A trajectory is a *sequence* of states.

This commit is contained in:
Sergiu Ivanov 2024-04-29 15:02:52 +02:00
parent 4fb4c2e49b
commit f09fa35ee2

View file

@ -545,7 +545,7 @@ $\Phi_s : T \to X$, $\Phi_s(t) = \Phi(s, t)$, determining the
\emph{trajectory} of $\Phi$ through $s$.
$\Ima \Phi_s = \{\Phi(s, t) \mid t\in T\}$. If $T = \mathbb{Z}$ or
$T = \mathbb{R}$, then the trajectory $\Ima \Phi_s$ can be interpreted
as the set of all states through which $\Phi$ goes before and after
as the sequence of all states through which $\Phi$ goes before and after
reaching $s$. If $T = \mathbb{N}$, then the trajectory through $s$ is
the iteration of $F$: $\{F^k(s) \mid k \in \mathbb{N}\}$, where
$F^0(s) = s$, $F^1(s) = F(s)$, $F^2(s) = F(F(s))$, etc.