#lang racket ;;; dds/networks ;;; This module provides some quick definitions for and analysing ;;; network models. A network is a set of variables which are updated ;;; according to their corresponding update functions. The variables ;;; to be updated at each step are given by the mode. ;;; ;;; This model can generalise Boolean networks, TBANs, multivalued ;;; networks, etc. (require "utils.rkt" "generic.rkt" "functions.rkt" graph racket/random) (provide ;; Structures (struct-out dynamics) ;; Functions (contract-out [update (-> network? state? (set/c variable? #:kind 'dont-care) state?)] [make-state (-> (listof (cons/c symbol? any/c)) state?)] [make-state-booleanize (-> (listof (cons/c symbol? (or/c 0 1))) state?)] [booleanize-state (-> state? state?)] [make-network-from-functions (-> (listof (cons/c symbol? update-function/c)) network?)] [update-function-form->update-function (-> update-function-form? update-function/c)] [network-form->network (-> network-form? network?)] [make-network-from-forms (-> (listof (cons/c symbol? update-function-form?)) network?)] [list-interactions (-> network-form? variable? (listof variable?))] [build-interaction-graph (-> network-form? graph?)] [build-all-states (-> domain-mapping/c (listof state?))] [make-same-domains (-> (listof variable?) generic-set? domain-mapping/c)] [make-boolean-domains (-> (listof variable?) (hash/c variable? (list/c #f #t)))] [build-all-boolean-states (-> (listof variable?) (listof state?))] [get-interaction-sign (-> network? domain-mapping/c variable? variable? (or/c '+ '- '0))] [build-signed-interaction-graph/form (-> network-form? domain-mapping/c graph?)] [build-boolean-signed-interaction-graph/form (-> network-form? graph?)] [build-signed-interaction-graph (-> network? domain-mapping/c graph?)] [build-boolean-signed-interaction-graph (-> network? graph?)] [make-asyn (-> (listof variable?) mode?)] [make-syn (-> (listof variable?) mode?)] [make-dynamics-from-func (-> network? (-> (listof variable?) mode?) dynamics?)] [make-asyn-dynamics (-> network? dynamics?)] [make-syn-dynamics (-> network? dynamics?)] [read-org-network-make-asyn (-> string? dynamics?)] [read-org-network-make-syn (-> string? dynamics?)] [dds-step-one (-> dynamics? state? (set/c state?))] [dds-step-one-annotated (-> dynamics? state? (set/c (cons/c modality? state?)))] [dds-step (-> dynamics? (set/c state? #:kind 'dont-care) (set/c state?))] [dds-build-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) graph?)] [dds-build-n-step-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)] [dds-build-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) graph?)] [dds-build-n-step-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)] [pretty-print-state (-> state? string?)] [pretty-print-boolean-state (-> state? string?)] [pretty-print-state-graph-with (-> graph? (-> state? string?) graph?)] [pretty-print-state-graph (-> graph? graph?)] [ppsg (-> graph? graph?)] [pretty-print-boolean-state-graph (-> graph? graph?)] [ppsgb (-> graph? graph?)] [build-full-boolean-state-graph (-> dynamics? graph?)] [build-full-boolean-state-graph-annotated (-> dynamics? graph?)] [tabulate-state (->* (procedure? domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state* (->* ((non-empty-listof procedure?) domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state/boolean (->* (procedure? (listof variable?)) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state*/boolean (->* ((non-empty-listof procedure?) (listof variable?)) (#:headers boolean?) (listof (listof any/c)))] [tabulate-network (->* (network? domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-boolean-network (->* (network?) (#:headers boolean?) (listof (listof any/c)))] [table->network (->* ((listof (*list/c any/c any/c))) (#:headers boolean?) network?)] [random-function/state (domain-mapping/c generic-set? . -> . procedure?)] [random-boolean-function/state ((listof variable?) . -> . procedure?)] [random-network (domain-mapping/c . -> . network?)] [random-boolean-network ((listof variable?) . -> . network?)] [random-boolean-network/vars (number? . -> . network?)]) ;; Predicates (contract-out [variable? (-> any/c boolean?)] [state? (-> any/c boolean?)] [update-function-form? (-> any/c boolean?)] [network-form? (-> any/c boolean?)] [modality? (-> any/c boolean?)] [mode? (-> any/c boolean?)]) ;; Contracts (contract-out [state/c contract?] [update-function/c contract?] [domain-mapping/c contract?])) (module+ test (require rackunit)) ;;; ================= ;;; Basic definitions ;;; ================= (define variable? symbol?) ;;; A state of a network is a mapping from the variables of the ;;; network to their values. (define state? variable-mapping?) (define state/c (flat-named-contract 'state state?)) ;;; An update function is a function computing a value from the given ;;; state. (define update-function/c (-> state? any/c)) ;;; A network is a mapping from its variables to its update functions. (define network? (hash/c variable? procedure?)) ;;; Given a state s updates all the variables from xs. This ;;; corresponds to a parallel mode. (define (update network s xs) (for/fold ([new-s s]) ([x xs]) (let ([f (hash-ref network x)]) (hash-set new-s x (f s))))) (module+ test (test-case "basic definitions" (define f1 (λ (s) (let ([x1 (hash-ref s 'x1)] [x2 (hash-ref s 'x2)]) (and x1 (not x2))))) (define f2 (λ (s) (let ([x2 (hash-ref s 'x2)]) (not x2)))) (define bn (make-network-from-functions `((x1 . ,f1) (x2 . ,f2)))) (define s1 (make-state '((x1 . #t) (x2 . #f)))) (define new-s1 (update bn s1 '(x2 x1))) (define s2 (make-state '((x1 . #f) (x2 . #f)))) (define new-s2 (update bn s2 '(x2))) (check-equal? s1 #hash((x1 . #t) (x2 . #f))) (check-equal? new-s1 #hash((x1 . #t) (x2 . #t))) (check-equal? s2 #hash((x1 . #f) (x2 . #f))) (check-equal? new-s2 #hash((x1 . #f) (x2 . #t))))) ;;; A version of make-immutable-hash restricted to creating network ;;; states (see contract). (define (make-state mappings) (make-immutable-hash mappings)) ;;; Makes a new Boolean states from a state with numerical values 0 ;;; and 1. (define (make-state-booleanize mappings) (make-state (for/list ([mp mappings]) (match mp [(cons var 0) (cons var #f)] [(cons var 1) (cons var #t)])))) (module+ test (test-case "make-state, make-state-booleanize, booleanize-state" (check-equal? (make-state-booleanize '((a . 0) (b . 1))) (make-state '((a . #f) (b . #t)))) (check-equal? (booleanize-state (make-state '((a . 0) (b . 1)))) (make-state '((a . #f) (b . #t)))))) ;;; Booleanizes a given state: replaces 0 with #f and 1 with #t. (define (booleanize-state s) (for/hash ([(x val) s]) (match val [0 (values x #f)] [1 (values x #t)]))) ;;; A version of make-immutable-hash restricted to creating networks. (define (make-network-from-functions funcs) (make-immutable-hash funcs)) ;;; ================================= ;;; Syntactic description of networks ;;; ================================= ;;; An update function form is any form which can appear as a body of ;;; a function and which can be evaluated with eval. For example, ;;; '(and x y (not z)) or '(+ 1 a (- b 10)). (define update-function-form? any/c) ;;; A Boolean network form is a mapping from its variables to the ;;; forms of their update functions. (define network-form? variable-mapping?) ;;; Build an update function from an update function form. (define (update-function-form->update-function form) (λ (s) (eval-with s form))) (module+ test (test-case "update-function-form->update-function" (define s (make-state '((x . #t) (y . #f)))) (define f (update-function-form->update-function '(and x y))) (check-equal? (f s) #f))) ;;; Build a network from a network form. (define (network-form->network bnf) (for/hash ([(x form) bnf]) (values x (update-function-form->update-function form)))) (module+ test (test-case "network-form->network" (define bn (network-form->network (make-hash '((a . (and a b)) (b . (not b)))))) (define s (make-state '((a . #t) (b . #t)))) (check-equal? ((hash-ref bn 'a) s) #t))) ;;; Build a network from a list of pairs of forms of update functions. (define (make-network-from-forms forms) (network-form->network (make-immutable-hash forms))) (module+ test (test-case "make-network-from-forms" (define bn (make-network-from-forms '((a . (and a b)) (b . (not b))))) (define s (make-state '((a . #t) (b . #t)))) (check-equal? ((hash-ref bn 'a) s) #t))) ;;; ============================ ;;; Inferring interaction graphs ;;; ============================ ;;; I allow any syntactic forms in definitions of Boolean functions. ;;; I can still find out which Boolean variables appear in those ;;; syntactic form, but I have no reliable syntactic means of finding ;;; out what kind of action do they have (inhibition or activation) ;;; since I cannot do Boolean minimisation (e.g., I cannot rely on not ;;; appearing before a variable, since (not (not a)) is equivalent ;;; to a). On the other hand, going through all Boolean states is ;;; quite resource-consuming and thus not always useful. ;;; ;;; In this section I provide inference of both unsigned and signed ;;; interaction graphs, but since the inference of signed interaction ;;; graphs is based on analysing the dynamics of the networks, it may ;;; be quite resource-consuming. ;;; Lists the variables of the network form appearing in the update ;;; function form for x. (define (list-interactions nf x) (set-intersect (extract-symbols (hash-ref nf x)) (hash-keys nf))) (module+ test (test-case "list-interactions" (define n #hash((a . (+ a b c)) (b . (- b c)))) (check-true (set=? (list-interactions n 'a) '(a b))) (check-true (set=? (list-interactions n 'b) '(b))))) ;;; Builds the graph in which the vertices are the variables of a ;;; given network, and which contains an arrow from a to b whenever a ;;; appears in (list-interactions a). (define (build-interaction-graph n) (transpose (unweighted-graph/adj (for/list ([(var _) n]) (cons var (list-interactions n var)))))) (module+ test (test-case "build-interaction-graph" (define n #hash((a . (+ a b c)) (b . (- b c)))) (define ig (build-interaction-graph n)) (check-true (has-vertex? ig 'a)) (check-true (has-vertex? ig 'b)) (check-false (has-vertex? ig 'c)) (check-true (has-edge? ig 'a 'a)) (check-true (has-edge? ig 'b 'a)) (check-true (has-edge? ig 'b 'b)) (check-false (has-edge? ig 'c 'b)) (check-false (has-edge? ig 'c 'a)))) ;;; A domain mapping is a hash set mapping variables to the lists of ;;; values in their domains. (define domain-mapping/c (hash/c variable? list?)) ;;; Given a hash-set mapping variables to generic sets of their ;;; possible values, constructs the list of all possible states. (define (build-all-states vars-domains) (let* ([var-dom-list (hash-map vars-domains (λ (x y) (cons x y)) #t)] [vars (map car var-dom-list)] [domains (map cdr var-dom-list)]) (for/list ([s (apply cartesian-product domains)]) (make-state (for/list ([var vars] [val s]) (cons var val)))))) (module+ test (test-case "build-all-states" (check-equal? (build-all-states #hash((a . (#t #f)) (b . (1 2 3)))) '(#hash((a . #t) (b . 1)) #hash((a . #t) (b . 2)) #hash((a . #t) (b . 3)) #hash((a . #f) (b . 1)) #hash((a . #f) (b . 2)) #hash((a . #f) (b . 3)))))) ;;; Makes a hash set mapping all variables to a single domain. (define (make-same-domains vars domain) (for/hash ([var vars]) (values var domain))) ;;; Makes a hash set mapping all variables to the Boolean domain. (define (make-boolean-domains vars) (make-same-domains vars '(#f #t))) (module+ test (test-case "make-same-domains, make-boolean-domains" (check-equal? (make-boolean-domains '(a b)) #hash((a . (#f #t)) (b . (#f #t)))))) ;;; Builds all boolean states possible over a given set of variables. (define (build-all-boolean-states vars) (build-all-states (make-boolean-domains vars))) (module+ test (test-case "build-all-boolean-states" (check-equal? (build-all-boolean-states '(a b)) '(#hash((a . #f) (b . #f)) #hash((a . #f) (b . #t)) #hash((a . #t) (b . #f)) #hash((a . #t) (b . #t)))))) ;;; Given two interacting variables of a network and the domains ;;; of the variables, returns '+ if the interaction is monotonously ;;; increasing, '- if it is monotonously decreasing, and '0 otherwise. ;;; ;;; This function does not check whether the two variables indeed ;;; interact. Its behaviour is undefined if the variables do not ;;; interact. ;;; ;;; /!\ This function iterates through almost all of the states of the ;;; network, so its performance decreases very quickly with network ;;; size. (define (get-interaction-sign network doms x y) (let* ([dom-x (hash-ref doms x)] [dom-y (hash-ref doms y)] ;; Replace the domain of x by a dummy singleton. [doms-no-x (hash-set doms x '(#f))] ;; Build all the states, but as if x were not there: since I ;; replace its domain by a singleton, all states will contain ;; the same value for x. [states-no-x (build-all-states doms-no-x)] ;; Go through all states, then through all ordered pairs of ;; values of x, generate pairs of states (s1, s2) such that x ;; has a smaller value in s1, and check that updating y in s1 ;; yields a smaller value than updating y in s2. I rely on ;; the fact that the domains are ordered. [x-y-interactions (for*/list ([s states-no-x] [x1 dom-x] ; ordered pairs of values of x [x2 (cdr (member x1 dom-x))]) (let* ([s1 (hash-set s x x1)] ; s1(x) < s2(x) [s2 (hash-set s x x2)] [y1 ((hash-ref network y) s1)] [y2 ((hash-ref network y) s2)]) ;; y1 <= y2? (<= (index-of dom-y y1) (index-of dom-y y2))))]) (cond ;; If, in all interactions, y1 <= y2, then we have an ;; increasing/promoting interaction between x and y. [(andmap (λ (x) (eq? x #t)) x-y-interactions) '+] ;; If, in all interactions, y1 > y2, then we have an ;; decreasing/inhibiting interaction between x and y. [(andmap (λ (x) (eq? x #f)) x-y-interactions) '-] ;; Otherwise the interaction is neither increasing nor ;; decreasing. [else '0]))) (module+ test (test-case "get-interaction-sign" (define n #hash((a . (not b)) (b . a))) (define doms (make-boolean-domains '(a b))) (check-equal? (get-interaction-sign (network-form->network n) doms 'a 'b) '+) (check-equal? (get-interaction-sign (network-form->network n) doms 'b 'a) '-))) ;;; Constructs a signed interaction graph of a given network form, ;;; given the ordered domains of its variables. The order on the ;;; domains determines the signs which will appear on the interaction ;;; graph. ;;; ;;; /!\ This function iterates through almost all states of the ;;; network for every arrow in the unsigned interaction graph, so its ;;; performance decreases very quickly with the size of the network. (define (build-signed-interaction-graph/form network-form doms) (let ([ig (build-interaction-graph network-form)] [network (network-form->network network-form)]) ;; Label every edge of the interaction graph with the sign. (define sig (weighted-graph/directed (for/list ([e (in-edges ig)]) (match-let ([(list x y) e]) (list (get-interaction-sign network doms x y) x y))))) ;; Ensure that every variable of the network appears in the signed ;; interaction graph as well. (for ([v (in-vertices ig)]) (add-vertex! sig v)) sig)) (module+ test (test-case "build-signed-interaction-graph/form" (define n #hash((a . (not b)) (b . a))) (define doms (make-boolean-domains '(a b))) (define sig1 (build-signed-interaction-graph/form n doms)) (check-true (has-vertex? sig1 'a)) (check-true (has-vertex? sig1 'b)) (check-false (has-vertex? sig1 'c)) (check-false (has-edge? sig1 'a 'a)) (check-true (has-edge? sig1 'b 'a)) (check-false (has-edge? sig1 'b 'b)) (check-false (has-edge? sig1 'c 'b)) (check-false (has-edge? sig1 'c 'a)) (check-equal? (edge-weight sig1 'a 'b) '+) (check-equal? (edge-weight sig1 'b 'a) '-))) ;;; Calls build-signed-interaction-graph with the Boolean domain for ;;; all variable. ;;; ;;; /!\ The same performance warning applies as for ;;; build-signed-interaction-graph. (define (build-boolean-signed-interaction-graph/form network-form) (build-signed-interaction-graph/form network-form (make-boolean-domains (hash-keys network-form)))) (module+ test (test-case "build-boolean-signed-interaction-graph/form" (define n #hash((a . (not b)) (b . a))) (define sig2 (build-boolean-signed-interaction-graph/form n)) (check-true (has-vertex? sig2 'a)) (check-true (has-vertex? sig2 'b)) (check-false (has-vertex? sig2 'c)) (check-false (has-edge? sig2 'a 'a)) (check-true (has-edge? sig2 'b 'a)) (check-false (has-edge? sig2 'b 'b)) (check-false (has-edge? sig2 'c 'b)) (check-false (has-edge? sig2 'c 'a)) (check-equal? (edge-weight sig2 'a 'b) '+) (check-equal? (edge-weight sig2 'b 'a) '-))) ;;; Similar to build-signed-interaction-graph/form, but operates on a ;;; network rather than a form. The resulting graph only includes the ;;; edges for positive or negative interactions. ;;; ;;; This function has operates with much less knowledge than ;;; build-signed-interaction-graph/form, so prefer using the latter ;;; when you can get a network form. ;;; ;;; /!\ This function iterates through all states of the network for ;;; every arrow in the unsigned interaction graph, so its performance ;;; decreases very quickly with the size of the network. (define (build-signed-interaction-graph network doms) (define sig (weighted-graph/directed (for*/fold ([edges '()]) ([(x _) (in-hash network)] [(y _) (in-hash network)]) (match (get-interaction-sign network doms x y) ['0 edges] [sign (cons (list sign x y) edges)])))) ;; Ensure that all variables of the network appear in the signed ;; interaction graph. (for ([(v _) (in-hash network)]) (add-vertex! sig v)) sig) ;;; Calls build-signed-interaction-graph assuming that the domains of ;;; all variables are Boolean. ;;; ;;; This function has operates with much less knowledge than ;;; build-boolean-signed-interaction-graph/form, so prefer using the ;;; latter when you can get a network form. ;;; ;;; /!\ This function iterates through all states of the network for ;;; every arrow in the unsigned interaction graph, so its performance ;;; decreases very quickly with the size of the network. (define (build-boolean-signed-interaction-graph network) (build-signed-interaction-graph network (make-boolean-domains (hash-keys network)))) (module+ test (test-case "build-signed-interaction-graph, build-boolean-signed-interaction-graph" (define n #hash((a . (not b)) (b . a))) (define sig3 (build-boolean-signed-interaction-graph (network-form->network n))) (check-true (has-vertex? sig3 'a)) (check-true (has-vertex? sig3 'b)) (check-equal? (edge-weight sig3 'a 'a) '+) (check-equal? (edge-weight sig3 'b 'b) '+) (check-equal? (edge-weight sig3 'a 'b) '+) (check-equal? (edge-weight sig3 'b 'a) '-))) ;;; Interaction graphs for networks without interactions must still ;;; contain all nodes. (module+ test (test-case "Interaction must graphs always contain all nodes." (define n #hash((a . #t) (b . #t))) (define ig (build-interaction-graph n)) (define sig-nf (build-boolean-signed-interaction-graph/form n)) (define sig (build-boolean-signed-interaction-graph (network-form->network n))) (check-equal? (get-vertices ig) '(b a)) (check-true (empty? (get-edges ig))) (check-equal? (get-vertices sig-nf) '(b a)) (check-true (empty? (get-edges sig-nf))) (check-equal? (get-vertices sig) '(b a)))) ;;; ==================== ;;; Dynamics of networks ;;; ==================== ;;; This section contains definitions for building and analysing the ;;; dynamics of networks. ;;; A modality is a set of variable. (define modality? (set/c variable?)) ;;; A mode is a set of modalities. (define mode? (set/c modality?)) ;;; A network dynamics is a network plus a mode. (struct dynamics (network mode) #:methods gen:dds [;; Annotates each result state with the modality which lead to it. (define/match (dds-step-one-annotated dyn s) [((dynamics network mode) s) (for/set ([m mode]) (cons m (update network s m)))])]) ;;; Given a list of variables, builds the asynchronous mode (a set of ;;; singletons). (define (make-asyn vars) (for/set ([v vars]) (set v))) ;;; Given a list of variables, builds the synchronous mode (a set ;;; containing the set of variables). (define (make-syn vars) (set (list->set vars))) (module+ test (test-case "make-asyn, make-syn" (define vars '(a b c)) (check-equal? (make-asyn vars) (set (set 'a) (set 'b) (set 'c))) (check-equal? (make-syn vars) (set (set 'a 'b 'c))))) ;;; Given a network, applies a function for building a mode to its ;;; variables and returns the corresponding network dynamics. (define (make-dynamics-from-func network mode-func) (dynamics network (mode-func (hash-keys network)))) ;;; Creates the asynchronous dynamics for a given network. (define (make-asyn-dynamics network) (make-dynamics-from-func network make-asyn)) ;;; Creates the synchronous dynamics for a given network. (define (make-syn-dynamics network) (make-dynamics-from-func network make-syn)) (module+ test (test-case "make-asyn-dynamics, make-syn-dynamics" (define n (network-form->network #hash((a . (not a)) (b . b)))) (define asyn (make-asyn-dynamics n)) (define syn (make-syn-dynamics n)) (check-equal? (dynamics-network asyn) n) (check-equal? (dynamics-mode asyn) (set (set 'a) (set 'b))) (check-equal? (dynamics-network syn) n) (check-equal? (dynamics-mode syn) (set (set 'a 'b))))) ;;; Reads an Org-mode-produced sexp, converts it into a network, and ;;; builds the asyncronous dynamics out of it. (define read-org-network-make-asyn (compose make-asyn-dynamics network-form->network read-org-variable-mapping)) ;;; Reads an Org-mode-produced sexp, converts it into a network, and ;;; builds the synchronous dynamics out of it. (define read-org-network-make-syn (compose make-syn-dynamics network-form->network read-org-variable-mapping)) ;;; Pretty-prints a state of the network. (define (pretty-print-state s) (string-join (hash-map s (λ (key val) (format "~a:~a" key val)) #t))) (module+ test (test-case "pretty-print-state" (check-equal? (pretty-print-state (make-state '((a . #f) (b . 3) (c . 4)))) "a:#f b:3 c:4"))) ;;; Pretty-prints a state of the network to Boolean values 0 or 1. (define (pretty-print-boolean-state s) (string-join (hash-map s (λ (key val) (format "~a:~a" key (any->01 val))) #t))) (module+ test (test-case "pretty-print-boolean-state" (check-equal? (pretty-print-boolean-state (make-state '((a . #f) (b . #t) (c . #t)))) "a:0 b:1 c:1"))) ;;; Given a state graph and a pretty-printer for states build a new ;;; state graph with pretty-printed vertices and edges. (define (pretty-print-state-graph-with gr pprinter) (update-graph gr #:v-func pprinter #:e-func pretty-print-set-sets)) ;;; Pretty prints a state graph with pretty-print-state. (define (pretty-print-state-graph gr) (pretty-print-state-graph-with gr pretty-print-state)) ;;; A shortcut for pretty-print-state-graph. (define ppsg pretty-print-state-graph) ;;; Pretty prints a state graph with pretty-print-boolean-state. (define (pretty-print-boolean-state-graph gr) (pretty-print-state-graph-with gr pretty-print-boolean-state)) ;;; A shortcut for pretty-print-boolean-state-graph. (define ppsgb pretty-print-boolean-state-graph) ;;; Builds the full state graph of a Boolean network. (define (build-full-boolean-state-graph dyn) (dds-build-state-graph dyn (list->set (build-all-boolean-states (hash-keys (dynamics-network dyn)))))) ;;; Build the full annotated state graph of a Boolean network. (define (build-full-boolean-state-graph-annotated dyn) (dds-build-state-graph-annotated dyn (list->set (build-all-boolean-states (hash-keys (dynamics-network dyn)))))) (module+ test (test-case "Dynamics of networks" (define n (network-form->network #hash((a . (not a)) (b . b)))) (define asyn (make-asyn-dynamics n)) (define syn (make-syn-dynamics n)) (define s (make-state '((a . #t) (b . #f)))) (define ss (set (make-state '((a . #t) (b . #t))) (make-state '((a . #f) (b . #t))))) (define gr1 (dds-build-n-step-state-graph asyn (set s) 1)) (define gr-full (dds-build-state-graph asyn (set s))) (define gr-full-pp (pretty-print-state-graph gr-full)) (define gr-full-ppb (pretty-print-boolean-state-graph gr-full)) (define gr-complete-bool (build-full-boolean-state-graph asyn)) (define gr-complete-bool-ann (build-full-boolean-state-graph-annotated asyn)) (check-equal? (dds-step-one asyn s) (set (make-state '((a . #f) (b . #f))) (make-state '((a . #t) (b . #f))))) (check-equal? (dds-step-one-annotated asyn s) (set (cons (set 'b) '#hash((a . #t) (b . #f))) (cons (set 'a) '#hash((a . #f) (b . #f))))) (check-equal? (dds-step-one syn s) (set (make-state '((a . #f) (b . #f))))) (check-equal? (dds-step asyn ss) (set (make-state '((a . #f) (b . #t))) (make-state '((a . #t) (b . #t))))) (check-true (has-vertex? gr1 #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr1 #hash((a . #f) (b . #f)))) (check-false (has-vertex? gr1 #hash((a . #t) (b . #t)))) (check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))) (check-false (has-edge? gr1 #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr-full #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr-full #hash((a . #f) (b . #f)))) (check-false (has-vertex? gr-full #hash((a . #t) (b . #t)))) (check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-vertex? gr-full-pp "a:#f b:#f")) (check-true (has-vertex? gr-full-pp "a:#t b:#f")) (check-true (has-vertex? gr-full-ppb "a:0 b:0")) (check-true (has-vertex? gr-full-ppb "a:1 b:0")) (check-true (set=? (get-edges gr-complete-bool) '((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))))) (check-true (set=? (get-edges gr-complete-bool-ann) '((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #t)) #hash((a . #t) (b . #t))) (set (set 'a))))) ;;; ================================= ;;; Tabulating functions and networks ;;; ================================= ;;; Like tabulate, but supposes that the function works on states. ;;; ;;; The argument domains defines the domains of each of the component ;;; of the states. If headers it true, the resulting list starts with ;;; a listing the names of the variables of the domain and ending with ;;; the symbol 'f, which indicates the values of the function. (define (tabulate-state func domains #:headers [headers #t]) (define tab (tabulate-state* `(,func) domains #:headers headers)) (cond [headers ;; Replace 'f1 in the headers by 'f. (match tab [(cons hdrs vals) (cons (append (drop-right hdrs 1) '(f)) vals)])] [else tab])) ;;; Like tabulate-state, but assumes the function is a Boolean ;;; function. args is a list of names of the arguments which can ;;; appear in the states. (define (tabulate-state/boolean func args #:headers [headers #t]) (tabulate-state func (make-boolean-domains args) #:headers headers)) (module+ test (test-case "tabulate-state/boolean" (define func (λ (st) (not (hash-ref st 'a)))) (check-equal? (tabulate-state/boolean func '(a)) '((a f) (#f #t) (#t #f))))) ;;; Like tabulate-state, but takes a list of functions over the same ;;; domain. If headers is #t, the first list of the result enumerates ;;; the variable names, and then contains a symbol 'fi for each of the ;;; functions, where i is replaced by the number of the function in ;;; the list. (define (tabulate-state* funcs domains #:headers [headers #t]) (define tab (for/list ([st (build-all-states domains)]) (append (hash-map st (λ (x y) y) #t) (for/list ([f funcs]) (f st))))) (cond [headers (define var-names (hash-map domains (λ (x y) x) #t)) (define func-names (for/list ([_ funcs] [i (in-naturals 1)]) (string->symbol (format "f~a" i)))) (cons (append var-names func-names) tab)] [else tab])) ;;; Like tabulate-state/boolean, but takes a list of functions. (define (tabulate-state*/boolean funcs args #:headers [headers #t]) (tabulate-state* funcs (make-boolean-domains args) #:headers headers)) (module+ test (test-case "tabulate-state*/boolean" (define f1 (λ (st) (and (hash-ref st 'a) (hash-ref st 'b)))) (define f2 (λ (st) (or (hash-ref st 'a) (hash-ref st 'b)))) (check-equal? (tabulate-state*/boolean (list f1 f2) '(a b)) '((a b f1 f2) (#f #f #f #f) (#f #t #f #t) (#t #f #f #t) (#t #t #t #t))))) ;;; Tabulates a given network. ;;; ;;; For a Boolean network with n variables, returns a table with 2n ;;; columns and 2^n rows. The first n columns correspond to the ;;; different values of the variables of the networks. The last n ;;; columns represent the values of the n update functions of the ;;; network. If headers is #t, prepends a list of variable names and ;;; update functions (f-x, where x is the name of the corresponding ;;; variable) to the result. (define (tabulate-network network domains #:headers [headers #t]) ;; I use hash-map with try-order? set to #t to ask the hash table to ;; sort the keys for me. (define-values (vars funcs) (for/lists (l1 l2) ([pair (hash-map network cons #t)]) (values (car pair) (cdr pair)))) (define tab (tabulate-state* funcs domains #:headers headers)) (cond [headers ;; Replace the names of the functions tabulate-state* gave us by ;; what we promise in the comment. (define fnames (for/list ([x (in-list vars)]) (string->symbol (format "f-~a" x)))) (match tab [(cons hdrs vals) (cons (append (take hdrs (length vars)) fnames) vals)])] [else tab])) ;;; Like tabulate-network, but assumes all the variables are Boolean. (define (tabulate-boolean-network bn #:headers [headers #t]) (tabulate-network bn (make-boolean-domains (hash-map bn (λ (x y) x) #t)) #:headers headers)) (module+ test (test-case "tabulate-boolean-network" (define bn (network-form->network #hash((a . (not a)) (b . b)))) (check-equal? (tabulate-boolean-network bn) '((a b f-a f-b) (#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t))) (check-equal? (tabulate-boolean-network bn #:headers #f) '((#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t))))) ;;; =================================== ;;; Constructing functions and networks ;;; =================================== ;;; Given a table like the one produced by tabulate-network, ;;; constructs a Boolean network having this behaviour. If headers is ;;; #t, considers that the first element of the list are the headers ;;; and reads the names of the variables from them. Otherwise ;;; generates names for variables of the form xi, where 0 ≤ i < number ;;; of variables, and treats all rows in the table as defining the ;;; behaviour of the functions of the network. The columns defining ;;; the functions are taken to be in the same order as the variables ;;; in the first half of the function. The headers of the columns ;;; defining the functions are therefore discarded. ;;; ;;; This function relies on table->function, so the same caveats ;;; apply. (define (table->network table #:headers [headers #t]) (define n (/ (length (car table)) 2)) ;; Get the variable names from the table or generate them, if ;; necessary. (define var-names (cond [headers (take (car table) n)] [else (for ([i (in-range n)]) (symbol->string (format "x~a" i)))])) ;; Drop the headers if they are present. (define tab (cond [headers (cdr table)] [else table])) ;; Split the table into the inputs and the outputs of the functions. (define-values (ins outs) (multi-split-at tab n)) ;; Transpose outs to have functions define by lines instead of by ;; columns. (define func-lines (lists-transpose outs)) ;; Make states out of inputs. (define st-ins (for/list ([in ins]) (make-state (map cons var-names in)))) ;; Construct the functions. (define funcs (for/list ([out func-lines]) (table->function (for/list ([in st-ins] [o out]) (list in o))))) ;; Construct the network. (make-network-from-functions (map cons var-names funcs))) (module+ test (test-case "table->network" (define n (table->network '((x1 x2 f1 f2) (#f #f #f #f) (#f #t #f #t) (#t #f #t #f) (#t #t #t #t)))) (define f1 (hash-ref n 'x1)) (define f2 (hash-ref n 'x2)) (check-false (f1 (make-state '((x1 . #f) (x2 . #f))))) (check-false (f1 (make-state '((x1 . #f) (x2 . #t))))) (check-true (f1 (make-state '((x1 . #t) (x2 . #f))))) (check-true (f1 (make-state '((x1 . #t) (x2 . #t))))) (check-false (f2 (make-state '((x1 . #f) (x2 . #f))))) (check-true (f2 (make-state '((x1 . #f) (x2 . #t))))) (check-false (f2 (make-state '((x1 . #t) (x2 . #f))))) (check-true (f2 (make-state '((x1 . #t) (x2 . #t))))))) ;;; ============================= ;;; Random functions and networks ;;; ============================= ;;; Generates a random function accepting a state over the domains ;;; given by arg-domains and producing values in func-domain. (define (random-function/state arg-domains func-domain) (table->function (for/list ([st (build-all-states arg-domains)]) (list st (random-ref func-domain))))) ;;; Like random-function/state, but the domains of the arguments and ;;; of the function are Boolean. args is a list of names of the ;;; variables appearing in the state. (define (random-boolean-function/state args) (random-function/state (make-boolean-domains args) '(#f #t))) (module+ test (test-case "random-boolean-function/state" (random-seed 0) (define f (random-boolean-function/state '(x1 x2))) (check-equal? (tabulate-state/boolean f '(x1 x2)) '((x1 x2 f) (#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t))) (check-equal? (tabulate-state/boolean f '(x1 x2) #:headers #f) '((#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t))) (define bn (random-boolean-network/vars 3)) (check-equal? (tabulate-boolean-network bn) '((x0 x1 x2 f-x0 f-x1 f-x2) (#f #f #f #f #t #f) (#f #f #t #t #f #f) (#f #t #f #f #t #t) (#f #t #t #t #f #f) (#t #f #f #t #f #t) (#t #f #t #f #f #t) (#t #t #f #f #f #f) (#t #t #t #t #t #t))))) ;;; Generates a random network from the given domain mapping. (define (random-network domains) (for/hash ([(x x-dom) (in-hash domains)]) (values x (random-function/state domains x-dom)))) ;;; Generates a random Boolean network with the given variables. (define (random-boolean-network vars) (random-network (make-boolean-domains vars))) ;;; Like random-boolean-network, but also generates the names of the ;;; variables for the network. The variables have the names x0 to xk, ;;; where k = n - 1. (define (random-boolean-network/vars n) (random-boolean-network (for/list ([i (in-range n)]) (string->symbol (format "x~a" i)))))