Define dynamical systems.
This commit is contained in:
parent
21eb28d5bc
commit
f459d369ef
3 changed files with 113 additions and 0 deletions
|
@ -344,3 +344,56 @@ keywords = {Boolean P systems, Boolean networks, Reachability, Complexity},
|
||||||
url =
|
url =
|
||||||
{https://doi.org/10.1093/oxfordhb/9780199566600.001.0001},
|
{https://doi.org/10.1093/oxfordhb/9780199566600.001.0001},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@article{Zeeman1976,
|
||||||
|
author = {Erik C. Zeeman},
|
||||||
|
title = {Catastrophe theory},
|
||||||
|
journal = {Scientific American},
|
||||||
|
volume = {234(4)},
|
||||||
|
pages = {65--83},
|
||||||
|
year = {1976}
|
||||||
|
}
|
||||||
|
|
||||||
|
@misc{wikiDS,
|
||||||
|
author = "{Wikipedia contributors}",
|
||||||
|
title = "Dynamical system --- {Wikipedia}{,} The Free
|
||||||
|
Encyclopedia",
|
||||||
|
year = "2024",
|
||||||
|
howpublished =
|
||||||
|
"\url{https://en.wikipedia.org/w/index.php?title=Dynamical_system&oldid=1208607435}",
|
||||||
|
note = "[Online; accessed 27-February-2024]"
|
||||||
|
}
|
||||||
|
|
||||||
|
@article{Thom1974,
|
||||||
|
title = {Stabilité structurelle et morphogenèse},
|
||||||
|
journal = {Poetics},
|
||||||
|
volume = {3},
|
||||||
|
number = {2},
|
||||||
|
pages = {7-19},
|
||||||
|
year = {1974},
|
||||||
|
issn = {0304-422X},
|
||||||
|
doi = {https://doi.org/10.1016/0304-422X(74)90010-2},
|
||||||
|
url =
|
||||||
|
{https://www.sciencedirect.com/science/article/pii/0304422X74900102},
|
||||||
|
author = {René Thom}
|
||||||
|
}
|
||||||
|
|
||||||
|
@book{Brown2018,
|
||||||
|
title = {A Modern Introduction to Dynamical Systems},
|
||||||
|
author = {Richard J. Brown},
|
||||||
|
isbn = {978-0198743286},
|
||||||
|
publisher = {Oxford University Press},
|
||||||
|
year = {2018}
|
||||||
|
}
|
||||||
|
|
||||||
|
@phdthesis{Riva22,
|
||||||
|
author = {Sara Riva},
|
||||||
|
title = {Factorisation of discrete dynamical systems. (Factorisation de syst{\`{e}}mes
|
||||||
|
dynamiques discrets)},
|
||||||
|
school = {C{\^{o}}te d'Azur University, Nice, France},
|
||||||
|
year = {2022},
|
||||||
|
url = {https://tel.archives-ouvertes.fr/tel-03937258},
|
||||||
|
timestamp = {Wed, 25 Jan 2023 22:01:27 +0100},
|
||||||
|
biburl = {https://dblp.org/rec/phd/hal/Riva22.bib},
|
||||||
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||||
|
}
|
||||||
|
|
58
deal.tex
58
deal.tex
|
@ -490,6 +490,63 @@ with Life, the Deal with Life framework can be adapted to
|
||||||
characterizing and evaluating the interactions between other living
|
characterizing and evaluating the interactions between other living
|
||||||
systems, not necessarily involving the human.
|
systems, not necessarily involving the human.
|
||||||
|
|
||||||
|
\subsection{Dynamical systems}
|
||||||
|
\label{sec:ds}
|
||||||
|
|
||||||
|
Following the spirit of~\cite{Thom1974,Zeeman1976}, I propose to use
|
||||||
|
the language of abstract dynamical systems for the general framework
|
||||||
|
of the Deal. In this subsection I quickly recall the main notions,
|
||||||
|
and I refer to sources like~\cite{Brown2018,wikiDS} for more general
|
||||||
|
and more detailed definitions.
|
||||||
|
|
||||||
|
An \emph{abstract dynamical system} over the state space $X$ and time
|
||||||
|
$T$ is a (partial) function $\Phi : X \times T \to X$ assigning to
|
||||||
|
a state $s \in X$ the new state $\Phi(s, t)$ in which the system will
|
||||||
|
be after time $t \in T$. The function $\Phi$ satisfies the following
|
||||||
|
two natural properties:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $\Phi(s, 0) = s$: the system does not change its state in
|
||||||
|
0 time,
|
||||||
|
\item $\Phi(\Phi(s, t_1), t_2) = \Phi(s, t_1 + t_2)$: evolving the
|
||||||
|
system for time $t_1$, then for time $t_2$ leads to the same state
|
||||||
|
as evolving the systems for time $t_1 + t_2$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
A common shape for a state is an $n$-vector of real parameters of
|
||||||
|
a system---in which case $X \subseteq \mathbb{R}^n$---but no
|
||||||
|
particular restrictions are imposed: $X$ may be a more a general
|
||||||
|
algebraic object. In the most general setting, $T$ is a monoid, but
|
||||||
|
it is rather customary for the time domain to be a contiguous infinite
|
||||||
|
subset of either $\mathbb{Z}$ or $\mathbb{R}$. In the first case,
|
||||||
|
$\Phi$ is usually called a discrete-time dynamical system, and in the
|
||||||
|
second case $\Phi$ is called a continuous-time dynamical system.
|
||||||
|
If additionally the state space $X$ of a discrete-time dynamical
|
||||||
|
system $\Phi : X \times T \to T$ with $T \subseteq \mathbb{Z}$ is
|
||||||
|
discrete (countable), then $\Phi$ is called a discrete dynamical
|
||||||
|
system. Finally, if $X$ is a finite set, then $\Phi$ is called
|
||||||
|
a finite dynamical system.
|
||||||
|
|
||||||
|
In the case of discrete-time dynamical systems, the time variable can
|
||||||
|
be interpreted as the number of evolution steps. More concretely, for
|
||||||
|
a $t > 0$, $\Phi(s, t)$ can be seen as the state of the system after
|
||||||
|
$t$ steps, while $\Phi(s, -t)$ can be seen as the state the system
|
||||||
|
\emph{was in} $t$ steps ago. When $T = \mathbb{N}$, it is customary
|
||||||
|
to see the discrete-time dynamical systems as the function
|
||||||
|
$F : X \to X$, giving the state to which the dynamical system
|
||||||
|
transitions from state $s \in X$: $F(s) = \Phi(s, 1)$
|
||||||
|
(e.g,~\cite[Chapter~1]{Riva22}).
|
||||||
|
|
||||||
|
Given a dynamical system $\Phi : X \times T \to X$ and a state
|
||||||
|
$s \in X$, it is possible to construct the restricted function
|
||||||
|
$\Phi_s : T \to X$, $\Phi_s(t) = \Phi(s, t)$, determining the
|
||||||
|
\emph{trajectory} of $\Phi$ through $s$.
|
||||||
|
$\Ima \Phi_s = \{\Phi(s, t) \mid t\in T\}$. If $T = \mathbb{Z}$ or
|
||||||
|
$T = \mathbb{R}$, then the trajectory $\Ima \Phi_s$ can be interpreted
|
||||||
|
as the set of all states through which $\Phi$ goes before and after
|
||||||
|
reaching $s$. If $T = \mathbb{N}$, then the trajectory through $s$ is
|
||||||
|
the iteration of $F$: $\{F^k(s) \mid k \in \mathbb{N}\}$, where
|
||||||
|
$F^0(s) = s$, $F^1(s) = F(s)$, $F^2(s) = F(F(s))$, etc.
|
||||||
|
|
||||||
\printbibliography[heading=subbibliography]
|
\printbibliography[heading=subbibliography]
|
||||||
|
|
||||||
\end{refsection}
|
\end{refsection}
|
||||||
|
@ -497,4 +554,5 @@ systems, not necessarily involving the human.
|
||||||
%%% Local Variables:
|
%%% Local Variables:
|
||||||
%%% TeX-engine: luatex
|
%%% TeX-engine: luatex
|
||||||
%%% TeX-master: "hdr"
|
%%% TeX-master: "hdr"
|
||||||
|
%%% reftex-default-bibliography: ("bib/dealb.bib" "bib/sivanov-dblp-mod.bib" "bib/sivanov-extra.bib")
|
||||||
%%% End:
|
%%% End:
|
||||||
|
|
2
hdr.tex
2
hdr.tex
|
@ -88,6 +88,8 @@
|
||||||
\entiredoctrue % Use this if you want to compile the entire document.
|
\entiredoctrue % Use this if you want to compile the entire document.
|
||||||
%\entiredocfalse % Use this if you only want the CV.
|
%\entiredocfalse % Use this if you only want the CV.
|
||||||
|
|
||||||
|
\DeclareMathOperator{\Ima}{Im}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\pagestyle{fancy}
|
\pagestyle{fancy}
|
||||||
|
|
Loading…
Reference in a new issue