:vertex=? (gg g) u v))
(define (add-vertex! g v)
(g:add-vertex! (gg g) v))
(define (remove-vertex! g v)
(g:remove-vertex! (gg g) v))
(define (rename-vertex! g u v)
(g:rename-vertex! (gg g) u v))
(define (add-edge! g u v [weight 'default-value])
(g:add-edge! (gg g) u v weight))
(define (add-directed-edge! g u v [weight 'default-value])
(g:add-directed-edge! (gg g) u v weight))
(define (remove-edge! g u v)
(g:remove-edge! (gg g) u v))
(define (remove-directed-edge! g u v)
(g:remove-directed-edge! (gg g) u v))
(define (get-vertices g)
(g:get-vertices (gg g)))
(define (in-vertices g)
(g:in-vertices (gg g)))
(define (get-neighbors g v)
(g:get-neighbors (gg g) v))
(define (in-neighbors g v)
(g:in-neighbors (gg g) v))
(define (get-edges g)
(g:get-edges (gg g)))
(define (in-edges g)
(g:in-edges (gg g)))
(define (edge-weight g u v #:default [default +inf.0])
(g:edge-weight (gg g) u v #:default default))
(define (transpose g)
(graph (g:transpose (gg g))))
(define (graph-copy g)
(graph (g:graph-copy (gg g))))
(define (graph-union! g other)
(g:graph-union! (gg g) (gg other)))
;; 2 Graph constructors
;; 2.2 Weighted graphs
@ -48,8 +89,28 @@
(require/typed/provide 'graph-wrapper
[#:opaque Graph graph?]
;; 1 Generic Graph Interface
[has-vertex? (-> Graph Any Boolean)]
[has-edge? (-> Graph Any Any Boolean)]
[vertex=? (-> Graph Any Any Boolean)]
[add-vertex! (-> Graph Any Void)]
[remove-vertex! (-> Graph Any Void)]
[rename-vertex! (-> Graph Any Any Void)]
[add-edge! (->* (Graph Any Any) (Any) Void)]
[add-directed-edge! (->* (Graph Any Any) (Any) Void)]
[remove-edge! (-> Graph Any Any Void)]
[remove-directed-edge! (-> Graph Any Any Void)]
[get-vertices (-> Graph (Listof Any))]
[in-vertices (-> Graph (Sequenceof Any))]
[get-neighbors (-> Graph Any (Listof Any))]
[in-neighbors (-> Graph Any (Sequenceof Any))]
[get-edges (-> Graph (U (Listof (List Any Any)) (Listof (List Any Any Any))))]
[in-edges (-> Graph (Sequenceof (U (List Any Any) (List Any Any Any))))]
[edge-weight (->* (Graph Any Any) (#:default Any) Any)]
[transpose (-> Graph Graph)]
[graph-copy (-> Graph Graph)]
[graph-union! (-> Graph Graph Void)]
;; 2 Graph constructors
;; 2.2 Weighted graphs
@ -71,7 +132,30 @@
(test-case "1 Generic Graph Interface"
(define g (directed-graph '((a b) (b c))))
(check-false (has-edge? g 'a 'c))
(check-true (has-vertex? g 'a)))
(check-true (has-vertex? g 'a))
(check-false (vertex=? g 'a 'c))
(add-vertex! g 'd)
(remove-vertex! g 'a)
(rename-vertex! g 'd 'a)
(add-edge! g 'a 'c)
(add-edge! g 'a 'c "a->c")
(add-directed-edge! g 'a 'c)
(add-directed-edge! g 'a 'c "a->c")
(remove-edge! g 'a 'c)
(remove-directed-edge! g 'a 'c)
(check-equal? (get-vertices g) '(c b a))
(check-equal? (sequence->list (in-vertices g)) '(c b a))
(check-equal? (get-neighbors g 'b) '(c))
(check-equal? (sequence->list (in-neighbors g 'b)) '(c))
(check-equal? (get-edges g) '((b c)))
(check-equal? (sequence->list (in-edges g)) '((b c)))
(check-equal? (edge-weight g 'a 'c) +inf.0)
(check-equal? (edge-weight g 'a 'c #:default 'none) 'none)
(check-equal? (graphviz (transpose g))
"digraph G {\n\tnode0 [label=\"c\"];\n\tnode1 [label=\"b\"];\n\tnode2 [label=\"a\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t}\n\tsubgraph D {\n\t\tnode0 -> node1;\n\t}\n}\n")
(check-equal? (graphviz (graph-copy g))
"digraph G {\n\tnode0 [label=\"c\"];\n\tnode1 [label=\"b\"];\n\tnode2 [label=\"a\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t}\n\tsubgraph D {\n\t\tnode1 -> node0;\n\t}\n}\n")
(graph-union! g (transpose g)))
(test-case "10 Graphviz"
(define g (directed-graph '((a b) (b c))))

Loading…
Cancel
Save