#lang racket ;;; dds/networks ;;; This module provides some quick definitions for and analysing ;;; network models. A network is a set of variables which are updated ;;; according to their corresponding update functions. The variables ;;; to be updated at each step are given by the mode. ;;; ;;; This model can generalise Boolean networks, TBANs, multivalued ;;; networks, etc. (require "utils.rkt" "generic.rkt" "functions.rkt" graph racket/random racket/hash) (provide ;; Structures (contract-out [struct tbf/state ([weights (hash/c variable? number?)] [threshold number?])] [struct dynamics ([network network?] [mode mode?])] [struct network ([functions (hash/c variable? procedure?)] [domains domain-mapping/c])] [struct network-form ([forms variable-mapping?] [domains domain-mapping/c])]) ;; Functions (contract-out [make-boolean-network (-> (hash/c variable? procedure?) network?)] [update (-> network? state? (set/c variable? #:kind 'dont-care) state?)] [make-state (-> (listof (cons/c symbol? any/c)) state?)] [make-state-booleanize (-> (listof (cons/c symbol? (or/c 0 1))) state?)] [booleanize-state (-> state? state?)] [update-function-form->update-function (-> update-function-form? update-function/c)] [network-form->network (-> network-form? network?)] [make-boolean-network-form (-> variable-mapping? network-form?)] [forms->boolean-network (-> variable-mapping? network?)] [list-syntactic-interactions (-> network-form? variable? (listof variable?))] [build-syntactic-interaction-graph (-> network-form? graph?)] [interaction? (-> network? variable? variable? boolean?)] [get-interaction-sign (-> network? variable? variable? (or/c #f -1 0 1))] [build-interaction-graph (-> network? graph?)] [build-interaction-graph/form (-> network-form? graph?)] [build-signed-interaction-graph (-> network? graph?)] [build-signed-interaction-graph/form (-> network-form? graph?)] [build-all-states (-> domain-mapping/c (listof state?))] [make-same-domains (-> (listof variable?) generic-set? domain-mapping/c)] [make-boolean-domains (-> (listof variable?) (hash/c variable? (list/c #f #t)))] [make-01-domains (-> (listof variable?) (hash/c variable? (list/c 0 1)))] [build-all-boolean-states (-> (listof variable?) (listof state?))] [build-all-01-states (-> (listof variable?) (listof state?))] [make-asyn (-> (listof variable?) mode?)] [make-syn (-> (listof variable?) mode?)] [make-dynamics-from-func (-> network? (-> (listof variable?) mode?) dynamics?)] [make-asyn-dynamics (-> network? dynamics?)] [make-syn-dynamics (-> network? dynamics?)] [dds-step-one (-> dynamics? state? (set/c state?))] [dds-step-one-annotated (-> dynamics? state? (set/c (cons/c modality? state?)))] [dds-step (-> dynamics? (set/c state? #:kind 'dont-care) (set/c state?))] [dds-build-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) graph?)] [dds-build-n-step-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)] [dds-build-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) graph?)] [dds-build-n-step-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)] [pretty-print-state (-> state? string?)] [pretty-print-boolean-state (-> state? string?)] [pretty-print-state-graph-with (-> graph? (-> state? string?) graph?)] [pretty-print-state-graph (-> graph? graph?)] [ppsg (-> graph? graph?)] [pretty-print-boolean-state-graph (-> graph? graph?)] [ppsgb (-> graph? graph?)] [build-full-state-graph (-> dynamics? graph?)] [build-full-state-graph-annotated (-> dynamics? graph?)] [build-full-01-state-graph (-> dynamics? graph?)] [build-full-01-state-graph-annotated (-> dynamics? graph?)] [tabulate-state (->* (procedure? domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state* (->* ((non-empty-listof procedure?) domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state/boolean (->* (procedure? (listof variable?)) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state*/boolean (->* ((non-empty-listof procedure?) (listof variable?)) (#:headers boolean?) (listof (listof any/c)))] [tabulate-network (->* (network?) (#:headers boolean?) (listof (listof any/c)))] [table->network (->* ((listof (*list/c any/c any/c))) (#:headers boolean?) network?)] [random-function/state (domain-mapping/c generic-set? . -> . procedure?)] [random-boolean-function/state ((listof variable?) . -> . procedure?)] [random-network (domain-mapping/c . -> . network?)] [random-boolean-network ((listof variable?) . -> . network?)] [random-boolean-network/vars (number? . -> . network?)] [apply-tbf-to-state (-> tbf? state? (or/c 0 1))] [tbf/state-w (-> tbf/state? (hash/c variable? number?))] [tbf/state-θ (-> tbf/state? number?)] [make-tbf/state (-> (listof (cons/c variable? number?)) number? tbf/state?)] [make-sbf/state (-> (listof (cons/c variable? number?)) sbf/state?)] [apply-tbf/state (-> tbf/state? (hash/c variable? (or/c 0 1)) (or/c 0 1))] [lists->tbfs/state (->* ((listof (listof (or/c number? symbol?)))) (#:headers boolean?) (listof tbf/state?))] [lists->sbfs/state (->* ((listof (listof (or/c number? symbol?)))) (#:headers boolean?) (listof sbf/state?))] [read-org-tbfs/state (->* (string?) (#:headers boolean?) (listof tbf/state?))] [read-org-sbfs/state (->* (string?) (#:headers boolean?) (listof sbf/state?))] [print-org-tbfs/state (->* ((non-empty-listof tbf/state?)) (#:headers boolean?) (listof (listof (or/c number? symbol?))))] [print-org-sbfs/state (->* ((non-empty-listof tbf/state?)) (#:headers boolean?) (listof (listof (or/c number? symbol?))))] [tbf/state-tabulate* (->* ((non-empty-listof tbf/state?)) (#:headers boolean?) (listof (listof (or/c symbol? number?))))] [tbf/state-tabulate (->* (tbf/state?) (#:headers boolean?) (listof (listof (or/c symbol? number?))))] [group-truth-table-by-nai (-> (listof (listof (or/c 0 1))) (listof (listof (listof (or/c 0 1)))))] [make-tbn (-> (listof (cons/c variable? tbf/state?)) tbn?)] [tbn->network (-> tbn? network?)] [make-sbn (-> (listof (cons/c variable? tbf/state?)) sbn?)] [parse-org-tbn (->* ((listof any/c)) (#:headers boolean? #:func-names boolean?) tbn?)] [read-org-tbn (->* (string?) (#:headers boolean? #:func-names boolean?) tbn?)] [read-org-sbn (->* (string?) (#:headers boolean? #:func-names boolean?) tbn?)] [build-tbn-state-graph (-> tbn? graph?)] [normalized-tbn? (-> tbn? boolean?)] [normalize-tbn (-> tbn? normalized-tbn?)] [compact-tbf (-> tbf/state? tbf/state?)] [compact-tbn (-> tbn? tbn?)] [print-org-tbn (->* (tbn?) (#:headers boolean? #:func-names boolean?) (listof (listof (or/c number? symbol?))))] [print-org-sbn (->* (sbn?) (#:headers boolean? #:func-names boolean?) (listof (listof (or/c number? symbol?))))] [tbn-interaction-graph (->* (tbn?) (#:zero-edges boolean?) graph?)] [pretty-print-tbn-interaction-graph (-> graph? graph?)] [sbn-interaction-graph (-> sbn? graph?)]) ;; Predicates (contract-out [variable? (-> any/c boolean?)] [state? (-> any/c boolean?)] [update-function-form? (-> any/c boolean?)] [modality? (-> any/c boolean?)] [mode? (-> any/c boolean?)] [sbf/state? (-> any/c boolean?)]) ;; Contracts (contract-out [state/c contract?] [update-function/c contract?] [domain-mapping/c contract?] [tbn? contract?] [sbn? contract?])) (module+ test (require rackunit) ;; When this variable is set to #t, some particularly expensive test ;; cases are omitted. (define skip-expensive-tests? #t) (unless skip-expensive-tests? (displayln "Running the complete test suite..."))) ;;; ================= ;;; Basic definitions ;;; ================= (define variable? symbol?) ;;; A state of a network is a mapping from the variables of the ;;; network to their values. (define state? variable-mapping?) (define state/c (flat-named-contract 'state state?)) ;;; An update function is a function computing a value from the given ;;; state. (define update-function/c (-> state? any/c)) ;;; A domain mapping is a hash set mapping variables to the lists of ;;; values in their domains. (define domain-mapping/c (hash/c variable? list?)) ;;; A network consists of a mapping from its variables to its update ;;; variables, as a well as of a mapping from its variables to ;;; their domains. ;;; ;;; The domain mapping does not have to assign domains to all ;;; variables (e.g., it may be empty), but in this case the functions ;;; which need to know the domains will not work. (struct network (functions domains) #:transparent) ;;; Builds a network from a given hash table assigning functions to ;;; variables by attributing Boolean domains to every variable. (define (make-boolean-network funcs) (network funcs (make-boolean-domains (hash-keys funcs)))) (module+ test (test-case "make-boolean-network" (define f1 (λ (s) (let ([x1 (hash-ref s 'x1)] [x2 (hash-ref s 'x2)]) (and x1 (not x2))))) (define f2 (λ (s) (let ([x2 (hash-ref s 'x2)]) (not x2)))) (define bn (make-boolean-network (hash 'x1 f1 'x2 f2))) (check-equal? (network-domains bn) (hash 'x1 '(#f #t) 'x2 '(#f #t))))) ;;; Given a state s updates all the variables from xs. (define (update network s xs) (define funcs (network-functions network)) (for/fold ([new-s s]) ([x xs]) (define fx (hash-ref funcs x)) (hash-set new-s x (fx s)))) (module+ test (test-case "basic definitions" (define f1 (λ (s) (let ([x1 (hash-ref s 'x1)] [x2 (hash-ref s 'x2)]) (and x1 (not x2))))) (define f2 (λ (s) (let ([x2 (hash-ref s 'x2)]) (not x2)))) (define bn (make-boolean-network (hash 'x1 f1 'x2 f2))) (define s1 (make-state '((x1 . #t) (x2 . #f)))) (define new-s1 (update bn s1 '(x2 x1))) (define s2 (make-state '((x1 . #f) (x2 . #f)))) (define new-s2 (update bn s2 '(x2))) (check-equal? s1 #hash((x1 . #t) (x2 . #f))) (check-equal? new-s1 #hash((x1 . #t) (x2 . #t))) (check-equal? s2 #hash((x1 . #f) (x2 . #f))) (check-equal? new-s2 #hash((x1 . #f) (x2 . #t))))) ;;; A version of make-immutable-hash restricted to creating network ;;; states (see contract). (define (make-state mappings) (make-immutable-hash mappings)) ;;; Makes a new Boolean states from a state with numerical values 0 ;;; and 1. (define (make-state-booleanize mappings) (make-state (for/list ([mp mappings]) (match mp [(cons var 0) (cons var #f)] [(cons var 1) (cons var #t)])))) ;;; Booleanizes a given state: replaces 0 with #f and 1 with #t. (define (booleanize-state s) (for/hash ([(x val) s]) (match val [0 (values x #f)] [1 (values x #t)]))) (module+ test (test-case "make-state, make-state-booleanize, booleanize-state" (check-equal? (make-state-booleanize '((a . 0) (b . 1))) (make-state '((a . #f) (b . #t)))) (check-equal? (booleanize-state (make-state '((a . 0) (b . 1)))) (make-state '((a . #f) (b . #t)))))) ;;; ================================= ;;; Syntactic description of networks ;;; ================================= ;;; An update function form is any form which can appear as a body of ;;; a function and which can be evaluated with eval. For example, ;;; '(and x y (not z)) or '(+ 1 a (- b 10)). (define update-function-form? any/c) ;;; A network form consists of a mapping from variables to the forms ;;; of their update functions, together with a mapping from its ;;; variables to its update functions. ;;; ;;; The domain mapping does not have to assign domains to all ;;; variables (e.g., it may be empty), but in this case the functions ;;; which need to know the domains will not work. (struct network-form (forms domains) #:transparent) ;;; Build an update function from an update function form. (define (update-function-form->update-function form) (λ (s) (eval-with s form))) (module+ test (test-case "update-function-form->update-function" (define s (make-state '((x . #t) (y . #f)))) (define f (update-function-form->update-function '(and x y))) (check-equal? (f s) #f))) ;;; Build a network from a network form. (define (network-form->network nf) (network (for/hash ([(x form) (in-hash (network-form-forms nf))]) (values x (update-function-form->update-function form))) (network-form-domains nf))) (module+ test (test-case "network-form->network" (define bn (network-form->network (network-form (hash 'a '(and a b) 'b '(not b)) (hash 'a '(#f #t) 'b '(#f #t))))) (define s (make-state '((a . #t) (b . #t)))) (check-equal? ((hash-ref (network-functions bn) 'a) s) #t))) ;;; Build a Boolean network form from a given mapping assigning forms ;;; to variables. (define (make-boolean-network-form forms) (network-form forms (make-boolean-domains (hash-keys forms)))) (module+ test (test-case "make-boolean-network-form" (check-equal? (make-boolean-network-form (hash 'a '(and a b) 'b '(not b))) (network-form '#hash((a . (and a b)) (b . (not b))) '#hash((a . (#f #t)) (b . (#f #t))))))) ;;; Build a Boolean network from a given mapping assigning forms ;;; to variables. (define forms->boolean-network (compose network-form->network make-boolean-network-form)) (module+ test (test-case "forms->boolean-network" (define n (forms->boolean-network (hash 'a '(and a b) 'b '(not b)))) (check-equal? (network-domains n) (hash 'a '(#f #t) 'b '(#f #t))))) ;;; ============================ ;;; Inferring interaction graphs ;;; ============================ ;;; In this section I provide inference of both unsigned and signed ;;; interaction graphs, but since the inference of signed interaction ;;; graphs is based on analysing the dynamics of the networks, it may ;;; be quite resource-consuming, especially since I allow any ;;; syntactic forms in the definitions of the functions. ;;; ;;; Note the fine difference between syntactic interaction graphs and ;;; interaction graphs generated from the dynamics of the network. ;;; The syntactic interaction graphs are based on the whether ;;; a variable appears or not in the form of the function for another ;;; variable. On the other hand, the normal, conventional interaction ;;; graph records the fact that one variable has an impact on the ;;; dynamics of the other variable. Depending on the model, these may ;;; or may not be the same. ;;; Lists the variables of the network form appearing in the update ;;; function form for x. (define (list-syntactic-interactions nf x) (set-intersect (extract-symbols (hash-ref (network-form-forms nf) x)) (hash-keys (network-form-forms nf)))) (module+ test (test-case "list-syntactic-interactions" (define n (make-boolean-network-form #hash((a . (+ a b c)) (b . (- b c))))) (check-true (set=? (list-syntactic-interactions n 'a) '(a b))) (check-true (set=? (list-syntactic-interactions n 'b) '(b))))) ;;; Builds the graph in which the vertices are the variables of a ;;; given network, and which contains an arrow from a to b whenever a ;;; appears in (list-interactions a). ;;; ;;; Note that, while this definition is an easy one to check ;;; structurally, this is *not* how interaction graphs are typically ;;; defined. An interaction graph is usually defined based on the ;;; dynamics of the network: an arrow from a variable x to a variable ;;; y means that varying x and only x may have an influence on the ;;; value of y. It is easy to imagine a situation in which the ;;; syntactic interaction graph does not in fact agree with this ;;; criterion, the simplest example being the network y = x AND (NOT ;;; x). (define (build-syntactic-interaction-graph n) (transpose (unweighted-graph/adj (for/list ([(var _) (in-hash (network-form-forms n))]) (cons var (list-syntactic-interactions n var)))))) (module+ test (test-case "build-syntactic-interaction-graph" (define n (make-boolean-network-form #hash((a . (+ a b c)) (b . (- b c))))) (define ig (build-syntactic-interaction-graph n)) (check-true (has-vertex? ig 'a)) (check-true (has-vertex? ig 'b)) (check-false (has-vertex? ig 'c)) (check-true (has-edge? ig 'a 'a)) (check-true (has-edge? ig 'b 'a)) (check-true (has-edge? ig 'b 'b)) (check-false (has-edge? ig 'c 'b)) (check-false (has-edge? ig 'c 'a)))) ;;; Given a hash-set mapping variables to generic sets of their ;;; possible values, constructs the list of all possible states. (define (build-all-states vars-domains) (let* ([var-dom-list (hash-map vars-domains (λ (x y) (cons x y)) #t)] [vars (map car var-dom-list)] [domains (map cdr var-dom-list)]) (for/list ([s (apply cartesian-product domains)]) (make-state (for/list ([var vars] [val s]) (cons var val)))))) (module+ test (test-case "build-all-states" (check-equal? (build-all-states #hash((a . (#t #f)) (b . (1 2 3)))) '(#hash((a . #t) (b . 1)) #hash((a . #t) (b . 2)) #hash((a . #t) (b . 3)) #hash((a . #f) (b . 1)) #hash((a . #f) (b . 2)) #hash((a . #f) (b . 3)))))) ;;; Makes a hash set mapping all variables to a single domain. (define (make-same-domains vars domain) (for/hash ([var vars]) (values var domain))) ;;; Makes a hash set mapping all variables to the Boolean domain. (define (make-boolean-domains vars) (make-same-domains vars '(#f #t))) (module+ test (test-case "make-same-domains, make-boolean-domains" (check-equal? (make-boolean-domains '(a b)) #hash((a . (#f #t)) (b . (#f #t)))))) ;;; Makes a hash set mapping all variables to the Boolean domain, ;;; expressed as {0,1}. (define (make-01-domains vars) (make-same-domains vars '(0 1))) (module+ test (test-case "make-01-domains" (check-equal? (make-01-domains '(a b)) '#hash((a . (0 1)) (b . (0 1)))))) ;;; Builds all boolean states possible over a given set of variables. (define (build-all-boolean-states vars) (build-all-states (make-boolean-domains vars))) (module+ test (test-case "build-all-boolean-states" (check-equal? (build-all-boolean-states '(a b)) '(#hash((a . #f) (b . #f)) #hash((a . #f) (b . #t)) #hash((a . #t) (b . #f)) #hash((a . #t) (b . #t)))))) ;;; Builds all Boolean states over a given set of variables, but with ;;; 0 and 1 for Boolean values. (define build-all-01-states (compose build-all-states make-01-domains)) (module+ test (test-case "build-all-01-states" (check-equal? (build-all-01-states '(a b)) '(#hash((a . 0) (b . 0)) #hash((a . 0) (b . 1)) #hash((a . 1) (b . 0)) #hash((a . 1) (b . 1)))))) ;;; Given two variables x and y of a network f, verifies if they ;;; interact, i.e. that there exists such a state s with the property ;;; that s' which is s with a different value for x yields such a new ;;; state f(s') in which the value for y is different from f(s). (define (interaction? network x y) (define doms (network-domains network)) (define states-not-x (build-all-states (hash-remove doms x))) (define dom-x (hash-ref doms x)) (define y-func (hash-ref (network-functions network) y)) (define (different-ys-exist? st) (define x-states (for/list ([x-val (in-list dom-x)]) (hash-set st x x-val))) (for*/first ([st1 x-states] [st2 x-states] #:unless (equal? (hash-ref st1 x) (hash-ref st2 x)) #:unless (equal? (y-func st1) (y-func st2))) #t)) (for*/first ([st (in-list states-not-x)] #:when (different-ys-exist? st)) #t)) (module+ test (test-case "interaction?" (define n1 (forms->boolean-network (hash 'x '(not y) 'y 'x 'z '(and y z)))) (check-true (interaction? n1 'x 'y)) (check-true (interaction? n1 'y 'x)) (check-false (interaction? n1 'x 'z)) (define n-multi (hash 'x '(max (+ y 1) 2) 'y '(min (- y 1) 0))) (define 123-doms (make-same-domains '(x y) '(0 1 2))) (define n2 (network-form->network (network-form n-multi 123-doms))) (check-false (interaction? n2 'x 'y)) (check-true (interaction? n2 'y 'x)))) ;;; Given two variables x and y of a network f, checks whether they ;;; interact, and if they interact, returns 1 if increasing x leads to ;;; an increase in y, -1 if it leads to a decrease in y, and 0 if it ;;; can lead to both. If x has no impact on y, returns #f. ;;; ;;; Use interaction? if you only need to know whether two variables ;;; interact, because interaction? will be often faster. (define (get-interaction-sign network x y) (define doms (network-domains network)) (define dom-x (hash-ref doms x)) (define dom-y (hash-ref doms y)) (define y-func (hash-ref (network-functions network) y)) (define (collect-impacts-on-y st) ;; The way in which the values are ordered in the domains gives ;; a total order on these values. This means that considering ;; pairs of consecutive values of x is sufficient for testing the ;; sign of the interaction. (define x-states (for/list ([x-val (in-list dom-x)]) (hash-set st x x-val))) (for/list ([st1 (in-list x-states)] [st2 (in-list (cdr x-states))]) (define y1-idx (index-of dom-y (y-func st1))) (define y2-idx (index-of dom-y (y-func st2))) (cond [(< y1-idx y2-idx) '<] [(> y1-idx y2-idx) '>] [else '=]))) (define states-not-x (build-all-states (hash-remove doms x))) (define interactions (remove-duplicates (for/list ([st (in-list states-not-x)]) (define impacts (remove-duplicates (collect-impacts-on-y st))) (cond [(and (member '< impacts) (not (member '> impacts))) '<] [(and (member '> impacts) (not (member '< impacts))) '>] [(equal? impacts '(=)) '=] [else 0])))) (cond [(and (member '< interactions) (not (member '> interactions))) 1] [(and (member '> interactions) (not (member '< interactions))) -1] [(equal? interactions '(=)) #f] [else 0])) (module+ test (test-case "get-interaction-sign" (define n1 (forms->boolean-network (hash 'x '(not y) 'y 'x 'z '(and y z) 't '(or (and (not x) y) (and x (not y)))))) (check-equal? (get-interaction-sign n1 'x 'y) 1) (check-equal? (get-interaction-sign n1 'y 'x) -1) (check-false (get-interaction-sign n1 'x 'z)) (check-equal? (get-interaction-sign n1 'y 'z) 1) (check-equal? (get-interaction-sign n1 'x 't) 0) (define n-multi (hash 'x '(min (+ y 1) 2) 'y '(max (- y 1) 0) 'z '(- 2 y) 't '(abs (- y 1)))) (define 123-doms (make-same-domains '(x y z t) '(0 1 2))) (define n2 (network-form->network (network-form n-multi 123-doms))) (check-false (get-interaction-sign n2 'x 'y)) (check-equal? (get-interaction-sign n2 'y 'x) 1) (check-equal? (get-interaction-sign n2 'y 'z) -1) (check-equal? (get-interaction-sign n2 'y 't) 0) (check-equal? (get-interaction-sign n2 'y 'y) 1))) ;;; Given a network, builds its interaction graph. The graph has ;;; variables as nodes and has a directed edge from x to y if ;;; interaction? returns #t for these variables, in this order. (define (build-interaction-graph network) (define vars (hash-keys (network-functions network))) (unweighted-graph/directed (for*/list ([x (in-list vars)] [y (in-list vars)] #:when (interaction? network x y)) (list x y)))) ;;; Like build-interaction-graph, but accepts a network form and ;;; converts it a to a network. (define build-interaction-graph/form (compose build-interaction-graph network-form->network)) (module+ test (test-case "build-interaction-graph" (cond [skip-expensive-tests? (displayln "Skipping test case build-interaction-graph.")] [else (define n1 (make-boolean-network-form (hash 'x '(not y) 'y 'x 'z '(and y z) 't '(or (and (not x) y) (and x (not y)))))) (check-equal? (graphviz (build-interaction-graph/form n1)) "digraph G {\n\tnode0 [label=\"y\"];\n\tnode1 [label=\"z\"];\n\tnode2 [label=\"x\"];\n\tnode3 [label=\"t\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode0 -> node2;\n\t\tnode1 -> node1;\n\t}\n\tsubgraph D {\n\t\tnode0 -> node3;\n\t\tnode0 -> node1;\n\t\tnode2 -> node3;\n\t}\n}\n") (define n-multi (hash 'x '(min (+ y 1) 2) 'y '(max (- y 1) 0) 'z '(- 2 y) 't '(abs (- y 1)))) (define 123-doms (make-same-domains '(x y z t) '(0 1 2))) (define n2 (network-form n-multi 123-doms)) (check-equal? (graphviz (build-interaction-graph/form n2)) "digraph G {\n\tnode0 [label=\"y\"];\n\tnode1 [label=\"z\"];\n\tnode2 [label=\"x\"];\n\tnode3 [label=\"t\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode0 -> node0;\n\t}\n\tsubgraph D {\n\t\tnode0 -> node2;\n\t\tnode0 -> node3;\n\t\tnode0 -> node1;\n\t}\n}\n")]))) ;;; Given a network, builds its signed interaction graph. The graph ;;; has variables as nodes and has a directed edge from x to ;;; y labelled by the value get-interaction-sign for these variables, ;;; in that order, unless this value is #f. (define (build-signed-interaction-graph network) (define vars (hash-keys (network-functions network))) (weighted-graph/directed (for*/list ([x (in-list vars)] [y (in-list vars)] [sign (in-value (get-interaction-sign network x y))] #:unless (eq? sign #f)) (list sign x y)))) ;;; Like build-signed-interaction-graph, but takes a network form and ;;; converts it a to a network. (define build-signed-interaction-graph/form (compose build-signed-interaction-graph network-form->network)) (module+ test (test-case "build-signed-interaction-graph" (cond [skip-expensive-tests? (displayln "Skipping test case build-signed-interaction-graph.")] [else (define n1 (make-boolean-network-form (hash 'x '(not y) 'y 'x 'z '(and y z) 't '(or (and (not x) y) (and x (not y)))))) (check-equal? (graphviz (build-signed-interaction-graph/form n1)) "digraph G {\n\tnode0 [label=\"y\"];\n\tnode1 [label=\"z\"];\n\tnode2 [label=\"x\"];\n\tnode3 [label=\"t\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode1 -> node1 [label=\"1\"];\n\t}\n\tsubgraph D {\n\t\tnode0 -> node2 [label=\"-1\"];\n\t\tnode0 -> node3 [label=\"0\"];\n\t\tnode0 -> node1 [label=\"1\"];\n\t\tnode2 -> node3 [label=\"0\"];\n\t\tnode2 -> node0 [label=\"1\"];\n\t}\n}\n") (define n-multi (hash 'x '(min (+ y 1) 2) 'y '(max (- y 1) 0) 'z '(- 2 y) 't '(abs (- y 1)))) (define 123-doms (make-same-domains '(x y z t) '(0 1 2))) (define n2 (network-form n-multi 123-doms)) (check-equal? (graphviz (build-signed-interaction-graph/form n2)) "digraph G {\n\tnode0 [label=\"y\"];\n\tnode1 [label=\"z\"];\n\tnode2 [label=\"x\"];\n\tnode3 [label=\"t\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode0 -> node0 [label=\"1\"];\n\t}\n\tsubgraph D {\n\t\tnode0 -> node2 [label=\"1\"];\n\t\tnode0 -> node3 [label=\"0\"];\n\t\tnode0 -> node1 [label=\"-1\"];\n\t}\n}\n")]))) ;;; ==================== ;;; Dynamics of networks ;;; ==================== ;;; This section contains definitions for building and analysing the ;;; dynamics of networks. ;;; A modality is a set of variable. (define modality? (set/c variable?)) ;;; A mode is a set of modalities. (define mode? (set/c modality?)) ;;; A network dynamics is a network plus a mode. (struct dynamics (network mode) #:methods gen:dds [;; Annotates each result state with the modality which lead to it. (define/match (dds-step-one-annotated dyn s) [((dynamics network mode) s) (for/set ([m mode]) (cons m (update network s m)))])]) ;;; Given a list of variables, builds the asynchronous mode (a set of ;;; singletons). (define (make-asyn vars) (for/set ([v vars]) (set v))) ;;; Given a list of variables, builds the synchronous mode (a set ;;; containing the set of variables). (define (make-syn vars) (set (list->set vars))) (module+ test (test-case "make-asyn, make-syn" (define vars '(a b c)) (check-equal? (make-asyn vars) (set (set 'a) (set 'b) (set 'c))) (check-equal? (make-syn vars) (set (set 'a 'b 'c))))) ;;; Given a network, applies a function for building a mode to its ;;; variables and returns the corresponding network dynamics. (define (make-dynamics-from-func network mode-func) (dynamics network (mode-func (hash-keys (network-functions network))))) ;;; Creates the asynchronous dynamics for a given network. (define (make-asyn-dynamics network) (make-dynamics-from-func network make-asyn)) ;;; Creates the synchronous dynamics for a given network. (define (make-syn-dynamics network) (make-dynamics-from-func network make-syn)) (module+ test (test-case "make-asyn-dynamics, make-syn-dynamics" (define n (forms->boolean-network #hash((a . (not a)) (b . b)))) (define asyn (make-asyn-dynamics n)) (define syn (make-syn-dynamics n)) (check-equal? (dynamics-network asyn) n) (check-equal? (dynamics-mode asyn) (set (set 'a) (set 'b))) (check-equal? (dynamics-network syn) n) (check-equal? (dynamics-mode syn) (set (set 'a 'b))))) ;;; Pretty-prints a state of the network. (define (pretty-print-state s) (string-join (hash-map s (λ (key val) (format "~a:~a" key val)) #t))) (module+ test (test-case "pretty-print-state" (check-equal? (pretty-print-state (make-state '((a . #f) (b . 3) (c . 4)))) "a:#f b:3 c:4"))) ;;; Pretty-prints a state of the network to Boolean values 0 or 1. (define (pretty-print-boolean-state s) (string-join (hash-map s (λ (key val) (format "~a:~a" key (any->01 val))) #t))) (module+ test (test-case "pretty-print-boolean-state" (check-equal? (pretty-print-boolean-state (make-state '((a . #f) (b . #t) (c . #t)))) "a:0 b:1 c:1"))) ;;; Given a state graph and a pretty-printer for states build a new ;;; state graph with pretty-printed vertices and edges. (define (pretty-print-state-graph-with gr pprinter) (update-graph gr #:v-func pprinter #:e-func pretty-print-set-sets)) ;;; Pretty prints a state graph with pretty-print-state. (define (pretty-print-state-graph gr) (pretty-print-state-graph-with gr pretty-print-state)) ;;; A shortcut for pretty-print-state-graph. (define ppsg pretty-print-state-graph) ;;; Pretty prints a state graph with pretty-print-boolean-state. (define (pretty-print-boolean-state-graph gr) (pretty-print-state-graph-with gr pretty-print-boolean-state)) ;;; A shortcut for pretty-print-boolean-state-graph. (define ppsgb pretty-print-boolean-state-graph) ;;; Builds the full state graph of a Boolean network. (define (build-full-state-graph dyn) (dds-build-state-graph dyn ((compose list->set build-all-states network-domains dynamics-network) dyn))) ;;; Build the full annotated state graph of a Boolean network. (define (build-full-state-graph-annotated dyn) (dds-build-state-graph-annotated dyn ((compose list->set build-all-states network-domains dynamics-network) dyn))) (module+ test (test-case "Dynamics of networks" (define n (forms->boolean-network #hash((a . (not a)) (b . b)))) (define asyn (make-asyn-dynamics n)) (define syn (make-syn-dynamics n)) (define s (make-state '((a . #t) (b . #f)))) (define ss (set (make-state '((a . #t) (b . #t))) (make-state '((a . #f) (b . #t))))) (define gr1 (dds-build-n-step-state-graph asyn (set s) 1)) (define gr-full (dds-build-state-graph asyn (set s))) (define gr-full-pp (pretty-print-state-graph gr-full)) (define gr-full-ppb (pretty-print-boolean-state-graph gr-full)) (define gr-complete-bool (build-full-state-graph asyn)) (define gr-complete-bool-ann (build-full-state-graph-annotated asyn)) (check-equal? (dds-step-one asyn s) (set (make-state '((a . #f) (b . #f))) (make-state '((a . #t) (b . #f))))) (check-equal? (dds-step-one-annotated asyn s) (set (cons (set 'b) '#hash((a . #t) (b . #f))) (cons (set 'a) '#hash((a . #f) (b . #f))))) (check-equal? (dds-step-one syn s) (set (make-state '((a . #f) (b . #f))))) (check-equal? (dds-step asyn ss) (set (make-state '((a . #f) (b . #t))) (make-state '((a . #t) (b . #t))))) (check-true (has-vertex? gr1 #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr1 #hash((a . #f) (b . #f)))) (check-false (has-vertex? gr1 #hash((a . #t) (b . #t)))) (check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))) (check-false (has-edge? gr1 #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr-full #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr-full #hash((a . #f) (b . #f)))) (check-false (has-vertex? gr-full #hash((a . #t) (b . #t)))) (check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-vertex? gr-full-pp "a:#f b:#f")) (check-true (has-vertex? gr-full-pp "a:#t b:#f")) (check-true (has-vertex? gr-full-ppb "a:0 b:0")) (check-true (has-vertex? gr-full-ppb "a:1 b:0")) (check-true (set=? (get-edges gr-complete-bool) '((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))))) (check-true (set=? (get-edges gr-complete-bool-ann) '((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #t)) #hash((a . #t) (b . #t))) (set (set 'a))))) ;;; Like build-full-boolean-state-graph, but the states are expressed ;;; in 0 and 1, instead of #f and #t. (define (build-full-01-state-graph dyn) (dds-build-state-graph dyn (list->set (build-all-01-states (hash-keys (dynamics-network dyn)))))) ;;; Like build-full-boolean-state-graph-annotated, but the states are expressed ;;; in 0 and 1, instead of #f and #t. (define (build-full-01-state-graph-annotated dyn) (dds-build-state-graph-annotated dyn (list->set (build-all-01-states (hash-keys (dynamics-network dyn)))))) ;;; ================================= ;;; Tabulating functions and networks ;;; ================================= ;;; Like tabulate, but supposes that the function works on states. ;;; ;;; The argument domains defines the domains of each of the component ;;; of the states. If headers it true, the resulting list starts with ;;; a listing the names of the variables of the domain and ending with ;;; the symbol 'f, which indicates the values of the function. (define (tabulate-state func domains #:headers [headers #t]) (define tab (tabulate-state* `(,func) domains #:headers headers)) (cond [headers ;; Replace 'f1 in the headers by 'f. (match tab [(cons hdrs vals) (cons (append (drop-right hdrs 1) '(f)) vals)])] [else tab])) ;;; Like tabulate-state, but assumes the function is a Boolean ;;; function. args is a list of names of the arguments which can ;;; appear in the states. (define (tabulate-state/boolean func args #:headers [headers #t]) (tabulate-state func (make-boolean-domains args) #:headers headers)) (module+ test (test-case "tabulate-state/boolean" (define func (λ (st) (not (hash-ref st 'a)))) (check-equal? (tabulate-state/boolean func '(a)) '((a f) (#f #t) (#t #f))))) ;;; Like tabulate-state, but takes a list of functions over the same ;;; domain. If headers is #t, the first list of the result enumerates ;;; the variable names, and then contains a symbol 'fi for each of the ;;; functions, where i is replaced by the number of the function in ;;; the list. (define (tabulate-state* funcs domains #:headers [headers #t]) (define tab (for/list ([st (build-all-states domains)]) (append (hash-map st (λ (x y) y) #t) (for/list ([f funcs]) (f st))))) (cond [headers (define var-names (hash-map domains (λ (x y) x) #t)) (define func-names (for/list ([_ funcs] [i (in-naturals 1)]) (string->symbol (format "f~a" i)))) (cons (append var-names func-names) tab)] [else tab])) ;;; Like tabulate-state/boolean, but takes a list of functions. (define (tabulate-state*/boolean funcs args #:headers [headers #t]) (tabulate-state* funcs (make-boolean-domains args) #:headers headers)) (module+ test (test-case "tabulate-state*/boolean" (define f1 (λ (st) (and (hash-ref st 'a) (hash-ref st 'b)))) (define f2 (λ (st) (or (hash-ref st 'a) (hash-ref st 'b)))) (check-equal? (tabulate-state*/boolean (list f1 f2) '(a b)) '((a b f1 f2) (#f #f #f #f) (#f #t #f #t) (#t #f #f #t) (#t #t #t #t))))) ;;; Tabulates a given network. ;;; ;;; For a Boolean network with n variables, returns a table with 2n ;;; columns and 2^n rows. The first n columns correspond to the ;;; different values of the variables of the networks. The last n ;;; columns represent the values of the n update functions of the ;;; network. If headers is #t, prepends a list of variable names and ;;; update functions (f-x, where x is the name of the corresponding ;;; variable) to the result. (define (tabulate-network network #:headers [headers #t]) ;; I use hash-map with try-order? set to #t to ask the hash table to ;; sort the keys for me. (define-values (vars funcs) (for/lists (l1 l2) ([pair (hash-map (network-functions network) cons #t)]) (values (car pair) (cdr pair)))) (define tab (tabulate-state* funcs (network-domains network) #:headers headers)) (cond [headers ;; Replace the names of the functions tabulate-state* gave us by ;; what we promise in the comment. (define fnames (for/list ([x (in-list vars)]) (string->symbol (format "f-~a" x)))) (match tab [(cons hdrs vals) (cons (append (take hdrs (length vars)) fnames) vals)])] [else tab])) (module+ test (test-case "tabulate-network" (define bn (forms->boolean-network #hash((a . (not a)) (b . b)))) (check-equal? (tabulate-network bn) '((a b f-a f-b) (#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t))) (check-equal? (tabulate-network bn #:headers #f) '((#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t))))) ;;; =================================== ;;; Constructing functions and networks ;;; =================================== ;;; Given a table like the one produced by tabulate-network, ;;; constructs a Boolean network having this behaviour. If headers is ;;; #t, considers that the first element of the list are the headers ;;; and reads the names of the variables from them. Otherwise ;;; generates names for variables of the form xi, where 0 ≤ i < number ;;; of variables, and treats all rows in the table as defining the ;;; behaviour of the functions of the network. The columns defining ;;; the functions are taken to be in the same order as the variables ;;; in the first half of the function. The headers of the columns ;;; defining the functions are therefore discarded. ;;; ;;; This function relies on table->function, so the same caveats ;;; apply. ;;; ;;; This function sets the domain mappings of the network to the empty ;;; hash table. (define (table->network table #:headers [headers #t]) (define n (/ (length (car table)) 2)) ;; Get the variable names from the table or generate them, if ;; necessary. (define var-names (cond [headers (take (car table) n)] [else (for ([i (in-range n)]) (symbol->string (format "x~a" i)))])) ;; Drop the headers if they are present. (define tab (cond [headers (cdr table)] [else table])) ;; Split the table into the inputs and the outputs of the functions. (define-values (ins outs) (multi-split-at tab n)) ;; Transpose outs to have functions define by lines instead of by ;; columns. (define func-lines (lists-transpose outs)) ;; Make states out of inputs. (define st-ins (for/list ([in ins]) (make-state (map cons var-names in)))) ;; Construct the functions. (define funcs (for/list ([out func-lines]) (table->function (for/list ([in st-ins] [o out]) (list in o))))) ;; Construct the network. (network (for/hash ([x (in-list var-names)] [f (in-list funcs)]) (values x f)) (hash))) (module+ test (test-case "table->network" (define n (table->network '((x1 x2 f1 f2) (#f #f #f #f) (#f #t #f #t) (#t #f #t #f) (#t #t #t #t)))) (define f1 (hash-ref (network-functions n) 'x1)) (define f2 (hash-ref (network-functions n) 'x2)) (check-false (f1 (make-state '((x1 . #f) (x2 . #f))))) (check-false (f1 (make-state '((x1 . #f) (x2 . #t))))) (check-true (f1 (make-state '((x1 . #t) (x2 . #f))))) (check-true (f1 (make-state '((x1 . #t) (x2 . #t))))) (check-false (f2 (make-state '((x1 . #f) (x2 . #f))))) (check-true (f2 (make-state '((x1 . #f) (x2 . #t))))) (check-false (f2 (make-state '((x1 . #t) (x2 . #f))))) (check-true (f2 (make-state '((x1 . #t) (x2 . #t))))))) ;;; ============================= ;;; Random functions and networks ;;; ============================= ;;; Generates a random function accepting a state over the domains ;;; given by arg-domains and producing values in func-domain. (define (random-function/state arg-domains func-domain) (table->function (for/list ([st (build-all-states arg-domains)]) (list st (random-ref func-domain))))) ;;; Like random-function/state, but the domains of the arguments and ;;; of the function are Boolean. args is a list of names of the ;;; variables appearing in the state. (define (random-boolean-function/state args) (random-function/state (make-boolean-domains args) '(#f #t))) (module+ test (test-case "random-boolean-function/state" (random-seed 0) (define f (random-boolean-function/state '(x1 x2))) (check-equal? (tabulate-state/boolean f '(x1 x2)) '((x1 x2 f) (#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t))) (check-equal? (tabulate-state/boolean f '(x1 x2) #:headers #f) '((#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t))) (define bn (random-boolean-network/vars 3)) (check-equal? (tabulate-network bn) '((x0 x1 x2 f-x0 f-x1 f-x2) (#f #f #f #f #t #f) (#f #f #t #t #f #f) (#f #t #f #f #t #t) (#f #t #t #t #f #f) (#t #f #f #t #f #t) (#t #f #t #f #f #t) (#t #t #f #f #f #f) (#t #t #t #t #t #t))))) ;;; Generates a random network from the given domain mapping. (define (random-network domains) (network (for/hash ([(x x-dom) (in-hash domains)]) (values x (random-function/state domains x-dom))) domains)) ;;; Generates a random Boolean network with the given variables. (define (random-boolean-network vars) (random-network (make-boolean-domains vars))) ;;; Like random-boolean-network, but also generates the names of the ;;; variables for the network. The variables have the names x0 to xk, ;;; where k = n - 1. (define (random-boolean-network/vars n) (random-boolean-network (for/list ([i (in-range n)]) (string->symbol (format "x~a" i))))) ;;; =================== ;;; TBF/TBN and SBF/SBN ;;; =================== ;;; Applies a TBF to a state. ;;; ;;; The values of the variables of the state are ordered by hash-map ;;; and fed to the TBF in order. The number of the inputs of the TBF ;;; must match the number of variables in the state. (define (apply-tbf-to-state tbf st) (apply-tbf tbf (list->vector (hash-map st (λ (_ val) val))))) (module+ test (test-case "apply-tbf-to-state" (define st (make-state '((x1 . 0) (x2 . 1)))) (define f (tbf #(1 1) 1)) (check-equal? (apply-tbf-to-state f st) 0))) ;;; A state TBF is a TBF with named inputs. A state TBF can be ;;; applied to states in an unambiguous ways. (struct tbf/state (weights threshold) #:transparent) ;;; Shortcuts for acessing fields of a state/tbf. (define tbf/state-w tbf/state-weights) (define tbf/state-θ tbf/state-threshold) ;;; Makes a state/tbf from a list of pairs of names of variables and ;;; weights, as well as a threshold. (define (make-tbf/state pairs threshold) (tbf/state (make-immutable-hash pairs) threshold)) (module+ test (test-case "tbf/state" (define f (make-tbf/state '((x1 . 1) (x2 . 1)) 1)) (check-equal? (tbf/state-w f) #hash((x1 . 1) (x2 . 1))) (check-equal? (tbf/state-θ f) 1))) ;;; A sign Boolean function (SBF) is a TBF whose threshold is 0. (define sbf/state? (and/c tbf/state? (λ (tbf) (zero? (tbf/state-θ tbf))))) (module+ test (test-case "sbf/state?" (check-true (sbf/state? (tbf/state #hash((a . -1) (b . 1)) 0))))) ;;; Makes a state/tbf which is an SBF from a list of pairs of names of ;;; variables and weights. (define (make-sbf/state pairs) (make-tbf/state pairs 0)) (module+ test (test-case "make-sbf/state" (check-equal? (make-sbf/state '((a . -1) (b . 1))) (make-tbf/state '((a . -1) (b . 1)) 0)))) ;;; Applies a state TBF to its inputs. ;;; ;;; Applying a TBF consists in multiplying the weights by the ;;; corresponding inputs and comparing the sum of the products to the ;;; threshold. ;;; ;;; This function is similar to apply-tbf, but applies a state TBF (a ;;; TBF with explicitly named inputs) to a state whose values are 0 ;;; and 1. (define (apply-tbf/state tbf st) (any->01 (> (foldl + 0 (hash-values (hash-intersect (tbf/state-w tbf) st #:combine *))) (tbf/state-θ tbf)))) (module+ test (test-case "apply-tbf/state" (define st1 (make-state '((a . 1) (b . 0) (c . 1)))) (define st2 (make-state '((a . 1) (b . 1) (c . 0)))) (define tbf (make-tbf/state '((a . 2) (b . -2)) 1)) (check-equal? (apply-tbf/state tbf st1) 1) (check-equal? (apply-tbf/state tbf st2) 0))) ;;; Reads a list of tbf/state from a list of list of numbers. ;;; ;;; The last element of each list is taken to be the threshold of the ;;; TBFs, and the rest of the elements are taken to be the weights. ;;; ;;; If headers is #t, the names of the variables to appear as the ;;; inputs of the TBF are taken from the first list. The last element ;;; of this list is discarded. ;;; ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. (define (lists->tbfs/state lsts #:headers [headers #t]) (define-values (var-names rows) (if headers (values (car lsts) (cdr lsts)) (values (for/list ([i (in-range (length (car lsts)))]) (string->symbol (format "x~a" i))) lsts))) (for/list ([lst (in-list rows)]) (define-values (ws θ) (split-at-right lst 1)) (make-tbf/state (for/list ([x (in-list var-names)] [w (in-list ws)]) (cons x w)) (car θ)))) (module+ test (test-case "lists->tbfs/state" (define tbfs '((1 2 3) (1 1 2))) (check-equal? (lists->tbfs/state tbfs #:headers #f) (list (tbf/state '#hash((x0 . 1) (x1 . 2)) 3) (tbf/state '#hash((x0 . 1) (x1 . 1)) 2))) (check-equal? (lists->tbfs/state (cons '(a b f) tbfs)) (list (tbf/state '#hash((a . 1) (b . 2)) 3) (tbf/state '#hash((a . 1) (b . 1)) 2))))) ;;; Like lists->tbfs/state, but does not expect thresholds in the ;;; input. ;;; ;;; Every lists in the list contains the weights of the SBF. If ;;; headers is #t, the names of the variables to appear as the inputs ;;; of the TBF are taken from the first list. ;;; ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. (define (lists->sbfs/state lsts #:headers [headers #t]) (define rows (if headers (cdr lsts) lsts)) (define rows-θ (for/list ([lst (in-list rows)]) (append lst '(0)))) (lists->tbfs/state (if headers (cons (car lsts) rows-θ) rows-θ) #:headers headers)) (module+ test (test-case "lists->sbfs/state" (define tbfs '((1 2) (1 -1))) (check-equal? (lists->sbfs/state tbfs #:headers #f) (list (tbf/state '#hash((x0 . 1) (x1 . 2)) 0) (tbf/state '#hash((x0 . 1) (x1 . -1)) 0))) (check-equal? (lists->sbfs/state (cons '(a b) tbfs) #:headers #t) (list (tbf/state '#hash((a . 1) (b . 2)) 0) (tbf/state '#hash((a . 1) (b . -1)) 0))))) ;;; Reads a list of tbf/state from an Org-mode string containing a ;;; sexp, containing a list of lists of numbers. As in ;;; lists->tbfs/state, the last element of each list is taken to be ;;; the threshold of the TBFs, and the rest of the elements are taken ;;; to be the weights. ;;; ;;; If headers is #t, the names of the variables to appear as the ;;; inputs of the TBF are taken from the first list. The last element ;;; of this list is discarded. ;;; ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. (define (read-org-tbfs/state str #:headers [headers #t]) (lists->tbfs/state (read-org-sexp str) #:headers headers)) (module+ test (test-case "read-org-tbfs/state" (check-equal? (read-org-tbfs/state "((a b f) (1 2 3) (1 1 2))") (list (tbf/state '#hash((a . 1) (b . 2)) 3) (tbf/state '#hash((a . 1) (b . 1)) 2))) (check-equal? (read-org-tbfs/state "((1 2 3) (1 1 2))" #:headers #f) (list (tbf/state '#hash((x0 . 1) (x1 . 2)) 3) (tbf/state '#hash((x0 . 1) (x1 . 1)) 2))))) ;;; Like read-org-tbfs/state, but reads a list of SBFs. Therefore, ;;; the lists of numbers in the sexp are taken to be the weights of ;;; the SBFs. ;;; ;;; If headers is #t, the names of the variables to appear as the ;;; inputs of the TBF are taken from the first list. If headers is ;;; #f, the names of the variables are generated as xi, where i is the ;;; index of the variable. (define (read-org-sbfs/state str #:headers [headers #t]) (lists->sbfs/state (read-org-sexp str) #:headers headers)) (module+ test (test-case "read-org-sbfs/state" (check-equal? (read-org-sbfs/state "((a b) (-1 2) (1 1))") (list (tbf/state '#hash((a . -1) (b . 2)) 0) (tbf/state '#hash((a . 1) (b . 1)) 0))) (check-equal? (read-org-sbfs/state "((-1 2) (1 1))" #:headers #f) (list (tbf/state '#hash((x0 . -1) (x1 . 2)) 0) (tbf/state '#hash((x0 . 1) (x1 . 1)) 0))))) ;;; Given a list of tbf/state, produces a sexp that Org-mode can ;;; interpret as a table. ;;; ;;; All tbf/state in the list must have the same inputs. The function ;;; does not check this property. ;;; ;;; If #:headers is #f, does not print the names of the inputs of the ;;; TBFs. If #:headers is #t, the output starts by a list giving the ;;; names of the variables, as well as the symbol 'θ to represent the ;;; column giving the thresholds of the TBF. (define (print-org-tbfs/state tbfs #:headers [headers #t]) (define table (for/list ([tbf (in-list tbfs)]) (append (hash-map (tbf/state-w tbf) (λ (_ w) w) #t) (list (tbf/state-θ tbf))))) (if headers (cons (append (hash-map (tbf/state-w (car tbfs)) (λ (x _) x) #t) '(θ)) table) table)) (module+ test (test-case "print-org-tbfs/state" (define tbfs (list (make-tbf/state '((a . 1) (b . 2)) 3) (make-tbf/state '((a . -2) (b . 1)) 1))) (check-equal? (print-org-tbfs/state tbfs) '((a b θ) (1 2 3) (-2 1 1))))) ;;; Like print-org-tbfs/state, but expects a list of SBFs. The ;;; thresholds are therefore not included in the output. ;;; ;;; All sbf/state in the list must have the same inputs. The function ;;; does not check this property. ;;; ;;; If #:headers is #f, does not print the names of the inputs of the ;;; TBFs. If #:headers is #t, the output starts by a list giving the ;;; names of the variables. (define (print-org-sbfs/state sbfs #:headers [headers #t]) (define table (for/list ([sbf (in-list sbfs)]) (hash-map (tbf/state-w sbf) (λ (_ w) w) #t))) (if headers (cons (hash-map (tbf/state-w (car sbfs)) (λ (x _) x) #t) table) table)) (module+ test (define sbfs (list (make-sbf/state '((a . 1) (b . 2))) (make-sbf/state '((a . -2) (b . 1))))) (check-equal? (print-org-sbfs/state sbfs) '((a b) (1 2) (-2 1))) (check-equal? (print-org-sbfs/state sbfs #:headers #f) '((1 2) (-2 1)))) ;;; Tabulates a list of tbf/state. ;;; ;;; As in the case of tbf-tabulate*, the result is a list of lists ;;; giving the truth tables of the given TBFs. The first elements of ;;; each row give the values of the inputs, while the last elements ;;; give the values of each function corresponding to the input. ;;; ;;; All the TBFs must have exactly the same inputs. This function ;;; does not check this property. ;;; ;;; If #:headers is #t, the output starts by a list giving the names ;;; of the variables, and then the symbols 'fi, where i is the number ;;; of the TBF in the list. (define (tbf/state-tabulate* tbfs #:headers [headers #t]) (define vars (hash-map (tbf/state-w (car tbfs)) (λ (x _) x) #t)) (tabulate-state* (map (curry apply-tbf/state) tbfs) (make-same-domains vars '(0 1)) #:headers headers)) (module+ test (test-case "tbf/state-tabulate*" (define tbfs (list (make-tbf/state '((a . 1) (b . 2)) 1) (make-tbf/state '((a . -2) (b . 3)) 1))) (check-equal? (tbf/state-tabulate* tbfs) '((a b f1 f2) (0 0 0 0) (0 1 1 1) (1 0 0 0) (1 1 1 0))))) ;;; Like tbf/state-tabulate*, but only tabulates a single TBF. (define (tbf/state-tabulate tbf #:headers [headers #t]) (tbf/state-tabulate* (list tbf) #:headers headers)) (module+ test (test-case "tbf/state-tabulate" (define tbf (make-tbf/state '((a . -2) (b . 3)) 1)) (check-equal? (tbf/state-tabulate tbf) '((a b f1) (0 0 0) (0 1 1) (1 0 0) (1 1 0))))) ;;; Given a truth table of a Boolean function, groups the lines by the ;;; "number of activated inputs"—the number of inputs which are 1 in ;;; the input vector. ;;; ;;; The truth table must not include the header line. (define (group-truth-table-by-nai tt) (define sum (((curry foldl) +) 0)) (group-by (λ (row) (drop-right row 1)) tt (λ (in1 in2) (= (sum in1) (sum in2))))) (module+ test (test-case "group-truth-table-by-nai" (check-equal? (group-truth-table-by-nai '((0 0 0 1) (0 0 1 1) (0 1 0 0) (0 1 1 1) (1 0 0 0) (1 0 1 0) (1 1 0 1) (1 1 1 0))) '(((0 0 0 1)) ((0 0 1 1) (0 1 0 0) (1 0 0 0)) ((0 1 1 1) (1 0 1 0) (1 1 0 1)) ((1 1 1 0)))))) ;;; A TBN is a network form mapping variables to tbf/state. ;;; ;;; The tbf/state must only reference variables appearing in the ;;; network. This contract does not check this condition. (define tbn? (hash/c variable? tbf/state?)) ;;; Builds a TBN from a list of pairs (variable, tbf/state). (define make-tbn make-immutable-hash) (module+ test (test-case "make-tbn" (define tbf-not (make-tbf/state '((a . -1)) -1)) (define tbf-id (make-sbf/state '((a . 1)))) (check-equal? (make-tbn `((a . ,tbf-not) (b . ,tbf-id))) (hash 'a (tbf/state '#hash((a . -1)) -1) 'b (tbf/state '#hash((a . 1)) 0))))) ;;; A SBN is a network form mapping variables to sbf/state. ;;; ;;; The tbf/state must only reference variables appearing in the ;;; network. This contract does not check this condition. (define sbn? (hash/c variable? sbf/state?)) ;;; Builds an SBN from a list of pairs (variable, sbf/state). (define make-sbn make-immutable-hash) (module+ test (test-case "make-sbn" (define sbf1 (make-sbf/state '((a . -1)))) (define sbf2 (make-sbf/state '((a . 1)))) (check-equal? (make-sbn `((a . ,sbf1) (b . ,sbf2))) (hash 'a (tbf/state '#hash((a . -1)) 0) 'b (tbf/state '#hash((a . 1)) 0))))) ;;; Constructs a network from a network form defining a TBN. (define (tbn->network tbn) (make-boolean-network (for/hash ([(var tbf) (in-hash tbn)]) (values var ((curry apply-tbf/state) tbf))))) (module+ test (test-case "tbn->network" (define tbn (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1))))) (define n (tbn->network tbn)) (define s1 (make-state '((a . 0) (b . 0)))) (check-equal? (update n s1 '(a b)) (make-state '((a . 0) (b . 1)))) (define sbn (make-sbn `((a . ,(make-sbf/state '((b . -1)))) (b . ,(make-sbf/state '((a . 1))))))) (define sn (tbn->network sbn)) (define s2 (make-state '((a . 1) (b . 1)))) (check-equal? (update sn s2 '(a b)) (make-state '((a . 0) (b . 1)))))) ;;; A helper function for read-org-tbn and read-org-sbn. It reads a ;;; TBN from an Org-mode sexp containing a list of lists of numbers. ;;; As in lists->tbfs/state, the last element of each list is taken to ;;; be the threshold of the TBFs, and the rest of the elements are ;;; taken to be the weights. ;;; ;;; As in read-org-tbfs/state, if headers is #t, the names of the ;;; variables to appear as the inputs of the TBF are taken from the ;;; first list. The last element of this list is discarded. ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. ;;; ;;; If func-names is #t, the first element in every row except the ;;; first one, are taken to be the name of the variable to which the ;;; TBF should be associated. If func-names is #f, the functions are ;;; assigned to variables in alphabetical order. ;;; ;;; func-names cannot be #t if headers is #f. The function does not ;;; check this condition. (define (parse-org-tbn sexp #:headers [headers #t] #:func-names [func-names #t]) (cond [(eq? func-names #t) (define-values (vars rows) (multi-split-at sexp 1)) (define tbfs (lists->tbfs/state rows #:headers headers)) (for/hash ([tbf (in-list tbfs)] [var (in-list (cdr vars))]) (values (car var) tbf))] [else (define tbfs (lists->tbfs/state sexp #:headers headers)) (define vars (hash-map (tbf/state-w (car tbfs)) (λ (x _) x) #t)) (for/hash ([tbf (in-list tbfs)] [var (in-list vars)]) (values var tbf))])) ;;; Reads a TBN from an Org-mode string containing a sexp, containing ;;; a list of lists of numbers. As in lists->tbfs/state, the last ;;; element of each list is taken to be the threshold of the TBFs, and ;;; the rest of the elements are taken to be the weights. ;;; ;;; As in read-org-tbfs/state, if headers is #t, the names of the ;;; variables to appear as the inputs of the TBF are taken from the ;;; first list. The last element of this list is discarded. ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. ;;; ;;; If func-names is #t, the first element in every row except the ;;; first one, are taken to be the name of the variable to which the ;;; TBF should be associated. If func-names is #f, the functions are ;;; assigned to variables in alphabetical order. ;;; ;;; func-names cannot be #t if headers is #f. The function does not ;;; check this condition. (define (read-org-tbn str #:headers [headers #t] #:func-names [func-names #t]) (parse-org-tbn (read-org-sexp str) #:headers headers #:func-names func-names)) (module+ test (test-case "read-org-tbn, parse-org-tbn" (check-equal? (read-org-tbn "((\"-\" \"x\" \"y\" \"θ\") (\"y\" -1 0 -1) (\"x\" 0 -1 -1))") (hash 'x (tbf/state '#hash((x . 0) (y . -1)) -1) 'y (tbf/state '#hash((x . -1) (y . 0)) -1))) (check-equal? (read-org-tbn "((\"x\" \"y\" \"θ\") (-1 0 -1) (0 -1 -1))" #:func-names #f) (hash 'x (tbf/state '#hash((x . -1) (y . 0)) -1) 'y (tbf/state '#hash((x . 0) (y . -1)) -1))) (check-equal? (read-org-tbn "((-1 0 -1) (0 -1 -1))" #:headers #f #:func-names #f) (hash 'x0 (tbf/state '#hash((x0 . -1) (x1 . 0)) -1) 'x1 (tbf/state '#hash((x0 . 0) (x1 . -1)) -1))))) ;;; Like read-org-tbn, but reads an SBN from an Org-mode string ;;; containing a sexp, containing a list of lists of numbers. ;;; ;;; As in read-org-sbfs/state, if headers is #t, the names of the ;;; variables to appear as the inputs of the SBF are taken from the ;;; first list. The last element of this list is discarded. ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. ;;; ;;; If func-names is #t, the first element in every row except the ;;; first one, are taken to be the name of the variable to which the ;;; TBF should be associated. If func-names is #f, the functions are ;;; assigned to variables in alphabetical order. ;;; ;;; func-names cannot be #t if headers is #f. The function does not ;;; check this condition. (define (read-org-sbn str #:headers [headers #t] #:func-names [func-names #t]) (define sexp (read-org-sexp str)) ;; Inject the 0 thresholds into the rows of the sexp we have just read. (define (inject-0 rows) (for/list ([row (in-list rows)]) (append row '(0)))) (define sexp-ready (if headers (cons (car sexp) (inject-0 (cdr sexp))) (inject-0 sexp))) (parse-org-tbn sexp-ready #:headers headers #:func-names func-names)) (module+ test (test-case "read-org-sbn, parse-org-tbn" (check-equal? (read-org-sbn "((\"-\" \"x\" \"y\") (\"y\" -1 0) (\"x\" 0 -1))") (hash 'x (tbf/state '#hash((x . 0) (y . -1)) 0) 'y (tbf/state '#hash((x . -1) (y . 0)) 0))) (check-equal? (read-org-sbn "((\"x\" \"y\") (-1 0) (0 -1))" #:func-names #f) (hash 'x (tbf/state '#hash((x . -1) (y . 0)) 0) 'y (tbf/state '#hash((x . 0) (y . -1)) 0))) (check-equal? (read-org-sbn "((-1 0) (0 -1))" #:headers #f #:func-names #f) (hash 'x0 (tbf/state '#hash((x0 . -1) (x1 . 0)) 0) 'x1 (tbf/state '#hash((x0 . 0) (x1 . -1)) 0))))) ;;; A shortcut for building the state graphs of TBN. (define build-tbn-state-graph (compose pretty-print-state-graph build-full-01-state-graph make-syn-dynamics tbn->network)) ;;; Checks whether a TBN is normalized: whether all of the functions ;;; have the same inputs, and whether these inputs are exactly the ;;; variables of the TBN. (define (normalized-tbn? tbn) (define tbn-vars (hash-keys tbn)) (for/and ([tbf (in-list (hash-values tbn))]) (set=? tbn-vars (hash-keys (tbf/state-w tbf))))) (module+ test (test-case "normalized-tbn?" (check-false (normalized-tbn? (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1)))))) (check-true (normalized-tbn? (make-tbn `((a . ,(make-sbf/state '((a . 1) (b . -1)))) (b . ,(make-tbf/state '((a . -1) (b . 1)) -1)))))))) ;;; Normalizes a TBN. ;;; ;;; For every TBF, removes the inputs that are not in the variables of ;;; the TBN, and adds missing inputs with 0 weight. (define (normalize-tbn tbn) (define vars-0 (for/hash ([(x _) (in-hash tbn)]) (values x 0))) (define (normalize-tbf tbf) ;; Only keep the inputs which are also the variables of tbn. (define w-pruned (hash-intersect tbn (tbf/state-w tbf) #:combine (λ (_ w) w))) ;; Put in the missing inputs with weight 0. (define w-complete (hash-union vars-0 w-pruned #:combine (λ (_ w) w))) (tbf/state w-complete (tbf/state-θ tbf))) (for/hash ([(x tbf) (in-hash tbn)]) (values x (normalize-tbf tbf)))) (module+ test (test-case "normalize-tbn" (check-equal? (normalize-tbn (hash 'a (make-sbf/state '((b . 1) (c . 3))) 'b (make-tbf/state '((a . -1)) -1))) (hash 'a (tbf/state '#hash((a . 0) (b . 1)) 0) 'b (tbf/state '#hash((a . -1) (b . 0)) -1))))) ;;; Compacts (and denormalizes) a TBF by removing all inputs which ;;; are 0. (define (compact-tbf tbf) (tbf/state (for/hash ([(k v) (in-hash (tbf/state-w tbf))] #:unless (zero? v)) (values k v)) (tbf/state-θ tbf))) (module+ test (test-case "compact-tbf" (check-equal? (compact-tbf (tbf/state (hash 'a 0 'b 1 'c 2 'd 0) 2)) (tbf/state '#hash((b . 1) (c . 2)) 2)))) ;;; Compacts a TBN by removing all inputs which are 0 or which are not ;;; variables of the network. (define (compact-tbn tbn) (define (remove-0-non-var tbf) (tbf/state (for/hash ([(x w) (in-hash (tbf/state-w tbf))] #:when (hash-has-key? tbn x) #:unless (zero? w)) (values x w)) (tbf/state-θ tbf))) (for/hash ([(x tbf) (in-hash tbn)]) (values x (remove-0-non-var tbf)))) (module+ test (test-case "compact-tbn" (check-equal? (compact-tbn (hash 'a (tbf/state (hash 'a 0 'b 1 'c 3 'd 0) 0) 'b (tbf/state (hash 'a -1 'b 1) -1))) (hash 'a (tbf/state '#hash((b . 1)) 0) 'b (tbf/state '#hash((a . -1) (b . 1)) -1))))) ;;; Given TBN, produces a sexp containing the description of the ;;; functions of the TBN that Org-mode can interpret as a table. ;;; ;;; Like print-org-tbfs/state, if #:headers is #f, does not print the ;;; names of the inputs of the TBFs. If #:headers is #t, the output ;;; starts by a list giving the names of the variables, as well as the ;;; symbol 'θ to represent the column giving the thresholds of the ;;; TBF. ;;; ;;; If #:func-names is #t, the first column of the table gives the ;;; variable which the corresponding TBF updates. ;;; ;;; If both #:func-names and #:headers are #t, the first cell of the ;;; first column contains the symbol '-. (define (print-org-tbn tbn #:headers [headers #t] #:func-names [func-names #t]) (define ntbn (normalize-tbn tbn)) (define vars-tbfs (hash-map ntbn (λ (x tbf) (cons x tbf)) #t)) (define tbfs (map cdr vars-tbfs)) (define tbfs-table (print-org-tbfs/state tbfs #:headers headers)) (cond [(eq? func-names #t) (define vars (map car vars-tbfs)) (define col-1 (if headers (cons '- vars) vars)) (for/list ([var (in-list col-1)] [row (in-list tbfs-table)]) (cons var row))] [else tbfs-table])) (module+ test (test-case "print-org-tbn" (define tbn (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1))))) (check-equal? (print-org-tbn tbn) '((- a b θ) (a 0 1 0) (b -1 0 -1))))) ;;; Given an SBN, produces a sexp containing the description of the ;;; functions of the SBN that Org-mode can interpret as a table. ;;; This function is therefore very similar to print-org-tbn. ;;; ;;; Like print-org-tbfs/state, if #:headers is #f, does not print the ;;; names of the inputs of the TBFs. If #:headers is #t, the output ;;; starts by a list giving the names of the variables. ;;; ;;; If #:func-names is #t, the first column of the table gives the ;;; variable which the corresponding TBF updates. ;;; ;;; If both #:func-names and #:headers are #t, the first cell of the ;;; first column contains the symbol '-. (define (print-org-sbn sbn #:headers [headers #t] #:func-names [func-names #t]) (define tab (print-org-tbn sbn #:headers headers #:func-names func-names)) (define-values (tab-no-θ _) (multi-split-at tab (- (length (car tab)) 1))) tab-no-θ) (module+ test (test-case "print-org-sbn" (define sbn (hash 'a (tbf/state (hash 'b 2) 0) 'b (tbf/state (hash 'a 2) 0))) (check-equal? (print-org-sbn sbn) '((- a b) (a 0 2) (b 2 0))))) ;;; Given a TBN, constructs its interaction graph. The nodes of this ;;; graph are labeled with pairs (variable name . threshold), while ;;; the edges are labelled with the weights. ;;; ;;; If #:zero-edges is #t, the edges with zero weights will appear in ;;; the interaction graph. (define (tbn-interaction-graph tbn #:zero-edges [zero-edges #t]) (define ntbn (normalize-tbn tbn)) (define ig (weighted-graph/directed (if zero-edges (for*/list ([(tar tbf) (in-hash ntbn)] [(src w) (in-hash (tbf/state-w tbf))]) (list w src tar)) (for*/list ([(tar tbf) (in-hash ntbn)] [(src w) (in-hash (tbf/state-w tbf))] #:unless (zero? w)) (list w src tar))))) (update-graph ig #:v-func (λ (x) (cons x (tbf/state-θ (hash-ref ntbn x)))))) (module+ test (test-case "tbn-interaction-graph" (define tbn (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1))))) (check-equal? (graphviz (tbn-interaction-graph tbn)) "digraph G {\n\tnode0 [label=\"'(b . -1)\\n\"];\n\tnode1 [label=\"'(a . 0)\\n\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode0 -> node0 [label=\"0\"];\n\t\tnode1 -> node1 [label=\"0\"];\n\t}\n\tsubgraph D {\n\t\tnode0 -> node1 [label=\"1\"];\n\t\tnode1 -> node0 [label=\"-1\"];\n\t}\n}\n") (check-equal? (graphviz (tbn-interaction-graph tbn #:zero-edges #f)) "digraph G {\n\tnode0 [label=\"'(b . -1)\\n\"];\n\tnode1 [label=\"'(a . 0)\\n\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t}\n\tsubgraph D {\n\t\tnode0 -> node1 [label=\"1\"];\n\t\tnode1 -> node0 [label=\"-1\"];\n\t}\n}\n"))) ;;; Pretty prints the node labels of the interaction graph of a TBN. (define (pretty-print-tbn-interaction-graph ig) (update-graph ig #:v-func (match-lambda [(cons var weight) (~a var ":" weight)]))) (module+ test (test-case "pretty-print-tbn-interaction-graph" (define tbn (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1))))) (check-equal? (graphviz (pretty-print-tbn-interaction-graph (tbn-interaction-graph tbn))) "digraph G {\n\tnode0 [label=\"b:-1\"];\n\tnode1 [label=\"a:0\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode0 -> node0 [label=\"0\"];\n\t\tnode1 -> node1 [label=\"0\"];\n\t}\n\tsubgraph D {\n\t\tnode0 -> node1 [label=\"1\"];\n\t\tnode1 -> node0 [label=\"-1\"];\n\t}\n}\n"))) ;;; Given an SBN, constructs its interaction graph. As in ;;; tbn-interaction-graph, the nodes of this graph are labeled with ;;; the variable names, while the edges are labelled with the weights. ;;; ;;; If #:zero-edges is #t, the edges with zero weights will appear in ;;; the interaction graph. (define (sbn-interaction-graph sbn #:zero-edges [zero-edges #t]) (update-graph (tbn-interaction-graph sbn) #:v-func (match-lambda [(cons var _) var]))) (module+ test (test-case "sbn-interaction-graph" (define sbn (hash 'a (tbf/state (hash 'b 2) 0) 'b (tbf/state (hash 'a 2) 0))) (check-equal? (graphviz (sbn-interaction-graph sbn)) "digraph G {\n\tnode0 [label=\"b\"];\n\tnode1 [label=\"a\"];\n\tsubgraph U {\n\t\tedge [dir=none];\n\t\tnode0 -> node1 [label=\"2\"];\n\t\tnode0 -> node0 [label=\"0\"];\n\t\tnode1 -> node1 [label=\"0\"];\n\t}\n\tsubgraph D {\n\t}\n}\n")))