\section{Activités de recherche} \begin{refsection} J'ai commencé mes travaux de recherche en 2009 au sein de l'Institut de Mathématiques et d'Informatique de Moldavie sous la direction de Yurii \textsc{Rogozhin}, et j'ai continué en 2012 par entreprendre une thèse sous la direction de Serghei \textsc{Verlan} au Laboratoire d'Algorithmique, Complexité et Logique de l'Université Paris Est Créteil. J'ai également eu de nombreuses collaborations internationales, notamment avec Rudolf \textsc{Freund} et Ion \textsc{Petre}. J'ai aussi travaillé activement avec Elisabeth \textsc{Pelz}, Artiom \textsc{Alhazov}, Vladimir \textsc{Rogojin}. Afin de collaborer avec Ion \textsc{Petre}, j'ai effectué de multiples visites au laboratoire Combio à l'université Åbo Akademi à Turku, Finlande. Les sujets de recherche que j'ai abordés jusqu'à maintenant se situent dans les domaines du calcul inspiré par la biologie et des langages formels. Lors de mon doctorat, j'ai travaillé également sur des problèmes non reliés directement au sujet de ma thèse. Dans la suite de cette section, je résume ma thèse, puis les résultats obtenus en dehors de son cadre. \subsection{Travaux de thèse} Ma thèse porte sur la puissance d'expression et l'universalité de modèles de calcul inspirés par la biologie. Les travaux présentés se structurent en quatre parties. Dans la première il s'agit de la puissance d'expression des systèmes d'insertion/effacement ({\em insertion-deletion systems}), un modèle de réécriture de chaînes de symboles formels par les opérations d'insertion et d'effacement. La deuxième partie du manuscrit se focalise sur l'universalité des réseaux de processeurs évolutionnaires ({\em networks of evolutionary processors}), qui est une formalisation d'un ensemble des unités de traitement de chaînes de caractères reliés en réseau. La troisième partie considère les machines à registres universelles à deux et à trois registres, ainsi qu'une généralisation de ce modèle. La dernière partie porte sur l'universalité des réseaux de Petri avec des arcs inhibiteurs. Nous rappelons que l'universalité est la propriété d'une classe de modèles de calcul d'avoir un objet, dit universel, qui peut répliquer les résultats de n'importe quel autre objet de cette classe, la simulation pouvant éventuellement se faire à un codage près. D'autre part, la complétude computationnelle est la propriété d'une classe de contenir, pour tout langage récursivement énumérable, un objet qui l'engendre. \subsubsection{Systèmes d'insertion/effacement} Les opérations d'insertion et d'effacement sont connues depuis longtemps dans la théorie des langages formels, surtout la variante sans contexte qui généralise les opérations de concaténation et quotient, deux opérations fondamentales~\cite{Haussler82,KariPhD}. L'inspiration qui a motivé l'introduction de ces opérations vient de la linguistique, car elles semblent modéliser assez précisément les procédés de construction des phrases dans une langue vivante~\cite{Marcus69,PaunKluwer97}. Il a été montré récemment que l'insertion et l'effacement possèdent une inspiration biologique et qu'ils formalisent l'hybridation erronée des brins d'ADN ({\em mismatched DNA annealing})~\cite{PRSbook}. De plus, il a été découvert que même l'édition de l'ARN ({\em RNA editing}) réalisé par certains protozoaires consiste généralement en des ajouts et des suppressions dans des brins d'ARN. De manière intuitive, une règle d'insertion rajoute une sous-chaîne à une chaîne de caractères dans un contexte donné. Une règle d'effacement agit de la façon duale : elle supprime une sous-chaîne d'une chaîne de caractères, dans un contexte donné. Un système d'insertion/effacement ({\em insertion-deletion system}) possède un ensemble fini de règles d'insertion et d'effacement ; il engendre un langage en appliquant ces règles séquentiellement à un ensemble fini de mots dits axiomes. La complexité d'un système d'insertion/effacement est décrite par le 6-uplet $(n,m,m'; p,q,q')$ dit taille, où les premiers trois composant représentent la longueur maximale de la sous-chaîne insérée et la taille maximale des contextes à gauche et à droite, alors que les trois derniers composants décrivent les mêmes paramètres pour les règles d'effacement. Dans le cadre de ma thèse nous nous sommes intéressés tout d'abord à des systèmes d'insertion/sup\-pres\-sion de taille $(1,m,0; 1,q,0)$, c'est-à-dire aux systèmes dans lesquels toutes les règles n'ont pas de contexte à droite et insèrent ou suppriment un caractère. Nous avons montré que ces systèmes engendrent tous les langages rationnels, et même certains langages algébriques. D'un autre côté, nous avons prouvé que pour tout système de taille $(1,m,0;1,q,0)$ avec $m\geq 2$ ou $n\geq 2$ il existe un système de taille $(1,2,0; 1,1,0)$ et un autre de taille $(1,1,0; 1,2,0)$ qui le simulent. Nous nous sommes aussi intéressés aussi aux systèmes de taille $(1,1,0;1,1,0)$ qui, malgré leur simplicité apparente, peuvent eux aussi engendrer des langages non algébriques. Afin de mieux analyser le comportement dynamique de ces systèmes, nous avons introduit un outil de représentation graphique de leurs dérivations. Nous avons ensuite considéré les systèmes d'insertion/effacement avec trois mécanismes de contrôle : contrôle par graphe ({\em graph control}), contrôle semi-conditionnel ({\em semi-conditional control}) et contextes aléatoires ({\em random context control}). Nous avons prouvé que les systèmes équipés de ces mécanismes étaient Turing complets avec de très petites règles. Notamment, nous avons prouvé que le contrôle semi-conditionnel augmentait la puissance d'expression des systèmes d'insertion/effacement de taille $(1,0,0;1,0,0)$, c'est-à-dire des systèmes avec des règles sans contexte, est les rend Turing complets. \subsubsection{Réseaux de processeurs évolutionnaires} Les réseaux de processeurs évolutionnaires ({\em networks of evolutionary processors}) sont un modèle de calcul inspiré par l'activité des organites d'une cellule biologique ou par la collaboration des cellules d'un tissu~\cite{CMVMS2001,CVS97}. Un processeur évolutionnaire peut effectuer en parallèle des opérations élémentaires (insertion, effacement, substitution d'un symbole) sur toutes les chaînes de caractères qu'il contient. Les processeurs sont connectés en réseau et échangent les chaînes de caractères qu'ils produisent. Ils disposent de filtres à l'entrée et à la sortie, ce qui leur permet de ne pas prendre en compte certaines chaînes. La complétude computationnelle des réseaux de processeurs évolutionnaires a été montrée dès leur introduction~\cite{CMVMS2001,CVS97}. Des variations au modèle ont été proposées plus tard et prouvées Turing complètes elles aussi~\cite{AMVR2006,CMVMS2003}. Nous nous sommes intéressés plutôt à l'universalité et à la minimisation du nombre de règles d'insertion, d'effacement et de substitution dans les réseaux universels. Nous avons ainsi construit des réseaux universels à 4, 5 et 7 règles seulement, avec des fonctions de codage différentes. \subsubsection{Machines à registres} Les machines à registres sont un modèle de calcul classique, dérivé directement de la machine de Turing~\cite{Minsky1961,Wang:1957}. Une telle machine possède un nombre fini de registres, qui peuvent contenir des entiers non négatifs. Le programme d'une machine à registres est une liste étiquetée d'instructions élémentaires : l'incrément d'un registre, le décrément d'un registre et le teste si un registre est vide. Les machines à registres sont ainsi un modèle très proche de l'organisation des ordinateurs digitaux habituels. Il a été montré que les machines à registres sont Turing complets, et qu'en plus n'importe quelle fonction calculable sur les entiers non négatifs peut être calculée par une machine à deux registres si les entrées de la fonction sont déjà encodées, ou à trois registres si la machine doit faire l'encodage par elle-même~\cite{minsky67}. Cela implique l'existence de machines à deux registres et à trois registres universelles. Néanmoins, aucun programme d'une telle machine n'a été présenté dans la littérature, or une telle construction concrète permet d'estimer la taille de structures universelles dérivées et de les optimiser ensuite. Dans ma thèse nous avons donc appliqué la procédure décrite dans~\cite{minsky67} pour construire des machines à deux et à trois registres universelles en simulant les machines universelles présentées en~\cite{Korec}. Nous nous sommes aussi intéressés à la façon dont les machines à registres sont simulées par d'autres modèles de calcul tels que systèmes de réécriture de multiensembles, réseaux de Petri, ou réseaux de processeurs évolutionnaires. Nous avons remarqué que tous ces modèles peuvent simuler plusieurs instructions d'une machine à registres en un seul pas. Autrement dit, ces instructions sont souvent trop élémentaires. Dans le but de définir un modèle proche aux machines à registres, mais qui utiliserait des instructions plus expressives, nous avons proposé les machines à registres généralisées ({\em generalised register machines}). Une telle machine peut effectuer plusieurs incréments, décréments, ou tests si un registre est à zéro en une seule transition. Les machines à registres habituelles peuvent être vues comme des machines à registres généralisées qui n'exécutent qu'une seule opération par transition. Dans une telle machine il est possible de réduire le nombre d'états en utilisant des transitions plus complexes. Dans ma thèse nous avons appliqué cette réduction pour construire des machines à registres universelles à 7 états seulement, cela en simulant les constructions présentées dans~\cite{Korec}. \subsubsection{Systèmes de réécriture de multiensembles et réseaux de Petri} La dernière partie de ma thèse porte sur l'universalité des systèmes de réécriture de multiensembles avec des inhibiteurs et aussi des réseaux de Petri avec des arcs inhibiteurs --- deux modèles qui sont fondamentalement similaires. En effet, un état (marquage) d'un réseau de Petri est décrit comme une fonction qui associe à chaque place le nombre de jetons qu'elle contient ; or le marquage est un multiensemble sur l'alphabet des symboles qui désignent les places. Les transitions de réseaux de Petri correspondent ainsi aux règles de réécriture de multiensembles. Il a été montré que savoir si un marquage peut être atteint par un réseau de Petri donné est décidable~\cite{Mayr:1981}. La même affirmation est donc valable dans le cas des systèmes de réécriture de multiensembles simples. Plusieurs variations ont été proposées afin d'étendre le pouvoir d'expression de ces modèles, dont l'idée des inhibiteurs. Dans les réseaux de Petri, un arc inhibiteur entre une place et une transition empêche celle-ci de se déclencher si la place n'est pas vide. De la même manière, on peut munir une règle de réécriture de multiensembles avec un ensemble de symboles qui ne doivent pas être présents pour que la règle soit applicable. Il a été prouvé que les réseaux de Petri avec des arcs inhibiteurs et les systèmes de réécriture de multiensembles avec des inhibiteurs sont Turing complets~\cite{BMVPR2002,Reinhardt08}, car ils peuvent simuler assez directement les machines à registres. Dans ma thèse nous avons construit plusieurs réseaux de Petri avec des arcs inhibiteurs universels. Nous avons défini la taille d'un réseau comme étant le 4-uplet $(p,t,i,d)$ où $p$ est le nombre de places, $t$ est le nombre de transitions, $i$ est le nombre d'arcs inhibiteur et $d$ et le nombre maximal d'arcs incidents à une transitions (le degré maximal). Nous nous sommes proposé de construire des réseaux de Petri universels tout en minimisant chacun de ces paramètres. Nous avons notamment décrit des réseaux universels avec quatre et cinq places uniquement et d'autres avec deux et trois arcs inhibiteurs (les chiffres varient selon l'encodage des entrées et des sorties). Il est remarquable que deux est le nombre minimal d'arcs inhibiteurs nécessaires pour atteindre la complétude computationnelle : les réseaux de Petri avec un seul arc inhibiteur ne sont pas Turing complets~\cite{Reinhardt08}. Même si les résultats d'universalité présentés dans la dernière partie de ma thèse apparaissent sous la forme de réseaux de Petri, la correspondance directe avec les systèmes de réécriture de multiensembles permet de formuler immédiatement les mêmes résultats pour ceux-ci. \subsection{Travaux hors thèse} Avant le début de ma thèse et pendant mon doctorat j'ai travaillé sur des problèmes qui n'étaient pas directement reliés à ceux qui sont exposés dans le manuscrit. Ces travaux se situent également dans le cadre du calcul naturel et de la théorie des langages formels. Je me suis premièrement concentré sur les systèmes à membranes ({\em membrane systems}) qui sont un modèle inspiré par la structure et fonctionnement de la cellule biologique. J'ai aussi travaillé sur les systèmes à réactions ({\em reaction systems}) qui représentent une abstraction formelle d'un réacteur biochimique. Finalement, j'ai participé à des travaux dans le domaine des grammaires de tableaux ({\em array grammars}), un modèle qui étend les grammaires classiques à la réécriture des parties des tableaux. \subsubsection{Systèmes à membranes} Le modèle des systèmes à membranes a été introduit par Gheorghe Păun qui s'est inspiré de la nature et du fonctionnement de la cellule vivante~\cite{Paun98computingwith,paun2002membrane,Paun:2010:OHM:1738939}. Un système à membranes est un ensemble de compartiments imbriqués les uns dans les autres et délimités par des membranes ; une membrane contient un multiensemble d'objets, chacun desquels représente une molécule biochimique. Les interactions entre les molécules sont modélisées par l'action des règles de réécriture de multiensembles. Même si les systèmes à membranes sont essentiellement des systèmes de réécriture parallèle de multiensembles~\cite{FLGPVZ2014}, ils représentent la cellule vivante de façon naturelle ce qui donne un outil clair et puissant pour la modélisation des processus biologiques et plus généralement des systèmes dynamiques complexes. Les thématiques que j'ai abordées dans ma recherche sur des systèmes à membranes se divisent principalement en trois groupes : \begin{itemize} \item la création des outils performants et flexibles de simulation des systèmes à membranes, \item développement des algorithmes distribués qui peuvent être ensuite implémentés dans des systèmes biologiques, \item étude de la puissance de calcul des différentes variantes étendues du modèle de base. \end{itemize} La création d'un simulateur de systèmes à membranes a toujours été une question très pertinente qui a attiré beaucoup d'efforts de la part des chercheurs dans le domaine. Un tel simulateur est un outil essentiel qui permet de tester si une construction concrète réalise le comportement désiré. J'ai participé à ce travail en développant un simulateur avec des moteurs des simulations échangeables pouvant être réalisés en des langages différents. J'ai notamment fourni un moteur de simulation utilisant la technologie OpenCL de programmation parallèle sur les cartes graphiques et un autre, plus flexible mais moins performant, implémenté en Haskell. En ce qui concerne le développement des algorithmes distribués, je me suis tout d'abord focalisé sur les modèles de systèmes à membranes sans horloge ({\em clock-free membrane systems}), dans lesquels chaque application d'une règle peut durer un temps réel arbitraire. L'absence de l'horloge globale rapproche le modèle des systèmes parallèles composés d'un certain nombre de processus qui interagissent. Dans mon travail, j'ai exprimé les mécanismes de synchronisation en termes de règles de réécriture de multiensembles et j'ai montré comment ces mécanismes pouvaient être utilisés pour la résolution des problèmes de concurrence classiques. Nous avons continué l'exploration des algorithmes distribués en implémentant les chaînages avant et arrière ({\em forward and backward chaining}) dans les systèmes à membranes actives, c'est-à-dire les systèmes dans lesquels les membranes peuvent se diviser. Le chaînage avant est une méthode de déduction qui applique des implications logiques en partant des prémisses pour en déduire de nouvelles conclusions. Le chaînage avant consiste donc à construire toutes les conclusions déductibles à partir des axiomes jusqu'à ce que la proposition cible est obtenue. Par opposition, le chaînage arrière part des conclusions pour essayer de remonter aux axiomes. Le chaînage arrière a souvent tendance à explorer moins de possibilités et est préféré dans les cas d'utilisation pratiques. Il est remarquable que les implications logiques se prêtent à une représentation naturelle en termes de règles de réécriture de multiensembles ; or c'est de cette similarité que nos constructions profitent. De plus nos implémentations bénéficient du parallélisme intrinsèque aux systèmes à membranes. Concernant les variations du modèle de base, nous avons proposé une extension assez naturelle qui permet aux systèmes à membranes de se modifier eux-mêmes. Dans le cadre de ce genre de système, les règles de réécriture sont données par le contenu de certaines pairs de membranes. Il est ainsi possible de modifier les règles au cours de l'évolution du système en rajoutant ou en supprimant des objets des membranes qui définissent ces règles. Nous avons donné à ces systèmes l'appellation de systèmes polymorphes ({\em polymorphic membrane systems}) et nous avons montré que le polymorphisme permettait de calculer des fonctions exponentielles avec des règles relativement simples. Je me suis ensuite intéressé à la puissance de calcul de systèmes polymorphes dans leur version la plus élémentaire et j'ai démontré quelques résultats concernant les bornes inférieures et supérieures de la famille des langages qu'ils peuvent engendrer. J'ai prouvé également l'existence d'une hiérarchie infinie dans cette famille des langages. \subsection{Systèmes à réactions} Les systèmes à réactions ({\em reaction systems}) sont un autre modèle formel inspiré par la cellule biologique, et surtout par les réactions chimiques qui y ont lieu~\cite{brij-atofrs,ehrenfeucht2007reaction}. Les systèmes à réactions se fondent sur deux principes. Le premier est le principe de non permanence : une ressource qui ne participe pas à une interaction disparaît du système. Le deuxième principe est que si une ressource est présente dans le système, alors elle y est en quantité illimitée. Cela fait des systèmes à réactions un modèle intrinsèquement qualitatif qui manipule des ensembles des symboles. Les interactions entre les symboles dans les systèmes à réactions sont régies par les réactions. Une réaction contient trois ensembles: les réactifs, les inhibiteurs et les produits. Pour qu'une réaction soit applicable à un ensemble, celui-ci doit contenir tous les réactifs de la réaction et ne contenir aucun de ses inhibiteurs. Le résultat de cette application est l'ensemble des produits ; les symboles qui n'ont pas été consommés par la réaction disparaissent. Le résultat d'application concomitante de plusieurs réactions est l'union de leurs produits. Les systèmes à réactions étant un modèle de calcul assez particulier, beaucoup de chercheurs se sont intéressés à ses propriétés formelles. Dans notre travail nous sommes revenus à la motivation d'origine et nous nous sommes proposé d'utiliser les systèmes à réactions pour modéliser les voies métaboliques d'une cellule. Une partie essentielle d'une telle modélisation serait la vérification formelle qu'un système concret correspond suffisamment bien au phénomène qu'il modélise. Dans ce but, nous avons adapté plusieurs concepts utilisés dans la modélisation biologique habituelle, dont la conservation de la masse, et nous avons prouvé que décider la plupart des propriétés qu'un système à réactions peut avoir vis-à-vis de ces concepts est un problème $\NP$-, $\coNP$-, ou même $\PSPACE$-complet. Nous nous sommes ensuite focalisés sur la conservation de la masse et nous avons montré que cette notion donne naissance à une structure formelle qui facilite la réponse à certaines questions concernant les propriétés de conservation d'un système à réactions. \subsubsection{Grammaires de tableaux} Les grammaires de tableaux représentent un système de réécriture des tableaux --- des structures régulières dont les nœuds sont étiquettes avec des symboles~\cite{FreundO14}. Tout comme les règles de réécriture de chaînes de caractères, une règle de réécriture de tableaux remplace un motif par un autre. Les grammaires de tableaux sont ainsi un modèle similaire aux automates cellulaires qui eux aussi sont plongés dans une structure régulière. Une différence importante intervient au niveau de la sémantique : les règles de grammaires de tableaux s'appliquent séquentiellement, ce qui ne fait évoluer qu'un seul motif du tableau à la fois. De plus, un tableau peut ne pas couvrir complètement la structure sous-jacente ; par exemple, un tableau dans l'espace cartésien à deux dimensions peut contenir un nombre fini de cellules non vides disposées dans une configuration particulière, les autres cellules étant vides. Une règle de réécriture de tableaux qui rajoute une nouvelle cellule peut s'appliquer à un motif seulement si cette nouvelle cellule ne correspond pas à un endroit vide dans le tableau d'origine. Ma contribution à l'étude des grammaires de tableaux a consisté à fournir une construction qui a permis de prouver la complétude computationnelle d'une variante restreinte de ce modèle. Nous nous sommes également intéressés à la combinaison de réécriture de tableaux avec les structures à membranes ; nous avons montré que ce genre de systèmes atteignent la complétude computationnelle avec des règles restreintes et avec deux membranes seulement. \printbibliography \end{refsection}