#lang racket ;;; dds/utils ;;; Various utilities. (require (for-syntax syntax/parse) (for-syntax racket/list)) (provide ;; Functions (contract-out [eval-with (-> variable-mapping? any/c any)] [extract-symbols (-> any/c list?)] [variable-mapping? (-> any/c boolean?)] [hash-pred (->* (hash?) (#:key-pred any/c #:val-pred any/c) boolean?)]) ;; Syntax auto-hash-ref/explicit auto-hash-ref/:) ;;; =================== ;;; HashTable Injection ;;; =================== ;;; This section of the file contains some utilities to streamline the ;;; usage of hash tables mapping symbols to values. The goal is ;;; essentially to avoid having to write explicit hash-ref calls. ;;; Checks whether dict is a hash table and whether its keys satisfy ;;; key-pred and its values satisfy val-pred. If either of the ;;; predicates is not supplied, it defaults to true. For example, ;;; (hash-pred dict) is equivalent to (hash dict). (define/match (hash-pred dict #:key-pred [key-pred (λ (_) #t)] #:val-pred [val-pred (λ (_) #t)]) [((hash-table (keys vals) ...) key-pred val-pred) (and (andmap key-pred keys) (andmap val-pred vals))] [(_ _ _) #f]) ;;; A variable mapping is a hash table mapping symbols to values. (define (variable-mapping? dict) (hash-pred dict #:key-pred symbol?)) ;;; Given a (HashTable Symbol a) and a sequence of symbols, binds ;;; these symbols to the values they are associated to in the hash ;;; table, then puts the body in the context of these bindings. ;;; ;;; > (let ([ht #hash((a . 1) (b . 2))]) ;;; (auto-hash-ref/explicit (ht a b) (+ a (* 2 b)))) ;;; 5 ;;; ;;; Note that only one expression can be supplied in the body. (define-syntax (auto-hash-ref/explicit stx) (syntax-parse stx [(_ (ht:id xs:id ...) body:expr) #`(let #,(for/list ([x (syntax->list #'(xs ...))]) #`[#,x (hash-ref ht '#,x)]) body)])) ;;; Given an expression and a (HashTable Symbol a), looks up the ;;; symbols with a leading semicolon and binds them to the value they ;;; are associated to in the hash table. ;;; ;;; > (let ([ht #hash((a . 1) (b . 2))]) ;;; (auto-hash-ref/: ht (+ :a (* 2 :b)))) ;;; 5 ;;; ;;; Note that the symbol :a is matched to the key 'a in the hash ;;; table. ;;; ;;; Note that only one expression can be supplied in the body. (define-syntax (auto-hash-ref/: stx) (syntax-parse stx [(_ ht:id body) (let* ([names/: (collect-colons (syntax->datum #'body))]) #`(let #,(for/list ([x names/:]) ;; put x in the same context as body #`[#,(datum->syntax #'body x) (hash-ref ht '#,(strip-colon x))]) body))])) ;;; The helper functions for auto-hash-ref/:. (begin-for-syntax ;; Collect all the symbols starting with a colon in datum. (define (collect-colons datum) (remove-duplicates (flatten (for/list ([token datum]) (cond [(symbol? token) (let ([name (symbol->string token)]) (if (eq? #\: (string-ref name 0)) token '()))] [(list? token) (collect-colons token)] [else '()]))))) ;; Strip the leading colon off x. (define (strip-colon x) (let ([x-str (symbol->string x)]) (if (eq? #\: (string-ref x-str 0)) (string->symbol (substring x-str 1)) x)))) ;;; Temporarily injects the mappings from the given hash table as ;;; bindings in a namespace including racket/base and then evaluates ;;; the expression. ;;; ;;; > (let ([ht #hash((a . 1) (b . 1))]) ;;; (eval-with ht '(+ b a 1))) ;;; 3 ;;; ;;; The local bindings from the current lexical scope are not ;;; conserved. Therefore, the following outputs an error about a ;;; missing identifier: ;;; ;;; > (let ([ht #hash((a . 1) (b . 1))] ;;; [z 1]) ;;; (eval-with ht '(+ b z a 1))) ;;; (define (eval-with ht expr) (parameterize ([current-namespace (make-base-namespace)]) (hash-for-each ht (lambda (x val) (namespace-set-variable-value! x val))) (eval expr))) ;;; Same as eval-with, but returns only the first value produced by ;;; the evaluated expression. (define (eval-with1 ht expr) (let ([vals (call-with-values (λ () (eval-with ht expr)) (λ vals vals))]) (car vals))) ;;; ============================== ;;; Analysis of quoted expressions ;;; ============================== ;;; Produces a list of symbols appearing in the quoted expression ;;; passed in the first argument. (define (extract-symbols form) (cond [(symbol? form) (list form)] [(list? form) (flatten (for/list ([x form]) (extract-symbols x)))] [else '()]))