#lang racket ;;; Tests for dds/networks. (require rackunit graph "networks.rkt") ;;; This test case sets up the following Boolean network: ;;; x1 = x1 AND NOT x2 ;;; x2 = NOT x2 (test-case "Basic definitions" (let* ([f1 (λ (s) (let ([x1 (hash-ref s 'x1)] [x2 (hash-ref s 'x2)]) (and x1 (not x2))))] [f2 (λ (s) (let ([x2 (hash-ref s 'x2)]) (not x2)))] [bn (make-network-from-functions `((x1 . ,f1) (x2 . ,f2)))]) (test-case "One-step syncronous update" (let* ([s (make-state '((x1 . #t) (x2 . #f)))] [new-s (update bn s '(x2 x1))]) (check-equal? s #hash((x1 . #t) (x2 . #f))) (check-equal? new-s #hash((x1 . #t) (x2 . #t))))) (test-case "One-step asynchronous update" (let* ([s (make-state '((x1 . #f) (x2 . #f)))] [new-s (update bn s '(x2 x1))]) (check-equal? s #hash((x1 . #f) (x2 . #f))) (check-equal? new-s #hash((x1 . #f) (x2 . #t))))))) (test-case "Syntactic description of Boolean networks" (let ([s (make-state '((x . #t) (y . #f)))] [f (update-function-form->update-function '(and x y))]) (check-equal? (f s) #f)) (let ([bn1 (network-form->network (make-hash '((a . (and a b)) (b . (not b)))))] [bn2 (make-network-from-forms '((a . (and a b)) (b . (not b))))] [bn3 (nn '((a . (and a b)) (b . (not b))))] [s (st '((a . #t) (b . #t)))]) (check-equal? ((hash-ref bn1 'a) s) #t) (check-equal? ((hash-ref bn2 'a) s) #t) (check-equal? ((hash-ref bn3 'a) s) #t))) (test-case "Inferring interaction graphs" (let* ([n #hash((a . (+ a b c)) (b . (- b c)))] [ig (build-interaction-graph n)]) (check-true (set=? (list-interactions n 'a) '(a b))) (check-true (set=? (list-interactions n 'b) '(b))) (check-true (has-vertex? ig 'a)) (check-true (has-vertex? ig 'b)) (check-false (has-vertex? ig 'c)) (check-true (has-edge? ig 'a 'a)) (check-true (has-edge? ig 'b 'a)) (check-true (has-edge? ig 'b 'b)) (check-false (has-edge? ig 'c 'b)) (check-false (has-edge? ig 'c 'a))) (check-equal? (build-all-states #hash((a . (#t #f)) (b . (1 2 3)))) '(#hash((a . #t) (b . 1)) #hash((a . #t) (b . 2)) #hash((a . #t) (b . 3)) #hash((a . #f) (b . 1)) #hash((a . #f) (b . 2)) #hash((a . #f) (b . 3)))) (check-equal? (make-boolean-domains '(a b)) #hash((a . (#f #t)) (b . (#f #t)))) (let* ([n #hash((a . (not b)) (b . a))] [doms (make-boolean-domains '(a b))] [sig1 (build-signed-interaction-graph n doms)] [sig2 (build-boolean-signed-interaction-graph n)]) (check-equal? (get-interaction-sign n doms 'a 'b) '+) (check-equal? (get-interaction-sign n doms 'b 'a) '-) (check-true (has-vertex? sig1 'a)) (check-true (has-vertex? sig1 'b)) (check-false (has-vertex? sig1 'c)) (check-false (has-edge? sig1 'a 'a)) (check-true (has-edge? sig1 'b 'a)) (check-false (has-edge? sig1 'b 'b)) (check-false (has-edge? sig1 'c 'b)) (check-false (has-edge? sig1 'c 'a)) (check-equal? (edge-weight sig1 'a 'b) 1) (check-equal? (edge-weight sig1 'b 'a) -1) (check-true (has-vertex? sig2 'a)) (check-true (has-vertex? sig2 'b)) (check-false (has-vertex? sig2 'c)) (check-false (has-edge? sig2 'a 'a)) (check-true (has-edge? sig2 'b 'a)) (check-false (has-edge? sig2 'b 'b)) (check-false (has-edge? sig2 'c 'b)) (check-false (has-edge? sig2 'c 'a)) (check-equal? (edge-weight sig2 'a 'b) 1) (check-equal? (edge-weight sig2 'b 'a) -1))) (test-case "Dynamics of networks" (let ([vars '(a b c)]) (check-equal? (make-asyn vars) (set (set 'a) (set 'b) (set 'c))) (check-equal? (make-syn vars) (set (set 'a 'b 'c)))) (let* ([n (nn '((a . (not a)) (b . b)))] [asyn (make-asyn-dynamics n)] [syn (make-syn-dynamics n)]) (check-equal? (dynamics-network asyn) n) (check-equal? (dynamics-mode asyn) (set (set 'a) (set 'b))) (check-equal? (dynamics-network syn) n) (check-equal? (dynamics-mode syn) (set (set 'a 'b)))) (let* ([n (nn '((a . (not a)) (b . b)))] [asyn (make-asyn-dynamics n)] [syn (make-syn-dynamics n)] [s (st '((a . #t) (b . #f)))]) (check-equal? (dds-step-one asyn s) (set (st '((a . #f) (b . #f))) (st '((a . #t) (b . #f))))) (check-equal? (dds-step-one syn s) (set (st '((a . #f) (b . #f))))) (check-equal? (dds-step asyn (set (st '((a . #t) (b . #t))) (st '((a . #f) (b . #t))))) (set (st '((a . #f) (b . #t))) (st '((a . #t) (b . #t)))))))