1046 lines
45 KiB
Racket
1046 lines
45 KiB
Racket
#lang racket
|
||
|
||
;;; dds/networks
|
||
|
||
;;; This module provides some quick definitions for and analysing
|
||
;;; network models. A network is a set of variables which are updated
|
||
;;; according to their corresponding update functions. The variables
|
||
;;; to be updated at each step are given by the mode.
|
||
;;;
|
||
;;; This model can generalise Boolean networks, TBANs, multivalued
|
||
;;; networks, etc.
|
||
|
||
(require "utils.rkt" "generic.rkt" graph racket/random)
|
||
|
||
(provide
|
||
;; Structures
|
||
(struct-out dynamics)
|
||
;; Functions
|
||
(contract-out [update (-> network? state? (set/c variable? #:kind 'dont-care) state?)]
|
||
[make-state (-> (listof (cons/c symbol? any/c)) state?)]
|
||
[make-state-booleanize (-> (listof (cons/c symbol? (or/c 0 1))) state?)]
|
||
[booleanize-state (-> state? state?)]
|
||
[make-network-from-functions (-> (listof (cons/c symbol? update-function/c)) network?)]
|
||
[update-function-form->update-function (-> update-function-form? update-function/c)]
|
||
[network-form->network (-> network-form? network?)]
|
||
[make-network-from-forms (-> (listof (cons/c symbol? update-function-form?))
|
||
network?)]
|
||
[list-interactions (-> network-form? variable? (listof variable?))]
|
||
[build-interaction-graph (-> network-form? graph?)]
|
||
[build-all-states (-> domain-mapping/c (listof state?))]
|
||
[make-same-domains (-> (listof variable?) generic-set? domain-mapping/c)]
|
||
[make-boolean-domains (-> (listof variable?) (hash/c variable? (list/c #f #t)))]
|
||
[build-all-boolean-states (-> (listof variable?) (listof state?))]
|
||
[get-interaction-sign (-> network? domain-mapping/c variable? variable? (or/c '+ '- '0))]
|
||
[build-signed-interaction-graph/form (-> network-form? domain-mapping/c graph?)]
|
||
[build-boolean-signed-interaction-graph/form (-> network-form? graph?)]
|
||
[build-signed-interaction-graph (-> network? domain-mapping/c graph?)]
|
||
[build-boolean-signed-interaction-graph (-> network? graph?)]
|
||
[make-asyn (-> (listof variable?) mode?)]
|
||
[make-syn (-> (listof variable?) mode?)]
|
||
[make-dynamics-from-func (-> network? (-> (listof variable?) mode?) dynamics?)]
|
||
[make-asyn-dynamics (-> network? dynamics?)]
|
||
[make-syn-dynamics (-> network? dynamics?)]
|
||
[read-org-network-make-asyn (-> string? dynamics?)]
|
||
[read-org-network-make-syn (-> string? dynamics?)]
|
||
[dds-step-one (-> dynamics? state? (set/c state?))]
|
||
[dds-step-one-annotated (-> dynamics? state? (set/c (cons/c modality? state?)))]
|
||
[dds-step (-> dynamics? (set/c state? #:kind 'dont-care) (set/c state?))]
|
||
[dds-build-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) graph?)]
|
||
[dds-build-n-step-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)]
|
||
[dds-build-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) graph?)]
|
||
[dds-build-n-step-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)]
|
||
[pretty-print-state (-> state? string?)]
|
||
[any->boolean (-> any/c boolean?)]
|
||
[pretty-print-boolean-state (-> state? string?)]
|
||
[pretty-print-state-graph-with (-> graph? (-> state? string?) graph?)]
|
||
[pretty-print-state-graph (-> graph? graph?)]
|
||
[pretty-print-boolean-state-graph (-> graph? graph?)]
|
||
[build-full-boolean-state-graph (-> dynamics? graph?)]
|
||
[build-full-boolean-state-graph-annotated (-> dynamics? graph?)]
|
||
[tabulate/domain-list (-> procedure? (listof generic-set?) (listof list?))]
|
||
[tabulate (->* (procedure?) () #:rest (listof generic-set?) (listof list?))]
|
||
[tabulate/boolean (-> procedure-fixed-arity? (listof (listof boolean?)))]
|
||
[tabulate-state (->* (procedure? domain-mapping/c) (#:headers boolean?)
|
||
(listof (listof any/c)))]
|
||
[tabulate-state/boolean (->* (procedure? (listof variable?)) (#:headers boolean?)
|
||
(listof (listof any/c)))]
|
||
[tabulate-network (->* (network? domain-mapping/c) (#:headers boolean?)
|
||
(listof (listof any/c)))]
|
||
[tabulate-boolean-network (->* (network?) (#:headers boolean?)
|
||
(listof (listof any/c)))]
|
||
[table->function (-> (listof (*list/c any/c any/c)) procedure?)]
|
||
[table->function/list (-> (listof (*list/c any/c any/c)) procedure?)]
|
||
[table->network (->* ((listof (*list/c any/c any/c))) (#:headers boolean?) network?)]
|
||
[boolean-power (-> number? (listof (listof boolean?)))]
|
||
[boolean-power/stream (-> number? (stream/c (listof boolean?)))]
|
||
[enumerate-boolean-tables (-> number? (stream/c (listof (*list/c boolean? boolean?))))]
|
||
[enumerate-boolean-functions (-> number? (stream/c procedure?))]
|
||
[enumerate-boolean-functions/list (-> number? (stream/c procedure?))]
|
||
[random-boolean-table (-> number? (listof (*list/c boolean? boolean?)))]
|
||
[random-boolean-function (-> number? procedure?)]
|
||
[random-boolean-function/list (-> number? procedure?)]
|
||
[random-function/state (domain-mapping/c generic-set? . -> . procedure?)]
|
||
[random-boolean-function/state ((listof variable?) . -> . procedure?)]
|
||
[random-network (domain-mapping/c . -> . network?)]
|
||
[random-boolean-network ((listof variable?) . -> . network?)]
|
||
[random-boolean-network/vars (number? . -> . network?)])
|
||
;; Predicates
|
||
(contract-out [variable? (-> any/c boolean?)]
|
||
[state? (-> any/c boolean?)]
|
||
[update-function-form? (-> any/c boolean?)]
|
||
[network-form? (-> any/c boolean?)]
|
||
[modality? (-> any/c boolean?)]
|
||
[mode? (-> any/c boolean?)])
|
||
;; Contracts
|
||
(contract-out [state/c contract?]
|
||
[update-function/c contract?]
|
||
[domain-mapping/c contract?]))
|
||
|
||
(module+ test
|
||
(require rackunit))
|
||
|
||
|
||
;;; =================
|
||
;;; Basic definitions
|
||
;;; =================
|
||
|
||
(define variable? symbol?)
|
||
|
||
;;; A state of a network is a mapping from the variables of the
|
||
;;; network to their values.
|
||
(define state? variable-mapping?)
|
||
(define state/c (flat-named-contract 'state state?))
|
||
|
||
;;; An update function is a function computing a value from the given
|
||
;;; state.
|
||
(define update-function/c (-> state? any/c))
|
||
|
||
;;; A network is a mapping from its variables to its update functions.
|
||
(define network? (hash/c variable? procedure?))
|
||
|
||
;;; Given a state s updates all the variables from xs. This
|
||
;;; corresponds to a parallel mode.
|
||
(define (update network s xs)
|
||
(for/fold ([new-s s])
|
||
([x xs])
|
||
(let ([f (hash-ref network x)])
|
||
(hash-set new-s x (f s)))))
|
||
|
||
(module+ test
|
||
(test-case "basic definitions"
|
||
(define f1 (λ (s) (let ([x1 (hash-ref s 'x1)]
|
||
[x2 (hash-ref s 'x2)])
|
||
(and x1 (not x2)))))
|
||
(define f2 (λ (s) (let ([x2 (hash-ref s 'x2)])
|
||
(not x2))))
|
||
(define bn (make-network-from-functions `((x1 . ,f1) (x2 . ,f2))))
|
||
(define s1 (make-state '((x1 . #t) (x2 . #f))))
|
||
(define new-s1 (update bn s1 '(x2 x1)))
|
||
(define s2 (make-state '((x1 . #f) (x2 . #f))))
|
||
(define new-s2 (update bn s2 '(x2)))
|
||
|
||
(check-equal? s1 #hash((x1 . #t) (x2 . #f)))
|
||
(check-equal? new-s1 #hash((x1 . #t) (x2 . #t)))
|
||
(check-equal? s2 #hash((x1 . #f) (x2 . #f)))
|
||
(check-equal? new-s2 #hash((x1 . #f) (x2 . #t)))))
|
||
|
||
;;; A version of make-immutable-hash restricted to creating network
|
||
;;; states (see contract).
|
||
(define (make-state mappings) (make-immutable-hash mappings))
|
||
|
||
;;; Makes a new Boolean states from a state with numerical values 0
|
||
;;; and 1.
|
||
(define (make-state-booleanize mappings)
|
||
(make-state (for/list ([mp mappings])
|
||
(match mp
|
||
[(cons var 0) (cons var #f)]
|
||
[(cons var 1) (cons var #t)]))))
|
||
|
||
(module+ test
|
||
(test-case "make-state, make-state-booleanize, booleanize-state"
|
||
(check-equal? (make-state-booleanize '((a . 0) (b . 1)))
|
||
(make-state '((a . #f) (b . #t))))
|
||
(check-equal? (booleanize-state (make-state '((a . 0) (b . 1))))
|
||
(make-state '((a . #f) (b . #t))))))
|
||
|
||
;;; Booleanizes a given state: replaces 0 with #f and 1 with #t.
|
||
(define (booleanize-state s)
|
||
(for/hash ([(x val) s]) (match val [0 (values x #f)] [1 (values x #t)])))
|
||
|
||
;;; A version of make-immutable-hash restricted to creating networks.
|
||
(define (make-network-from-functions funcs) (make-immutable-hash funcs))
|
||
|
||
|
||
;;; =================================
|
||
;;; Syntactic description of networks
|
||
;;; =================================
|
||
|
||
;;; An update function form is any form which can appear as a body of
|
||
;;; a function and which can be evaluated with eval. For example,
|
||
;;; '(and x y (not z)) or '(+ 1 a (- b 10)).
|
||
(define update-function-form? any/c)
|
||
|
||
;;; A Boolean network form is a mapping from its variables to the
|
||
;;; forms of their update functions.
|
||
(define network-form? variable-mapping?)
|
||
|
||
;;; Build an update function from an update function form.
|
||
(define (update-function-form->update-function form)
|
||
(λ (s) (eval-with s form)))
|
||
|
||
(module+ test
|
||
(test-case "update-function-form->update-function"
|
||
(define s (make-state '((x . #t) (y . #f))))
|
||
(define f (update-function-form->update-function '(and x y)))
|
||
(check-equal? (f s) #f)))
|
||
|
||
;;; Build a network from a network form.
|
||
(define (network-form->network bnf)
|
||
(for/hash ([(x form) bnf])
|
||
(values x (update-function-form->update-function form))))
|
||
|
||
(module+ test
|
||
(test-case "network-form->network"
|
||
(define bn (network-form->network
|
||
(make-hash '((a . (and a b)) (b . (not b))))))
|
||
(define s (make-state '((a . #t) (b . #t))))
|
||
(check-equal? ((hash-ref bn 'a) s) #t)))
|
||
|
||
;;; Build a network from a list of pairs of forms of update functions.
|
||
(define (make-network-from-forms forms)
|
||
(network-form->network (make-immutable-hash forms)))
|
||
|
||
(module+ test
|
||
(test-case "make-network-from-forms"
|
||
(define bn (make-network-from-forms '((a . (and a b))
|
||
(b . (not b)))))
|
||
(define s (make-state '((a . #t) (b . #t))))
|
||
(check-equal? ((hash-ref bn 'a) s) #t)))
|
||
|
||
|
||
;;; ============================
|
||
;;; Inferring interaction graphs
|
||
;;; ============================
|
||
|
||
;;; I allow any syntactic forms in definitions of Boolean functions.
|
||
;;; I can still find out which Boolean variables appear in those
|
||
;;; syntactic form, but I have no reliable syntactic means of finding
|
||
;;; out what kind of action do they have (inhibition or activation)
|
||
;;; since I cannot do Boolean minimisation (e.g., I cannot rely on not
|
||
;;; appearing before a variable, since (not (not a)) is equivalent
|
||
;;; to a). On the other hand, going through all Boolean states is
|
||
;;; quite resource-consuming and thus not always useful.
|
||
;;;
|
||
;;; In this section I provide inference of both unsigned and signed
|
||
;;; interaction graphs, but since the inference of signed interaction
|
||
;;; graphs is based on analysing the dynamics of the networks, it may
|
||
;;; be quite resource-consuming.
|
||
|
||
;;; Lists the variables of the network form appearing in the update
|
||
;;; function form for x.
|
||
(define (list-interactions nf x)
|
||
(set-intersect
|
||
(extract-symbols (hash-ref nf x))
|
||
(hash-keys nf)))
|
||
|
||
(module+ test
|
||
(test-case "list-interactions"
|
||
(define n #hash((a . (+ a b c))
|
||
(b . (- b c))))
|
||
(check-true (set=? (list-interactions n 'a) '(a b)))
|
||
(check-true (set=? (list-interactions n 'b) '(b)))))
|
||
|
||
;;; Builds the graph in which the vertices are the variables of a
|
||
;;; given network, and which contains an arrow from a to b whenever a
|
||
;;; appears in (list-interactions a).
|
||
(define (build-interaction-graph n)
|
||
(transpose
|
||
(unweighted-graph/adj
|
||
(for/list ([(var _) n]) (cons var (list-interactions n var))))))
|
||
|
||
(module+ test
|
||
(test-case "build-interaction-graph"
|
||
(define n #hash((a . (+ a b c))
|
||
(b . (- b c))))
|
||
(define ig (build-interaction-graph n))
|
||
(check-true (has-vertex? ig 'a))
|
||
(check-true (has-vertex? ig 'b))
|
||
(check-false (has-vertex? ig 'c))
|
||
(check-true (has-edge? ig 'a 'a))
|
||
(check-true (has-edge? ig 'b 'a))
|
||
(check-true (has-edge? ig 'b 'b))
|
||
(check-false (has-edge? ig 'c 'b))
|
||
(check-false (has-edge? ig 'c 'a))))
|
||
|
||
;;; A domain mapping is a hash set mapping variables to the lists of
|
||
;;; values in their domains.
|
||
(define domain-mapping/c (hash/c variable? list?))
|
||
|
||
;;; Given a hash-set mapping variables to generic sets of their
|
||
;;; possible values, constructs the list of all possible states.
|
||
(define (build-all-states vars-domains)
|
||
(let* ([var-dom-list (hash-map vars-domains (λ (x y) (cons x y)) #t)]
|
||
[vars (map car var-dom-list)]
|
||
[domains (map cdr var-dom-list)])
|
||
(for/list ([s (apply cartesian-product domains)])
|
||
(make-state (for/list ([var vars] [val s])
|
||
(cons var val))))))
|
||
|
||
(module+ test
|
||
(test-case "build-all-states"
|
||
(check-equal? (build-all-states #hash((a . (#t #f)) (b . (1 2 3))))
|
||
'(#hash((a . #t) (b . 1))
|
||
#hash((a . #t) (b . 2))
|
||
#hash((a . #t) (b . 3))
|
||
#hash((a . #f) (b . 1))
|
||
#hash((a . #f) (b . 2))
|
||
#hash((a . #f) (b . 3))))))
|
||
|
||
;;; Makes a hash set mapping all variables to a single domain.
|
||
(define (make-same-domains vars domain)
|
||
(for/hash ([var vars]) (values var domain)))
|
||
|
||
;;; Makes a hash set mapping all variables to the Boolean domain.
|
||
(define (make-boolean-domains vars)
|
||
(make-same-domains vars '(#f #t)))
|
||
|
||
(module+ test
|
||
(test-case "make-same-domains, make-boolean-domains"
|
||
(check-equal? (make-boolean-domains '(a b))
|
||
#hash((a . (#f #t)) (b . (#f #t))))))
|
||
|
||
;;; Builds all boolean states possible over a given set of variables.
|
||
(define (build-all-boolean-states vars)
|
||
(build-all-states (make-boolean-domains vars)))
|
||
|
||
(module+ test
|
||
(test-case "build-all-boolean-states"
|
||
(check-equal? (build-all-boolean-states '(a b))
|
||
'(#hash((a . #f) (b . #f))
|
||
#hash((a . #f) (b . #t))
|
||
#hash((a . #t) (b . #f))
|
||
#hash((a . #t) (b . #t))))))
|
||
|
||
;;; Given two interacting variables of a network and the domains
|
||
;;; of the variables, returns '+ if the interaction is monotonously
|
||
;;; increasing, '- if it is monotonously decreasing, and '0 otherwise.
|
||
;;;
|
||
;;; This function does not check whether the two variables indeed
|
||
;;; interact. Its behaviour is undefined if the variables do not
|
||
;;; interact.
|
||
;;;
|
||
;;; /!\ This function iterates through almost all of the states of the
|
||
;;; network, so its performance decreases very quickly with network
|
||
;;; size.
|
||
(define (get-interaction-sign network doms x y)
|
||
(let* ([dom-x (hash-ref doms x)]
|
||
[dom-y (hash-ref doms y)]
|
||
;; Replace the domain of x by a dummy singleton.
|
||
[doms-no-x (hash-set doms x '(#f))]
|
||
;; Build all the states, but as if x were not there: since I
|
||
;; replace its domain by a singleton, all states will contain
|
||
;; the same value for x.
|
||
[states-no-x (build-all-states doms-no-x)]
|
||
;; Go through all states, then through all ordered pairs of
|
||
;; values of x, generate pairs of states (s1, s2) such that x
|
||
;; has a smaller value in s1, and check that updating y in s1
|
||
;; yields a smaller value than updating y in s2. I rely on
|
||
;; the fact that the domains are ordered.
|
||
[x-y-interactions (for*/list ([s states-no-x]
|
||
[x1 dom-x] ; ordered pairs of values of x
|
||
[x2 (cdr (member x1 dom-x))])
|
||
(let* ([s1 (hash-set s x x1)] ; s1(x) < s2(x)
|
||
[s2 (hash-set s x x2)]
|
||
[y1 ((hash-ref network y) s1)]
|
||
[y2 ((hash-ref network y) s2)])
|
||
;; y1 <= y2?
|
||
(<= (index-of dom-y y1) (index-of dom-y y2))))])
|
||
(cond
|
||
;; If, in all interactions, y1 <= y2, then we have an
|
||
;; increasing/promoting interaction between x and y.
|
||
[(andmap (λ (x) (eq? x #t)) x-y-interactions) '+]
|
||
;; If, in all interactions, y1 > y2, then we have an
|
||
;; decreasing/inhibiting interaction between x and y.
|
||
[(andmap (λ (x) (eq? x #f)) x-y-interactions) '-]
|
||
;; Otherwise the interaction is neither increasing nor
|
||
;; decreasing.
|
||
[else '0])))
|
||
|
||
(module+ test
|
||
(test-case "get-interaction-sign"
|
||
(define n #hash((a . (not b)) (b . a)))
|
||
(define doms (make-boolean-domains '(a b)))
|
||
(check-equal? (get-interaction-sign (network-form->network n) doms 'a 'b) '+)
|
||
(check-equal? (get-interaction-sign (network-form->network n) doms 'b 'a) '-)))
|
||
|
||
;;; Constructs a signed interaction graph of a given network form,
|
||
;;; given the ordered domains of its variables. The order on the
|
||
;;; domains determines the signs which will appear on the interaction
|
||
;;; graph.
|
||
;;;
|
||
;;; /!\ This function iterates through almost all states of the
|
||
;;; network for every arrow in the unsigned interaction graph, so its
|
||
;;; performance decreases very quickly with the size of the network.
|
||
(define (build-signed-interaction-graph/form network-form doms)
|
||
(let ([ig (build-interaction-graph network-form)]
|
||
[network (network-form->network network-form)])
|
||
;; Label every edge of the interaction graph with the sign.
|
||
(define sig
|
||
(weighted-graph/directed
|
||
(for/list ([e (in-edges ig)])
|
||
(match-let ([(list x y) e])
|
||
(list (get-interaction-sign network doms x y)
|
||
x y)))))
|
||
;; Ensure that every variable of the network appears in the signed
|
||
;; interaction graph as well.
|
||
(for ([v (in-vertices ig)])
|
||
(add-vertex! sig v))
|
||
sig))
|
||
|
||
(module+ test
|
||
(test-case "build-signed-interaction-graph/form"
|
||
(define n #hash((a . (not b)) (b . a)))
|
||
(define doms (make-boolean-domains '(a b)))
|
||
(define sig1 (build-signed-interaction-graph/form n doms))
|
||
(check-true (has-vertex? sig1 'a))
|
||
(check-true (has-vertex? sig1 'b))
|
||
(check-false (has-vertex? sig1 'c))
|
||
(check-false (has-edge? sig1 'a 'a))
|
||
(check-true (has-edge? sig1 'b 'a))
|
||
(check-false (has-edge? sig1 'b 'b))
|
||
(check-false (has-edge? sig1 'c 'b))
|
||
(check-false (has-edge? sig1 'c 'a))
|
||
(check-equal? (edge-weight sig1 'a 'b) '+)
|
||
(check-equal? (edge-weight sig1 'b 'a) '-)))
|
||
|
||
;;; Calls build-signed-interaction-graph with the Boolean domain for
|
||
;;; all variable.
|
||
;;;
|
||
;;; /!\ The same performance warning applies as for
|
||
;;; build-signed-interaction-graph.
|
||
(define (build-boolean-signed-interaction-graph/form network-form)
|
||
(build-signed-interaction-graph/form
|
||
network-form
|
||
(make-boolean-domains (hash-keys network-form))))
|
||
|
||
(module+ test
|
||
(test-case "build-boolean-signed-interaction-graph/form"
|
||
(define n #hash((a . (not b)) (b . a)))
|
||
(define sig2 (build-boolean-signed-interaction-graph/form n))
|
||
(check-true (has-vertex? sig2 'a))
|
||
(check-true (has-vertex? sig2 'b))
|
||
(check-false (has-vertex? sig2 'c))
|
||
(check-false (has-edge? sig2 'a 'a))
|
||
(check-true (has-edge? sig2 'b 'a))
|
||
(check-false (has-edge? sig2 'b 'b))
|
||
(check-false (has-edge? sig2 'c 'b))
|
||
(check-false (has-edge? sig2 'c 'a))
|
||
(check-equal? (edge-weight sig2 'a 'b) '+)
|
||
(check-equal? (edge-weight sig2 'b 'a) '-)))
|
||
|
||
;;; Similar to build-signed-interaction-graph/form, but operates on a
|
||
;;; network rather than a form. The resulting graph only includes the
|
||
;;; edges for positive or negative interactions.
|
||
;;;
|
||
;;; This function has operates with much less knowledge than
|
||
;;; build-signed-interaction-graph/form, so prefer using the latter
|
||
;;; when you can get a network form.
|
||
;;;
|
||
;;; /!\ This function iterates through all states of the network for
|
||
;;; every arrow in the unsigned interaction graph, so its performance
|
||
;;; decreases very quickly with the size of the network.
|
||
(define (build-signed-interaction-graph network doms)
|
||
(define sig
|
||
(weighted-graph/directed
|
||
(for*/fold ([edges '()])
|
||
([(x _) (in-hash network)]
|
||
[(y _) (in-hash network)])
|
||
(match (get-interaction-sign network doms x y)
|
||
['0 edges]
|
||
[sign (cons (list sign x y) edges)]))))
|
||
;; Ensure that all variables of the network appear in the signed
|
||
;; interaction graph.
|
||
(for ([(v _) (in-hash network)])
|
||
(add-vertex! sig v))
|
||
sig)
|
||
|
||
;;; Calls build-signed-interaction-graph assuming that the domains of
|
||
;;; all variables are Boolean.
|
||
;;;
|
||
;;; This function has operates with much less knowledge than
|
||
;;; build-boolean-signed-interaction-graph/form, so prefer using the
|
||
;;; latter when you can get a network form.
|
||
;;;
|
||
;;; /!\ This function iterates through all states of the network for
|
||
;;; every arrow in the unsigned interaction graph, so its performance
|
||
;;; decreases very quickly with the size of the network.
|
||
(define (build-boolean-signed-interaction-graph network)
|
||
(build-signed-interaction-graph network (make-boolean-domains (hash-keys network))))
|
||
|
||
(module+ test
|
||
(test-case "build-signed-interaction-graph, build-boolean-signed-interaction-graph"
|
||
(define n #hash((a . (not b)) (b . a)))
|
||
(define sig3 (build-boolean-signed-interaction-graph (network-form->network n)))
|
||
(check-true (has-vertex? sig3 'a))
|
||
(check-true (has-vertex? sig3 'b))
|
||
(check-equal? (edge-weight sig3 'a 'a) '+)
|
||
(check-equal? (edge-weight sig3 'b 'b) '+)
|
||
(check-equal? (edge-weight sig3 'a 'b) '+)
|
||
(check-equal? (edge-weight sig3 'b 'a) '-)))
|
||
|
||
;;; Interaction graphs for networks without interactions must still
|
||
;;; contain all nodes.
|
||
(module+ test
|
||
(test-case "Interaction must graphs always contain all nodes."
|
||
(define n #hash((a . #t) (b . #t)))
|
||
(define ig (build-interaction-graph n))
|
||
(define sig-nf (build-boolean-signed-interaction-graph/form n))
|
||
(define sig (build-boolean-signed-interaction-graph (network-form->network n)))
|
||
(check-equal? (get-vertices ig) '(b a))
|
||
(check-true (empty? (get-edges ig)))
|
||
(check-equal? (get-vertices sig-nf) '(b a))
|
||
(check-true (empty? (get-edges sig-nf)))
|
||
(check-equal? (get-vertices sig) '(b a))))
|
||
|
||
|
||
;;; ====================
|
||
;;; Dynamics of networks
|
||
;;; ====================
|
||
|
||
;;; This section contains definitions for building and analysing the
|
||
;;; dynamics of networks.
|
||
|
||
;;; A modality is a set of variable.
|
||
(define modality? (set/c variable?))
|
||
|
||
;;; A mode is a set of modalities.
|
||
(define mode? (set/c modality?))
|
||
|
||
;;; A network dynamics is a network plus a mode.
|
||
(struct dynamics (network mode)
|
||
#:methods gen:dds
|
||
[;; Annotates each result state with the modality which lead to it.
|
||
(define/match (dds-step-one-annotated dyn s)
|
||
[((dynamics network mode) s)
|
||
(for/set ([m mode]) (cons m (update network s m)))])])
|
||
|
||
;;; Given a list of variables, builds the asynchronous mode (a set of
|
||
;;; singletons).
|
||
(define (make-asyn vars)
|
||
(for/set ([v vars]) (set v)))
|
||
|
||
;;; Given a list of variables, builds the synchronous mode (a set
|
||
;;; containing the set of variables).
|
||
(define (make-syn vars) (set (list->set vars)))
|
||
|
||
(module+ test
|
||
(test-case "make-asyn, make-syn"
|
||
(define vars '(a b c))
|
||
(check-equal? (make-asyn vars) (set (set 'a) (set 'b) (set 'c)))
|
||
(check-equal? (make-syn vars) (set (set 'a 'b 'c)))))
|
||
|
||
;;; Given a network, applies a function for building a mode to its
|
||
;;; variables and returns the corresponding network dynamics.
|
||
(define (make-dynamics-from-func network mode-func)
|
||
(dynamics network (mode-func (hash-keys network))))
|
||
|
||
;;; Creates the asynchronous dynamics for a given network.
|
||
(define (make-asyn-dynamics network)
|
||
(make-dynamics-from-func network make-asyn))
|
||
|
||
;;; Creates the synchronous dynamics for a given network.
|
||
(define (make-syn-dynamics network)
|
||
(make-dynamics-from-func network make-syn))
|
||
|
||
(module+ test
|
||
(test-case "make-asyn-dynamics, make-syn-dynamics"
|
||
(define n (network-form->network #hash((a . (not a)) (b . b))))
|
||
(define asyn (make-asyn-dynamics n))
|
||
(define syn (make-syn-dynamics n))
|
||
(check-equal? (dynamics-network asyn) n)
|
||
(check-equal? (dynamics-mode asyn) (set (set 'a) (set 'b)))
|
||
(check-equal? (dynamics-network syn) n)
|
||
(check-equal? (dynamics-mode syn) (set (set 'a 'b)))))
|
||
|
||
;;; Reads an Org-mode-produced sexp, converts it into a network, and
|
||
;;; builds the asyncronous dynamics out of it.
|
||
(define read-org-network-make-asyn (compose make-asyn-dynamics network-form->network read-org-variable-mapping))
|
||
|
||
;;; Reads an Org-mode-produced sexp, converts it into a network, and
|
||
;;; builds the synchronous dynamics out of it.
|
||
(define read-org-network-make-syn (compose make-syn-dynamics network-form->network read-org-variable-mapping))
|
||
|
||
;;; Pretty-prints a state of the network.
|
||
(define (pretty-print-state s)
|
||
(string-join (hash-map s (λ (key val) (format "~a:~a" key val)) #t)))
|
||
|
||
(module+ test
|
||
(test-case "pretty-print-state"
|
||
(check-equal? (pretty-print-state (make-state '((a . #f) (b . 3) (c . 4))))
|
||
"a:#f b:3 c:4")))
|
||
|
||
;;; Converts any non-#f value to 1 and #f to 0.
|
||
(define (any->boolean x) (if x 1 0))
|
||
|
||
;;; Pretty-prints a state of the network to Boolean values 0 or 1.
|
||
(define (pretty-print-boolean-state s)
|
||
(string-join (hash-map s (λ (key val) (format "~a:~a" key (any->boolean val))) #t)))
|
||
|
||
(module+ test
|
||
(test-case "pretty-print-boolean-state"
|
||
(check-equal?
|
||
(pretty-print-boolean-state (make-state '((a . #f) (b . #t) (c . #t))))
|
||
"a:0 b:1 c:1")))
|
||
|
||
;;; Given a state graph and a pretty-printer for states build a new
|
||
;;; state graph with pretty-printed vertices and edges.
|
||
(define (pretty-print-state-graph-with gr pprinter)
|
||
(update-graph gr #:v-func pprinter #:e-func pretty-print-set-sets))
|
||
|
||
;;; Pretty prints a state graph with pretty-print-state.
|
||
(define (pretty-print-state-graph gr)
|
||
(pretty-print-state-graph-with gr pretty-print-state))
|
||
|
||
;;; A shortcut for pretty-print-state-graph.
|
||
(define-syntax-rule (ppsg gr) (pretty-print-state-graph gr))
|
||
|
||
;;; Pretty prints a state graph with pretty-print-boolean-state.
|
||
(define (pretty-print-boolean-state-graph gr)
|
||
(pretty-print-state-graph-with gr pretty-print-boolean-state))
|
||
|
||
;;; A shortcut for pretty-print-boolean-state-graph.
|
||
(define-syntax-rule (ppsgb gr) (pretty-print-boolean-state-graph gr))
|
||
|
||
;;; Builds the full state graph of a Boolean network.
|
||
(define (build-full-boolean-state-graph dyn)
|
||
(dds-build-state-graph
|
||
dyn
|
||
(list->set (build-all-boolean-states (hash-keys (dynamics-network dyn))))))
|
||
|
||
;;; Build the full annotated state graph of a Boolean network.
|
||
(define (build-full-boolean-state-graph-annotated dyn)
|
||
(dds-build-state-graph-annotated
|
||
dyn
|
||
(list->set (build-all-boolean-states (hash-keys (dynamics-network dyn))))))
|
||
|
||
(module+ test
|
||
(test-case "Dynamics of networks"
|
||
(define n (network-form->network #hash((a . (not a)) (b . b))))
|
||
(define asyn (make-asyn-dynamics n))
|
||
(define syn (make-syn-dynamics n))
|
||
(define s (make-state '((a . #t) (b . #f))))
|
||
(define ss (set (make-state '((a . #t) (b . #t)))
|
||
(make-state '((a . #f) (b . #t)))))
|
||
(define gr1 (dds-build-n-step-state-graph asyn (set s) 1))
|
||
(define gr-full (dds-build-state-graph asyn (set s)))
|
||
(define gr-full-pp (pretty-print-state-graph gr-full))
|
||
(define gr-full-ppb (pretty-print-boolean-state-graph gr-full))
|
||
(define gr-complete-bool (build-full-boolean-state-graph asyn))
|
||
(define gr-complete-bool-ann (build-full-boolean-state-graph-annotated asyn))
|
||
(check-equal? (dds-step-one asyn s) (set (make-state '((a . #f) (b . #f)))
|
||
(make-state '((a . #t) (b . #f)))))
|
||
(check-equal? (dds-step-one-annotated asyn s)
|
||
(set (cons (set 'b) '#hash((a . #t) (b . #f)))
|
||
(cons (set 'a) '#hash((a . #f) (b . #f)))))
|
||
(check-equal? (dds-step-one syn s) (set (make-state '((a . #f) (b . #f)))))
|
||
(check-equal? (dds-step asyn ss)
|
||
(set (make-state '((a . #f) (b . #t)))
|
||
(make-state '((a . #t) (b . #t)))))
|
||
(check-true (has-vertex? gr1 #hash((a . #t) (b . #f))))
|
||
(check-true (has-vertex? gr1 #hash((a . #f) (b . #f))))
|
||
(check-false (has-vertex? gr1 #hash((a . #t) (b . #t))))
|
||
(check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))))
|
||
(check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))))
|
||
(check-false (has-edge? gr1 #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))))
|
||
|
||
(check-true (has-vertex? gr-full #hash((a . #t) (b . #f))))
|
||
(check-true (has-vertex? gr-full #hash((a . #f) (b . #f))))
|
||
(check-false (has-vertex? gr-full #hash((a . #t) (b . #t))))
|
||
(check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))))
|
||
(check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))))
|
||
(check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))))
|
||
(check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))))
|
||
|
||
(check-true (has-vertex? gr-full-pp "a:#f b:#f"))
|
||
(check-true (has-vertex? gr-full-pp "a:#t b:#f"))
|
||
(check-true (has-vertex? gr-full-ppb "a:0 b:0"))
|
||
(check-true (has-vertex? gr-full-ppb "a:1 b:0"))
|
||
|
||
(check-true (set=?
|
||
(get-edges gr-complete-bool)
|
||
'((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))
|
||
(#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f)))
|
||
(#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))
|
||
(#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))
|
||
(#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t)))
|
||
(#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t)))
|
||
(#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t)))
|
||
(#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t))))))
|
||
|
||
(check-true (set=?
|
||
(get-edges gr-complete-bool-ann)
|
||
'((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))
|
||
(#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f)))
|
||
(#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))
|
||
(#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))
|
||
(#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t)))
|
||
(#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t)))
|
||
(#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t)))
|
||
(#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t))))))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))
|
||
(set (set 'a)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f)))
|
||
(set (set 'b)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))
|
||
(set (set 'b)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))
|
||
(set (set 'a)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t)))
|
||
(set (set 'a)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t)))
|
||
(set (set 'b)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t)))
|
||
(set (set 'b)))
|
||
(check-equal? (edge-weight gr-complete-bool-ann
|
||
#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))
|
||
(set (set 'a)))))
|
||
|
||
|
||
;;; =================================
|
||
;;; Tabulating functions and networks
|
||
;;; =================================
|
||
|
||
;;; Given a function and a list of domains for each of its arguments,
|
||
;;; in order, produces a list of lists giving the values of arguments
|
||
;;; and the value of the functions for these inputs.
|
||
(define (tabulate/domain-list func doms)
|
||
(for/list ([xs (apply cartesian-product doms)])
|
||
(append xs (list (apply func xs)))))
|
||
|
||
(module+ test
|
||
(test-case "tabulate/domain-list"
|
||
(check-equal? (tabulate/domain-list (λ (x y) (and x y)) '((#f #t) (#f #t)))
|
||
'((#f #f #f) (#f #t #f) (#t #f #f) (#t #t #t)))))
|
||
|
||
;;; Like tabulate, but the domains are given as a rest argument.
|
||
(define (tabulate func . doms) (tabulate/domain-list func doms))
|
||
|
||
(module+ test
|
||
(test-case "tabulate"
|
||
(check-equal? (tabulate (λ (x y) (and x y)) '(#f #t) '(#f #t))
|
||
'((#f #f #f) (#f #t #f) (#t #f #f) (#t #t #t)))))
|
||
|
||
;;; Like tabulate, but assumes the domains of all variables of the
|
||
;;; function are Boolean. func must have a fixed arity. It is an
|
||
;;; error to supply a function of variable arity.
|
||
(define (tabulate/boolean func)
|
||
(tabulate/domain-list func (make-list (procedure-arity func) '(#f #t))))
|
||
|
||
(module+ test
|
||
(test-case "tabulate/boolean"
|
||
(check-equal? (tabulate/boolean (lambda (x y) (and x y)))
|
||
'((#f #f #f) (#f #t #f) (#t #f #f) (#t #t #t)))))
|
||
|
||
;;; Like tabulate, but supposes that the function works on states.
|
||
;;;
|
||
;;; The argument domains defines the domains of each of the component
|
||
;;; of the states. If headers it true, the resulting list starts with
|
||
;;; a listing the names of the variables of the domain and ending with
|
||
;;; the symbol 'f, which indicates the values of the function.
|
||
(define (tabulate-state func domains #:headers [headers #t])
|
||
(define (st-vals st) (hash-map st (λ (x y) y) #t))
|
||
(define tab (for/list ([st (build-all-states domains)])
|
||
(append (st-vals st) (list (func st)))))
|
||
(cond
|
||
[headers
|
||
(define vars (append (hash-map domains (λ (x y) x) #t) '(f)))
|
||
(cons vars tab)]
|
||
[else tab]))
|
||
|
||
;;; Like tabulate-state, but assumes the function is a Boolean
|
||
;;; function. args is a list of names of the arguments which can
|
||
;;; appear in the states.
|
||
(define (tabulate-state/boolean func args #:headers [headers #t])
|
||
(tabulate-state func (make-boolean-domains args) #:headers headers))
|
||
|
||
(module+ test
|
||
(test-case "tabulate-state/boolean"
|
||
(define func (λ (st) (not (hash-ref st 'a))))
|
||
(check-equal? (tabulate-state/boolean func '(a)) '((a f) (#f #t) (#t #f)))))
|
||
|
||
;;; Tabulates a given network.
|
||
;;;
|
||
;;; For a Boolean network with n variables, returns a table with 2n
|
||
;;; columns and 2^n rows. The first n columns correspond to the
|
||
;;; different values of the variables of the networks. The last n
|
||
;;; columns represent the values of the n update functions of the
|
||
;;; network. If headers is #t, prepends a list of variable names and
|
||
;;; update functions (f-x, where x is the name of the corresponding
|
||
;;; variable) to the result.
|
||
(define (tabulate-network network domains #:headers [headers #t])
|
||
(define funcs (hash-map network (λ (x y) y) #t))
|
||
(define tab (for/list ([st (build-all-states domains)])
|
||
(append (hash-map st (λ (x y) y) #t)
|
||
(for/list ([f funcs]) (f st)))))
|
||
(cond
|
||
[headers
|
||
(define var-names (hash-map network (λ (x y) x) #t))
|
||
(define func-names (for/list ([x var-names]) (string->symbol (format "f-~a" x))))
|
||
(cons (append var-names func-names) tab)]
|
||
[else tab]))
|
||
|
||
;;; Like tabulate-network, but assumes all the variables are Boolean.
|
||
(define (tabulate-boolean-network bn #:headers [headers #t])
|
||
(tabulate-network bn (make-boolean-domains (hash-map bn (λ (x y) x) #t))
|
||
#:headers headers))
|
||
|
||
(module+ test
|
||
(test-case "tabulate-boolean-network"
|
||
(define bn (network-form->network #hash((a . (not a)) (b . b))))
|
||
(check-equal? (tabulate-boolean-network bn)
|
||
'((a b f-a f-b) (#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t)))
|
||
(check-equal? (tabulate-boolean-network bn #:headers #f)
|
||
'((#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t)))))
|
||
|
||
|
||
;;; ===================================
|
||
;;; Constructing functions and networks
|
||
;;; ===================================
|
||
|
||
;;; Given a table like the one produced by the tabulate functions,
|
||
;;; creates a function which has this behaviour.
|
||
;;;
|
||
;;; More exactly, the input is a list of lists of values. All but the
|
||
;;; last elements of every list give the values of the parameters of
|
||
;;; the function, while the the last element of every list gives the
|
||
;;; value of the function. Thus, every list should have at least two
|
||
;;; elements.
|
||
;;;
|
||
;;; The produced function is implemented via lookups in hash tables,
|
||
;;; meaning that it may be sometimes more expensive to compute than by
|
||
;;; using an direct symbolic implementation.
|
||
(define (table->function table)
|
||
(let ([func (table->function/list table)])
|
||
(λ args (func args))))
|
||
|
||
(module+ test
|
||
(test-case "table->function"
|
||
(define negation (table->function '((#t #f) (#f #t))))
|
||
(check-true (negation #f))
|
||
(check-false (negation #t))))
|
||
|
||
;;; Like table->function, but the produced function accepts a single
|
||
;;; list of arguments instead of individual arguments.
|
||
(define (table->function/list table)
|
||
((curry hash-ref)
|
||
(for/hash ([line table])
|
||
(let-values ([(x fx) (split-at-right line 1)])
|
||
(values x (car fx))))))
|
||
|
||
(module+ test
|
||
(test-case "table->function/list"
|
||
(define negation/list (table->function/list '((#t #f) (#f #t))))
|
||
(check-true (negation/list '(#f)))
|
||
(check-false (negation/list '(#t)))))
|
||
|
||
;;; Given a table like the one produced by tabulate-network,
|
||
;;; constructs a Boolean network having this behaviour. If headers is
|
||
;;; #t, considers that the first element of the list are the headers
|
||
;;; and reads the names of the variables from them. Otherwise
|
||
;;; generates names for variables of the form xi, where 0 ≤ i < number
|
||
;;; of variables, and treats all rows in the table as defining the
|
||
;;; behaviour of the functions of the network. The columns defining
|
||
;;; the functions are taken to be in the same order as the variables
|
||
;;; in the first half of the function. The headers of the columns
|
||
;;; defining the functions are therefore discarded.
|
||
;;;
|
||
;;; This function relies on table->function, so the same caveats
|
||
;;; apply.
|
||
(define (table->network table #:headers [headers #t])
|
||
(define n (/ (length (car table)) 2))
|
||
;; Get the variable names from the table or generate them, if
|
||
;; necessary.
|
||
(define var-names (cond [headers (take (car table) n)]
|
||
[else (for ([i (in-range n)])
|
||
(symbol->string (format "x~a" i)))]))
|
||
;; Drop the headers if they are present.
|
||
(define tab (cond [headers (cdr table)]
|
||
[else table]))
|
||
;; Split the table into the inputs and the outputs of the functions.
|
||
(define-values (ins outs) (multi-split-at tab n))
|
||
;; Transpose outs to have functions define by lines instead of by
|
||
;; columns.
|
||
(define func-lines (lists-transpose outs))
|
||
;; Make states out of inputs.
|
||
(define st-ins (for/list ([in ins]) (make-state (map cons var-names in))))
|
||
;; Construct the functions.
|
||
(define funcs (for/list ([out func-lines])
|
||
(table->function (for/list ([in st-ins] [o out])
|
||
(list in o)))))
|
||
;; Construct the network.
|
||
(make-network-from-functions (map cons var-names funcs)))
|
||
|
||
(module+ test
|
||
(test-case "table->network"
|
||
(define n (table->network '((x1 x2 f1 f2)
|
||
(#f #f #f #f)
|
||
(#f #t #f #t)
|
||
(#t #f #t #f)
|
||
(#t #t #t #t))))
|
||
(define f1 (hash-ref n 'x1))
|
||
(define f2 (hash-ref n 'x2))
|
||
|
||
(check-false (f1 (make-state '((x1 . #f) (x2 . #f)))))
|
||
(check-false (f1 (make-state '((x1 . #f) (x2 . #t)))))
|
||
(check-true (f1 (make-state '((x1 . #t) (x2 . #f)))))
|
||
(check-true (f1 (make-state '((x1 . #t) (x2 . #t)))))
|
||
|
||
(check-false (f2 (make-state '((x1 . #f) (x2 . #f)))))
|
||
(check-true (f2 (make-state '((x1 . #f) (x2 . #t)))))
|
||
(check-false (f2 (make-state '((x1 . #t) (x2 . #f)))))
|
||
(check-true (f2 (make-state '((x1 . #t) (x2 . #t)))))))
|
||
|
||
;;; Returns the n-th Cartesian power of the Boolean domain: {0,1}^n.
|
||
(define (boolean-power n) (apply cartesian-product (make-list n '(#f #t))))
|
||
|
||
(module+ test
|
||
(test-case "boolean-power"
|
||
(check-equal? (boolean-power 2) '((#f #f) (#f #t) (#t #f) (#t #t)))))
|
||
|
||
;;; Like boolean-power, but returns a stream whose elements the
|
||
;;; elements of the Cartesian power.
|
||
(define (boolean-power/stream n) (apply cartesian-product/stream (make-list n '(#f #t))))
|
||
|
||
(module+ test
|
||
(test-case "boolean-power/stream"
|
||
(check-equal? (stream->list (boolean-power/stream 2)) '((#f #f) (#f #t) (#t #f) (#t #t)))))
|
||
|
||
;;; Returns the stream of the truth tables of all Boolean functions of
|
||
;;; a given arity.
|
||
;;;
|
||
;;; There are 2^(2^n) Boolean functions of arity n.
|
||
(define (enumerate-boolean-tables n)
|
||
(let ([inputs (boolean-power/stream n)]
|
||
[outputs (boolean-power/stream (expt 2 n))])
|
||
(for/stream ([out (in-stream outputs)])
|
||
(for/list ([in (in-stream inputs)] [o out])
|
||
(append in (list o))))))
|
||
|
||
;;; Returns the stream of all Boolean functions of a given arity.
|
||
;;;
|
||
;;; There are 2^(2^n) Boolean functions of arity n.
|
||
(define (enumerate-boolean-functions n)
|
||
(stream-map table->function (enumerate-boolean-tables n)))
|
||
|
||
(module+ test
|
||
(test-case "enumerate-boolean-tables"
|
||
(define f1 (stream-first (enumerate-boolean-functions 1)))
|
||
(check-false (f1 #f))
|
||
(check-false (f1 #t))))
|
||
|
||
;;; Returns the stream of all Boolean functions of a given arity. As
|
||
;;; different from the functions returned by
|
||
;;; enumerate-boolean-functions, the functions take lists of arguments
|
||
;;; instead of n arguments.
|
||
;;;
|
||
;;; There are 2^(2^n) Boolean functions of arity n.
|
||
(define (enumerate-boolean-functions/list n)
|
||
(stream-map table->function/list (enumerate-boolean-tables n)))
|
||
|
||
(module+ test
|
||
(test-case "enumerate-boolean-functions/list"
|
||
(define f1/list (stream-first (enumerate-boolean-functions/list 1)))
|
||
(check-false (f1/list '(#f)))
|
||
(check-false (f1/list '(#t)))))
|
||
|
||
|
||
;;; =============================
|
||
;;; Random functions and networks
|
||
;;; =============================
|
||
|
||
;;; Generates a random truth table for a Boolean function of arity n.
|
||
(define (random-boolean-table n)
|
||
(define/match (num->bool x) [(0) #f] [(1) #t])
|
||
(define inputs (boolean-power n))
|
||
(define outputs (stream-take (in-random 2) (expt 2 n)))
|
||
(for/list ([i inputs] [o outputs])
|
||
(append i (list (num->bool o)))))
|
||
|
||
(module+ test
|
||
(test-case "random-boolean-table"
|
||
(random-seed 0)
|
||
(check-equal? (random-boolean-table 2) '((#f #f #t) (#f #t #t) (#t #f #f) (#t #t #f)))))
|
||
|
||
;;; Generates a random Boolean function of arity n.
|
||
(define random-boolean-function (compose table->function random-boolean-table))
|
||
|
||
(module+ test
|
||
(test-case "random-boolean-function"
|
||
(define f (random-boolean-function 2))
|
||
(check-true (f #f #f)) (check-false (f #f #t))
|
||
(check-true (f #t #f)) (check-false (f #t #t))))
|
||
|
||
;;; Like random-boolean-function, but the constructed function takes a
|
||
;;; list of arguments.
|
||
(define random-boolean-function/list (compose table->function/list random-boolean-table))
|
||
|
||
(module+ test
|
||
(test-case "random-boolean-function/list"
|
||
(define f (random-boolean-function/list 2))
|
||
(check-false (f '(#f #f))) (check-true (f '(#f #t)))
|
||
(check-true (f '(#t #f))) (check-false (f '(#t #t)))))
|
||
|
||
;;; Generates a random function accepting a state over the domains
|
||
;;; given by arg-domains and producing values in func-domain.
|
||
(define (random-function/state arg-domains func-domain)
|
||
(table->function (for/list ([st (build-all-states arg-domains)])
|
||
(list st (random-ref func-domain)))))
|
||
|
||
;;; Like random-function/state, but the domains of the arguments and
|
||
;;; of the function are Boolean. args is a list of names of the
|
||
;;; variables appearing in the state.
|
||
(define (random-boolean-function/state args)
|
||
(random-function/state (make-boolean-domains args) '(#f #t)))
|
||
|
||
(module+ test
|
||
(test-case "random-boolean-function/state"
|
||
(random-seed 0)
|
||
(define f (random-boolean-function/state '(x1 x2)))
|
||
(check-equal? (tabulate-state/boolean f '(x1 x2))
|
||
'((x1 x2 f) (#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t)))
|
||
(check-equal? (tabulate-state/boolean f '(x1 x2) #:headers #f)
|
||
'((#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t)))
|
||
(define bn (random-boolean-network/vars 3))
|
||
(check-equal? (tabulate-boolean-network bn)
|
||
'((x0 x1 x2 f-x0 f-x1 f-x2)
|
||
(#f #f #f #f #t #f)
|
||
(#f #f #t #t #f #f)
|
||
(#f #t #f #f #t #t)
|
||
(#f #t #t #t #f #f)
|
||
(#t #f #f #t #f #t)
|
||
(#t #f #t #f #f #t)
|
||
(#t #t #f #f #f #f)
|
||
(#t #t #t #t #t #t)))))
|
||
|
||
;;; Generates a random network from the given domain mapping.
|
||
(define (random-network domains)
|
||
(for/hash ([(x x-dom) (in-hash domains)])
|
||
(values x (random-function/state domains x-dom))))
|
||
|
||
;;; Generates a random Boolean network with the given variables.
|
||
(define (random-boolean-network vars)
|
||
(random-network (make-boolean-domains vars)))
|
||
|
||
;;; Like random-boolean-network, but also generates the names of the
|
||
;;; variables for the network. The variables have the names x0 to xk,
|
||
;;; where k = n - 1.
|
||
(define (random-boolean-network/vars n)
|
||
(random-boolean-network (for/list ([i (in-range n)]) (string->symbol (format "x~a" i)))))
|