#lang racket ;;; dds/utils ;;; Various utilities. (require graph (for-syntax syntax/parse racket/list)) (provide ;; Functions (contract-out [pretty-print-set-sets (-> (set/c (set/c symbol?) #:kind 'dont-care) string?)] [update-vertices/unweighted (-> graph? (-> any/c any/c) graph?)] [update-graph (->* (graph?) (#:v-func (-> any/c any/c) #:e-func (-> any/c any/c)) graph?)] [collect-by-key (-> (listof any/c) (listof any/c) (values (listof any/c) (listof (listof any/c))))] [collect-by-key/sets (-> (listof any/c) (listof any/c) (values (listof any/c) (listof (set/c any/c))))] [ht-values/list->set (-> (hash/c any/c (listof any/c)) (hash/c any/c (set/c any/c)))] [hash->list/ordered (-> hash? (listof (cons/c any/c any/c)))] [multi-split-at (-> (listof (listof any/c)) number? (values (listof (listof any/c)) (listof (listof any/c))))] [lists-transpose (-> (listof (listof any/c)) (listof (listof any/c)))] [procedure-fixed-arity? (-> procedure? boolean?)] [in-random (case-> (-> (stream/c (and/c real? inexact? (>/c 0) ( (integer-in 1 4294967087) (stream/c exact-nonnegative-integer?)) (-> exact-integer? (integer-in 1 4294967087) (stream/c exact-nonnegative-integer?)))] [cartesian-product/stream (->* () #:rest (listof stream?) stream?)] [boolean-power (-> number? (listof (listof boolean?)))] [boolean-power/stream (-> number? (stream/c (listof boolean?)))] [any->01 (-> any/c (or/c 0 1))] [01->boolean (-> (or/c 0 1) boolean?)])) (module+ test (require rackunit)) ;;; =================== ;;; HashTable Injection ;;; =================== ;;; This section of the file contains some utilities to streamline the ;;; usage of hash tables mapping symbols to values. The goal is ;;; essentially to avoid having to write explicit hash-ref calls. ;;; A variable mapping is a hash table mapping symbols to values. (define (variable-mapping? dict) (hash/c symbol? any/c)) ;;; Given a (HashTable Symbol a) and a sequence of symbols, binds ;;; these symbols to the values they are associated to in the hash ;;; table, then puts the body in the context of these bindings. ;;; ;;; > (let ([ht #hash((a . 1) (b . 2))]) ;;; (auto-hash-ref/explicit (ht a b) (+ a (* 2 b)))) ;;; 5 ;;; ;;; Note that only one expression can be supplied in the body. (define-syntax (auto-hash-ref/explicit stx) (syntax-parse stx [(_ (ht:id xs:id ...) body:expr) #`(let #,(for/list ([x (syntax->list #'(xs ...))]) #`[#,x (hash-ref ht '#,x)]) body)])) (module+ test (test-case "auto-hash-ref/explicit" (define mytable #hash((a . 3) (b . 4))) (check-equal? (auto-hash-ref/explicit (mytable b a) (* a b)) 12) (define ht #hash((a . #t) (b . #f))) (check-equal? (auto-hash-ref/explicit (ht a b) (and (not a) b)) #f))) ;;; Given an expression and a (HashTable Symbol a), looks up the ;;; symbols with a leading semicolon and binds them to the value they ;;; are associated to in the hash table. ;;; ;;; > (let ([ht #hash((a . 1) (b . 2))]) ;;; (auto-hash-ref/: ht (+ :a (* 2 :b)))) ;;; 5 ;;; ;;; Note that the symbol :a is matched to the key 'a in the hash ;;; table. ;;; ;;; Note that only one expression can be supplied in the body. (define-syntax (auto-hash-ref/: stx) (syntax-parse stx [(_ ht:id body) (let* ([names/: (collect-colons (syntax->datum #'body))]) #`(let #,(for/list ([x names/:]) ;; put x in the same context as body #`[#,(datum->syntax #'body x) (hash-ref ht '#,(strip-colon x))]) body))])) (module+ test (test-case "auto-hash-ref/:" (define ht1 #hash((x . #t) (y . #t) (t . #f))) (define z #t) (check-equal? (auto-hash-ref/: ht1 (and :x (not :y) z (or (and :t) :x))) #f) (define ht2 #hash((a . 1) (b . 2))) (check-equal? (auto-hash-ref/: ht2 (+ :a (* 2 :b))) 5))) ;;; The helper functions for auto-hash-ref/:. (begin-for-syntax ;; Collect all the symbols starting with a colon in datum. (define (collect-colons datum) (remove-duplicates (flatten (for/list ([token datum]) (cond [(symbol? token) (let ([name (symbol->string token)]) (if (eq? #\: (string-ref name 0)) token '()))] [(list? token) (collect-colons token)] [else '()]))))) ;; Strip the leading colon off x. (define (strip-colon x) (let ([x-str (symbol->string x)]) (if (eq? #\: (string-ref x-str 0)) (string->symbol (substring x-str 1)) x)))) ;;; Temporarily injects the mappings from the given hash table as ;;; bindings in a namespace including racket/base and then evaluates ;;; the expression. ;;; ;;; > (let ([ht #hash((a . 1) (b . 1))]) ;;; (eval-with ht '(+ b a 1))) ;;; 3 ;;; ;;; The local bindings from the current lexical scope are not ;;; conserved. Therefore, the following outputs an error about a ;;; missing identifier: ;;; ;;; > (let ([ht #hash((a . 1) (b . 1))] ;;; [z 1]) ;;; (eval-with ht '(+ b z a 1))) ;;; (define (eval-with ht expr) (parameterize ([current-namespace (make-base-namespace)]) (for ([(x val) ht]) (namespace-set-variable-value! x val)) (eval expr))) (module+ test (test-case "eval-with" (check-equal? (let ([ht #hash((a . 1) (b . 1))]) (eval-with ht '(+ b a 1))) 3))) ;;; Same as eval-with, but returns only the first value produced by ;;; the evaluated expression. (define (eval-with1 ht expr) (let ([vals (call-with-values (λ () (eval-with ht expr)) (λ vals vals))]) (car vals))) ;;; ============================== ;;; Analysis of quoted expressions ;;; ============================== ;;; Produces a list of symbols appearing in the quoted expression ;;; passed in the first argument. (define (extract-symbols form) (match form [(? symbol?) (list form)] [(? list?) (flatten (for/list ([x form]) (extract-symbols x)))] [else '()])) (module+ test (test-case "extract-symbols" (check-equal? (extract-symbols '(1 (2 3) x (y z 3))) '(x y z)))) ;;; ========================= ;;; Interaction with Org-mode ;;; ========================= ;;; Org-mode supports laying out the output of code blocks as tables, ;;; which is very practical for various variable mappings (e.g., ;;; states). However, when the hash table maps variables to lists, ;;; Org-mode will create a column per list element, which may or may ;;; not be the desired effect. In this section I define some ;;; utilities for nicer interoperation with Org-mode tables. I also ;;; define some shortcuts to reduce the number of words to type when ;;; using dds with Org-mode. See example.org for examples of usage. ;;; Converts any value to string. (define (any->string x) (with-output-to-string (λ () (display x)))) (module+ test (test-case "any->string" (check-equal? (any->string 'a) "a") (check-equal? (any->string '(a 1 (x y))) "(a 1 (x y))") (check-equal? (any->string "hello") "hello"))) ;;; A string variable mapping is a mapping from variables to strings. (define (string-variable-mapping? dict) (hash/c symbol? string?)) ;;; Converts all the values of a variable mapping to string. (define (stringify-variable-mapping ht) (for/hash ([(key val) ht]) (values key (any->string val)))) (module+ test (test-case "stringify-variable-mapping" (define mp (stringify-variable-mapping #hash((a . (and a b)) (b . (not b))))) (check-equal? (hash-ref mp 'a) "(and a b)") (check-equal? (hash-ref mp 'b) "(not b)"))) ;;; Reads any value from string. (define (string->any str) (with-input-from-string str (λ () (read)))) (module+ test (test-case "string->any" (check-equal? (string->any "(or b (not a))") '(or b (not a))) (check-equal? (string->any "14") 14))) ;;; Given a sexp, converts all "#f" to #f and "#t" to #t. ;;; ;;; When I read Org-mode tables, I pump them through a call to the ;;; prin1 because the elisp sexp seems incompatible with Racket. On ;;; the other hand, Racket Booleans seem to upset elisp a little, so ;;; prin1 wraps them in additional double quotes. This function ;;; removes those quotes. (define/match (handle-org-booleans datum) [("#t") #t] [("#f") #f] [((? list?)) (map handle-org-booleans datum)] [ (_) datum]) ;;; Given a sexp, applies the given function to any object which is ;;; not a list. ;;; ;;; The contract of this function will not check whether func is ;;; indeed applicable to every non-list element of the sexp. If this ;;; is not the case, a contract violation for func will be generated. (define (map-sexp func sexp) (match sexp [(? list?) (map ((curry map-sexp) func) sexp)] [datum (func datum)])) (module+ test (test-case "map-sexp" (check-equal? (map-sexp add1 '(1 2 (4 10) 3)) '(2 3 (5 11) 4)))) ;;; Reads a sexp from a string produced by Org-mode for a named table. ;;; See example.org for examples. (define read-org-sexp (compose ((curry map-sexp) (match-lambda [(and (? string?) str) (string->any str)] [x x])) string->any)) ;;; A shortcut for read-org-sexp. (define unorg read-org-sexp) (module+ test (test-case "read-org-sexp" (check-equal? (read-org-sexp "((\"a\" \"(and a b)\") (\"b\" \"(or b (not a))\"))") '((a (and a b)) (b (or b (not a))))) (check-equal? (read-org-sexp "(#t \"#t\" \"#t \" '(1 2 \"#f\"))") '(#t #t #t '(1 2 #f))))) ;;; A contract allowing pairs constructed via cons or via list. (define (general-pair/c key-contract val-contract) (or/c (list/c key-contract val-contract) (cons/c key-contract val-contract))) ;;; Given a list of pairs of strings and some other values (possibly ;;; strings), converts the first element of each pair to a string, and ;;; reads the second element with string->any or keeps it as is if it ;;; is not a string. (define (unstringify-pairs pairs) (for/list ([p pairs]) (match p [(list key val) (cons (string->symbol key) (if (string? val) (string->any val) val))] [(cons key val) ; also handle improper pairs (cons (string->symbol key) (if (string? val) (string->any val) val))]))) (module+ test (test-case "unstringify-pairs" (check-equal? (unstringify-pairs '(("a" . "1") ("b" . "(and a (not b))"))) '((a . 1) (b . (and a (not b))))) (check-equal? (unstringify-pairs '(("a" . 1) ("b" . "(and a (not b))"))) '((a . 1) (b . (and a (not b))))))) ;;; Reads a variable mapping from a string, such as the one which ;;; Org-mode produces from tables. (define read-org-variable-mapping (compose make-immutable-hash unstringify-pairs string->any)) (module+ test (test-case "read-org-variable-mapping" (define m1 (read-org-variable-mapping "((\"a\" \"(and a b)\") (\"b\" \"(or b (not a))\"))")) (define m2 (read-org-variable-mapping "((\"a\" . \"(and a b)\") (\"b\" . \"(or b (not a))\"))")) (define m3 (unorgv "((\"a\" . \"(and a b)\") (\"b\" . \"(or b (not a))\"))")) (check-equal? (hash-ref m1 'a) '(and a b)) (check-equal? (hash-ref m2 'a) '(and a b)) (check-equal? (hash-ref m3 'a) '(and a b)) (check-equal? (hash-ref m1 'b) '(or b (not a))) (check-equal? (hash-ref m2 'b) '(or b (not a))) (check-equal? (hash-ref m3 'b) '(or b (not a))))) ;;; A synonym for read-org-variable-mapping. (define unorgv read-org-variable-mapping) ;;; Typeset the graph via graphviz and display it. (define dotit (compose display graphviz)) ;;; Reads a list of symbols from a string. (define (read-symbol-list str) (string->any (string-append "(" str ")"))) (module+ test (test-case "read-symbol-list" (check-equal? (read-symbol-list "a b c") '(a b c)))) ;;; Removes the first and the last symbol of a given string. ;;; ;;; Useful for removing the parentheses in string representations of ;;; lists. (define (drop-first-last str) (substring str 1 (- (string-length str) 1))) (module+ test (test-case "drop-first-last" (check-equal? (drop-first-last "(a b)") "a b"))) ;;; Converts a list of sets of symbols to a list of strings containing ;;; those symbols. (define (list-sets->list-strings lst) (map (compose drop-first-last any->string set->list) lst)) (module+ test (test-case "list-sets->list-strings" (check-equal? (list-sets->list-strings (list (set 'x 'y) (set 'z) (set) (set 't))) '("y x" "z" "" "t")))) ;;; Pretty-prints a set of sets of symbols. ;;; ;;; Typically used for pretty-printing the annotations on the edges of ;;; the state graph. (define (pretty-print-set-sets ms) (string-join (for/list ([m ms]) (format "{~a}" (pretty-print-set m))) "")) (module+ test (test-case "pretty-print-set-sets" (check-equal? (pretty-print-set-sets (set (set 'a 'b) (set 'c))) "{a b}{c}"))) ;;; ========================== ;;; Additional graph utilities ;;; ========================== ;;; Apply a transformation to every vertex in the unweighted graph, ;;; return the new graph. If the transformation function maps two ;;; vertices to the same values, these vertices will be merged in the ;;; resulting graph. The transformation function may be called ;;; multiple times for the same vertex. ;;; ;;; This function does not rely on rename-vertex!, so it can be used ;;; to permute vertex labels. (define (update-vertices/unweighted gr func) (unweighted-graph/directed (for/list ([e (in-edges gr)]) (match-let ([(list u v) e]) (list (func u) (func v)))))) (module+ test (test-case "update-vertices/unweighted" (define gr1 (directed-graph '((a b) (b c)))) (define gr2 (undirected-graph '((a b) (b c)))) (define dbl (λ (x) (let ([x-str (symbol->string x)]) (string->symbol (string-append x-str x-str))))) (define new-gr1 (update-vertices/unweighted gr1 dbl)) (define new-gr2 (update-vertices/unweighted gr2 dbl)) (check-false (has-vertex? new-gr1 'a)) (check-true (has-vertex? new-gr1 'aa)) (check-false (has-vertex? new-gr1 'b)) (check-true (has-vertex? new-gr1 'bb)) (check-false (has-vertex? new-gr1 'c)) (check-true (has-vertex? new-gr1 'cc)) (check-true (has-edge? new-gr1 'aa 'bb)) (check-true (has-edge? new-gr1 'bb 'cc)) (check-true (has-edge? new-gr2 'aa 'bb)) (check-true (has-edge? new-gr2 'bb 'aa)) (check-true (has-edge? new-gr2 'bb 'cc)) (check-true (has-edge? new-gr2 'cc 'bb)))) ;;; Given a graph, apply a transformation v-func to every vertex label ;;; and, if the graph is a weighted graph, the transformation e-func ;;; to every edge label. Both transformations default to identity ;;; functions. If gr is an weighted graph, the result is a weighted ;;; graph. If gr is an unweighted graph, the result is an unweighted ;;; graph. (define (update-graph gr #:v-func [v-func identity] #:e-func [e-func identity]) (define edges (for/list ([e (in-edges gr)]) (match-let ([(list u v) e]) (cond [(unweighted-graph? gr) (list (v-func u) (v-func v))] [else (list (e-func (edge-weight gr u v)) (v-func u) (v-func v))])))) (cond [(unweighted-graph? gr) (unweighted-graph/directed edges)] [else (weighted-graph/directed edges)])) (module+ test (test-case "update-graph" (define gr1 (directed-graph '((a b) (b c)))) (define gr2 (undirected-graph '((a b) (b c)))) (define dbl (λ (x) (let ([x-str (symbol->string x)]) (string->symbol (string-append x-str x-str))))) (define new-gr1-ug (update-graph gr1 #:v-func dbl)) (define new-gr2-ug (update-graph gr2 #:v-func dbl)) (define gr3 (weighted-graph/directed '((10 a b) (11 b c)))) (define new-gr3 (update-graph gr3 #:v-func dbl #:e-func (λ (x) (* 2 x)))) (check-false (has-vertex? new-gr1-ug 'a)) (check-true (has-vertex? new-gr1-ug 'aa)) (check-false (has-vertex? new-gr1-ug 'b)) (check-true (has-vertex? new-gr1-ug 'bb)) (check-false (has-vertex? new-gr1-ug 'c)) (check-true (has-vertex? new-gr1-ug 'cc)) (check-true (has-edge? new-gr1-ug 'aa 'bb)) (check-true (has-edge? new-gr1-ug 'bb 'cc)) (check-true (has-edge? new-gr2-ug 'aa 'bb)) (check-true (has-edge? new-gr2-ug 'bb 'aa)) (check-true (has-edge? new-gr2-ug 'bb 'cc)) (check-true (has-edge? new-gr2-ug 'cc 'bb)) (check-true (has-edge? new-gr3 'aa 'bb)) (check-false (has-edge? new-gr3 'bb 'aa)) (check-true (has-edge? new-gr3 'bb 'cc)) (check-false (has-edge? new-gr3 'cc 'bb)) (check-equal? (edge-weight new-gr3 'aa 'bb) 20) (check-equal? (edge-weight new-gr3 'bb 'cc) 22))) ;;; =============== ;;; Pretty printing ;;; =============== ;;; Pretty print a set by listing its elements in alphabetic order. (define (pretty-print-set s) (string-join (sort (set-map s any->string) stringset ls)))) (module+ test (test-case "collect-by-key/sets" (define-values (e3 l3) (collect-by-key/sets '(a b a) '(1 2 1))) (check-equal? e3 '(a b)) (check-equal? l3 (list (set 1) (set 2))))) ;;; Converts the values of a hash table from lists to sets. (define (ht-values/list->set ht) (for/hash ([(k v) (in-hash ht)]) (values k (list->set v)))) (module+ test (test-case "ht-values/list->set" (check-equal? (ht-values/list->set #hash((a . (1 1)))) (hash 'a (set 1))))) ;;; Returns the key-value pairs of a given hash table in the order in ;;; which the hash table orders them for hash-map and hash-for-each. (define (hash->list/ordered ht) (hash-map ht cons #t)) (module+ test (test-case "hash->list/ordered" (check-equal? (hash->list/ordered #hash((b . 1) (a . 1))) '((a . 1) (b . 1))))) ;;; Given a list of lists, splits every single list at the given ;;; position, and then returns two lists: one consisting of the first ;;; halves, and the one consisting of the second halves. (define (multi-split-at lsts pos) (for/fold ([lefts '()] [rights '()] #:result (values (reverse lefts) (reverse rights))) ([lst (in-list lsts)]) (define-values (left right) (split-at lst pos)) (values (cons left lefts) (cons right rights)))) (module+ test (test-case "multi-split-at" (define-values (l1 l2) (multi-split-at '((1 2 3) (a b c)) 2)) (check-equal? l1 '((1 2) (a b))) (check-equal? l2 '((3) (c))))) ;;; Given a list of lists of the same length, transposes them. ;;; ;;; > (lists-transpose '((1 2) (a b))) ;;; '((1 a) (2 b)) ;;; ;;; This function is essentially in-parallel, wrapped in a couple ;;; conversions. (define lists-transpose (compose sequence->list in-values-sequence ((curry apply) in-parallel))) (module+ test (test-case "lists-transpose" (check-equal? (lists-transpose '((1 2) (a b))) '((1 a) (2 b))))) ;;; ========= ;;; Functions ;;; ========= ;;; Returns #t if the function has fixed arity (i.e. if it does not ;;; take a variable number of arguments). (define (procedure-fixed-arity? func) (match (procedure-arity func) [(arity-at-least _) #f] [arity #t])) (module+ test (test-case "procedure-fixed-arity?" (check-true (procedure-fixed-arity? not)) (check-false (procedure-fixed-arity? +)))) ;;; ========== ;;; Randomness ;;; ========== ;;; Generates a stream of inexact random numbers. The meaning of the ;;; arguments is the same as for the function random: ;;; ;;; (in-randoms k) — a sequence of random exact integers in the range ;;; 0 to k-1. ;;; ;;; (in-randoms min max) — a sequence of random exact integers the ;;; range min to max-1. ;;; ;;; (in-randoms) — a sequence of random inexact numbers between ;;; 0 and 1. (define in-random (case-lambda [() (for/stream ([i (in-naturals)]) (random))] [(k) (for/stream ([i (in-naturals)]) (random k))] [(min max) (for/stream ([i (in-naturals)]) (random min max))])) (module+ test (test-case "in-random" (random-seed 0) (check-equal? (stream->list (stream-take (in-random 100) 10)) '(85 65 20 40 89 45 54 38 26 62)) (check-equal? (stream->list (stream-take (in-random 50 100) 10)) '(75 59 82 85 61 85 59 64 75 53)) (check-equal? (stream->list (stream-take (in-random) 10)) '(0.1656109603231493 0.9680391127132195 0.051518813640790355 0.755901955353936 0.5923534604277275 0.5513340634474264 0.7022057040731392 0.48375400938578744 0.7538961707172924 0.01828428516237329)))) ;;; =========================== ;;; Additional stream utilities ;;; =========================== ;;; Returns the Cartesian product of the given streams. The result is ;;; a stream whose elements are the elements of the Cartesian product. ;;; ;;; The implementation is inspired from the implementation of ;;; cartesian-product in racket/list. (define (cartesian-product/stream . ss) ;; Cartesian product of two streams, produces an improper pair. (define (cp-2 ss1 ss2) (for*/stream ([s1 (in-stream ss1)] [s2 (in-stream ss2)]) (cons s1 s2))) ;; Fold-right over the list of streams. The value for the fold is a ;; 1-value stream containing the empty list, which makes all the ;; lists proper. (foldr cp-2 (sequence->stream (in-value (list))) ss)) (module+ test (test-case "cartesian-product/stream" (check-equal? (stream->list (cartesian-product/stream (in-range 3) (in-range 4 6) '(a b))) '((0 4 a) (0 4 b) (0 5 a) (0 5 b) (1 4 a) (1 4 b) (1 5 a) (1 5 b) (2 4 a) (2 4 b) (2 5 a) (2 5 b))))) ;;; ================== ;;; Boolean operations ;;; ================== ;;; Returns the n-th Cartesian power of the Boolean domain: {0,1}^n. (define (boolean-power n) (apply cartesian-product (make-list n '(#f #t)))) (module+ test (test-case "boolean-power" (check-equal? (boolean-power 2) '((#f #f) (#f #t) (#t #f) (#t #t))))) ;;; Like boolean-power, but returns a stream whose elements the ;;; elements of the Cartesian power. (define (boolean-power/stream n) (apply cartesian-product/stream (make-list n '(#f #t)))) (module+ test (test-case "boolean-power/stream" (check-equal? (stream->list (boolean-power/stream 2)) '((#f #f) (#f #t) (#t #f) (#t #t))))) ;;; Converts any non-#f value to 1 and #f to 0. (define (any->01 x) (if x 1 0)) (module+ test (test-case "any->01" (check-equal? (any->01 #t) 1) (check-equal? (any->01 #f) 0))) ;;; Converts 0 to #f and 1 to #t (define (01->boolean x) (case x [(0) #f] [else #t])) (module+ test (test-case "01->boolean" (check-equal? (01->boolean 0) #f) (check-equal? (01->boolean 1) #t)))