#lang racket ;;; dds/networks ;;; This module provides some quick definitions for and analysing ;;; network models. A network is a set of variables which are updated ;;; according to their corresponding update functions. The variables ;;; to be updated at each step are given by the mode. ;;; ;;; This model can generalise Boolean networks, TBANs, multivalued ;;; networks, etc. (require "utils.rkt" "generic.rkt" "functions.rkt" graph racket/random) (provide ;; Structures (struct-out dynamics) (contract-out [struct tbf/state ([weights (hash/c variable? number?)] [threshold number?])]) ;; Functions (contract-out [update (-> network? state? (set/c variable? #:kind 'dont-care) state?)] [make-state (-> (listof (cons/c symbol? any/c)) state?)] [make-state-booleanize (-> (listof (cons/c symbol? (or/c 0 1))) state?)] [booleanize-state (-> state? state?)] [make-network-from-functions (-> (listof (cons/c symbol? update-function/c)) network?)] [update-function-form->update-function (-> update-function-form? update-function/c)] [network-form->network (-> network-form? network?)] [make-network-from-forms (-> (listof (cons/c symbol? update-function-form?)) network?)] [list-interactions (-> network-form? variable? (listof variable?))] [build-interaction-graph (-> network-form? graph?)] [build-all-states (-> domain-mapping/c (listof state?))] [make-same-domains (-> (listof variable?) generic-set? domain-mapping/c)] [make-boolean-domains (-> (listof variable?) (hash/c variable? (list/c #f #t)))] [make-01-domains (-> (listof variable?) (hash/c variable? (list/c 0 1)))] [build-all-boolean-states (-> (listof variable?) (listof state?))] [build-all-01-states (-> (listof variable?) (listof state?))] [get-interaction-sign (-> network? domain-mapping/c variable? variable? (or/c '+ '- '0))] [build-signed-interaction-graph/form (-> network-form? domain-mapping/c graph?)] [build-boolean-signed-interaction-graph/form (-> network-form? graph?)] [build-signed-interaction-graph (-> network? domain-mapping/c graph?)] [build-boolean-signed-interaction-graph (-> network? graph?)] [make-asyn (-> (listof variable?) mode?)] [make-syn (-> (listof variable?) mode?)] [make-dynamics-from-func (-> network? (-> (listof variable?) mode?) dynamics?)] [make-asyn-dynamics (-> network? dynamics?)] [make-syn-dynamics (-> network? dynamics?)] [read-org-network-make-asyn (-> string? dynamics?)] [read-org-network-make-syn (-> string? dynamics?)] [dds-step-one (-> dynamics? state? (set/c state?))] [dds-step-one-annotated (-> dynamics? state? (set/c (cons/c modality? state?)))] [dds-step (-> dynamics? (set/c state? #:kind 'dont-care) (set/c state?))] [dds-build-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) graph?)] [dds-build-n-step-state-graph (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)] [dds-build-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) graph?)] [dds-build-n-step-state-graph-annotated (-> dynamics? (set/c state? #:kind 'dont-care) number? graph?)] [pretty-print-state (-> state? string?)] [pretty-print-boolean-state (-> state? string?)] [pretty-print-state-graph-with (-> graph? (-> state? string?) graph?)] [pretty-print-state-graph (-> graph? graph?)] [ppsg (-> graph? graph?)] [pretty-print-boolean-state-graph (-> graph? graph?)] [ppsgb (-> graph? graph?)] [build-full-boolean-state-graph (-> dynamics? graph?)] [build-full-boolean-state-graph-annotated (-> dynamics? graph?)] [build-full-01-state-graph (-> dynamics? graph?)] [build-full-01-state-graph-annotated (-> dynamics? graph?)] [tabulate-state (->* (procedure? domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state* (->* ((non-empty-listof procedure?) domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state/boolean (->* (procedure? (listof variable?)) (#:headers boolean?) (listof (listof any/c)))] [tabulate-state*/boolean (->* ((non-empty-listof procedure?) (listof variable?)) (#:headers boolean?) (listof (listof any/c)))] [tabulate-network (->* (network? domain-mapping/c) (#:headers boolean?) (listof (listof any/c)))] [tabulate-boolean-network (->* (network?) (#:headers boolean?) (listof (listof any/c)))] [table->network (->* ((listof (*list/c any/c any/c))) (#:headers boolean?) network?)] [random-function/state (domain-mapping/c generic-set? . -> . procedure?)] [random-boolean-function/state ((listof variable?) . -> . procedure?)] [random-network (domain-mapping/c . -> . network?)] [random-boolean-network ((listof variable?) . -> . network?)] [random-boolean-network/vars (number? . -> . network?)] [apply-tbf-to-state (-> tbf? state? (or/c 0 1))] [tbf/state-w (-> tbf/state? (hash/c variable? number?))] [tbf/state-θ (-> tbf/state? number?)] [make-tbf/state (-> (listof (cons/c variable? number?)) number? tbf/state?)] [make-sbf/state (-> (listof (cons/c variable? number?)) sbf/state?)] [apply-tbf/state (-> tbf/state? (hash/c variable? (or/c 0 1)) (or/c 0 1))] [lists->tbfs/state (->* ((listof (listof (or/c number? symbol?)))) (#:headers boolean?) (listof tbf/state?))] [lists->sbfs/state (->* ((listof (listof (or/c number? symbol?)))) (#:headers boolean?) (listof sbf/state?))] [read-org-tbfs/state (->* (string?) (#:headers boolean?) (listof tbf/state?))] [read-org-sbfs/state (->* (string?) (#:headers boolean?) (listof sbf/state?))] [print-org-tbfs/state (->* ((non-empty-listof tbf/state?)) (#:headers boolean?) (listof (listof (or/c number? symbol?))))] [print-org-sbfs/state (->* ((non-empty-listof tbf/state?)) (#:headers boolean?) (listof (listof (or/c number? symbol?))))] [tbf/state-tabulate* (->* ((non-empty-listof tbf/state?)) (#:headers boolean?) (listof (listof (or/c symbol? number?))))] [tbf/state-tabulate (->* (tbf/state?) (#:headers boolean?) (listof (listof (or/c symbol? number?))))] [make-tbn (-> (listof (cons/c variable? tbf/state?)) tbn?)] [tbn->network (-> tbn? network?)] [make-sbn (-> (listof (cons/c variable? tbf/state?)) sbn?)] [parse-org-tbn (->* ((listof any/c)) (#:headers boolean? #:func-names boolean?) tbn?)] [read-org-tbn (->* (string?) (#:headers boolean? #:func-names boolean?) tbn?)] [read-org-sbn (->* (string?) (#:headers boolean? #:func-names boolean?) tbn?)] [build-tbn-state-graph (-> tbn? graph?)] [normalized-tbn? (-> tbn? boolean?)]) ;; Predicates (contract-out [variable? (-> any/c boolean?)] [state? (-> any/c boolean?)] [update-function-form? (-> any/c boolean?)] [network-form? (-> any/c boolean?)] [modality? (-> any/c boolean?)] [mode? (-> any/c boolean?)] [sbf/state? (-> any/c boolean?)]) ;; Contracts (contract-out [state/c contract?] [update-function/c contract?] [domain-mapping/c contract?] [tbn? contract?] [sbn? contract?])) (module+ test (require rackunit)) ;;; ================= ;;; Basic definitions ;;; ================= (define variable? symbol?) ;;; A state of a network is a mapping from the variables of the ;;; network to their values. (define state? variable-mapping?) (define state/c (flat-named-contract 'state state?)) ;;; An update function is a function computing a value from the given ;;; state. (define update-function/c (-> state? any/c)) ;;; A network is a mapping from its variables to its update functions. (define network? (hash/c variable? procedure?)) ;;; Given a state s updates all the variables from xs. This ;;; corresponds to a parallel mode. (define (update network s xs) (for/fold ([new-s s]) ([x xs]) (let ([f (hash-ref network x)]) (hash-set new-s x (f s))))) (module+ test (test-case "basic definitions" (define f1 (λ (s) (let ([x1 (hash-ref s 'x1)] [x2 (hash-ref s 'x2)]) (and x1 (not x2))))) (define f2 (λ (s) (let ([x2 (hash-ref s 'x2)]) (not x2)))) (define bn (make-network-from-functions `((x1 . ,f1) (x2 . ,f2)))) (define s1 (make-state '((x1 . #t) (x2 . #f)))) (define new-s1 (update bn s1 '(x2 x1))) (define s2 (make-state '((x1 . #f) (x2 . #f)))) (define new-s2 (update bn s2 '(x2))) (check-equal? s1 #hash((x1 . #t) (x2 . #f))) (check-equal? new-s1 #hash((x1 . #t) (x2 . #t))) (check-equal? s2 #hash((x1 . #f) (x2 . #f))) (check-equal? new-s2 #hash((x1 . #f) (x2 . #t))))) ;;; A version of make-immutable-hash restricted to creating network ;;; states (see contract). (define (make-state mappings) (make-immutable-hash mappings)) ;;; Makes a new Boolean states from a state with numerical values 0 ;;; and 1. (define (make-state-booleanize mappings) (make-state (for/list ([mp mappings]) (match mp [(cons var 0) (cons var #f)] [(cons var 1) (cons var #t)])))) (module+ test (test-case "make-state, make-state-booleanize, booleanize-state" (check-equal? (make-state-booleanize '((a . 0) (b . 1))) (make-state '((a . #f) (b . #t)))) (check-equal? (booleanize-state (make-state '((a . 0) (b . 1)))) (make-state '((a . #f) (b . #t)))))) ;;; Booleanizes a given state: replaces 0 with #f and 1 with #t. (define (booleanize-state s) (for/hash ([(x val) s]) (match val [0 (values x #f)] [1 (values x #t)]))) ;;; A version of make-immutable-hash restricted to creating networks. (define (make-network-from-functions funcs) (make-immutable-hash funcs)) ;;; ================================= ;;; Syntactic description of networks ;;; ================================= ;;; An update function form is any form which can appear as a body of ;;; a function and which can be evaluated with eval. For example, ;;; '(and x y (not z)) or '(+ 1 a (- b 10)). (define update-function-form? any/c) ;;; A Boolean network form is a mapping from its variables to the ;;; forms of their update functions. (define network-form? variable-mapping?) ;;; Build an update function from an update function form. (define (update-function-form->update-function form) (λ (s) (eval-with s form))) (module+ test (test-case "update-function-form->update-function" (define s (make-state '((x . #t) (y . #f)))) (define f (update-function-form->update-function '(and x y))) (check-equal? (f s) #f))) ;;; Build a network from a network form. (define (network-form->network bnf) (for/hash ([(x form) bnf]) (values x (update-function-form->update-function form)))) (module+ test (test-case "network-form->network" (define bn (network-form->network (make-hash '((a . (and a b)) (b . (not b)))))) (define s (make-state '((a . #t) (b . #t)))) (check-equal? ((hash-ref bn 'a) s) #t))) ;;; Build a network from a list of pairs of forms of update functions. (define (make-network-from-forms forms) (network-form->network (make-immutable-hash forms))) (module+ test (test-case "make-network-from-forms" (define bn (make-network-from-forms '((a . (and a b)) (b . (not b))))) (define s (make-state '((a . #t) (b . #t)))) (check-equal? ((hash-ref bn 'a) s) #t))) ;;; ============================ ;;; Inferring interaction graphs ;;; ============================ ;;; I allow any syntactic forms in definitions of Boolean functions. ;;; I can still find out which Boolean variables appear in those ;;; syntactic form, but I have no reliable syntactic means of finding ;;; out what kind of action do they have (inhibition or activation) ;;; since I cannot do Boolean minimisation (e.g., I cannot rely on not ;;; appearing before a variable, since (not (not a)) is equivalent ;;; to a). On the other hand, going through all Boolean states is ;;; quite resource-consuming and thus not always useful. ;;; ;;; In this section I provide inference of both unsigned and signed ;;; interaction graphs, but since the inference of signed interaction ;;; graphs is based on analysing the dynamics of the networks, it may ;;; be quite resource-consuming. ;;; Lists the variables of the network form appearing in the update ;;; function form for x. (define (list-interactions nf x) (set-intersect (extract-symbols (hash-ref nf x)) (hash-keys nf))) (module+ test (test-case "list-interactions" (define n #hash((a . (+ a b c)) (b . (- b c)))) (check-true (set=? (list-interactions n 'a) '(a b))) (check-true (set=? (list-interactions n 'b) '(b))))) ;;; Builds the graph in which the vertices are the variables of a ;;; given network, and which contains an arrow from a to b whenever a ;;; appears in (list-interactions a). (define (build-interaction-graph n) (transpose (unweighted-graph/adj (for/list ([(var _) n]) (cons var (list-interactions n var)))))) (module+ test (test-case "build-interaction-graph" (define n #hash((a . (+ a b c)) (b . (- b c)))) (define ig (build-interaction-graph n)) (check-true (has-vertex? ig 'a)) (check-true (has-vertex? ig 'b)) (check-false (has-vertex? ig 'c)) (check-true (has-edge? ig 'a 'a)) (check-true (has-edge? ig 'b 'a)) (check-true (has-edge? ig 'b 'b)) (check-false (has-edge? ig 'c 'b)) (check-false (has-edge? ig 'c 'a)))) ;;; A domain mapping is a hash set mapping variables to the lists of ;;; values in their domains. (define domain-mapping/c (hash/c variable? list?)) ;;; Given a hash-set mapping variables to generic sets of their ;;; possible values, constructs the list of all possible states. (define (build-all-states vars-domains) (let* ([var-dom-list (hash-map vars-domains (λ (x y) (cons x y)) #t)] [vars (map car var-dom-list)] [domains (map cdr var-dom-list)]) (for/list ([s (apply cartesian-product domains)]) (make-state (for/list ([var vars] [val s]) (cons var val)))))) (module+ test (test-case "build-all-states" (check-equal? (build-all-states #hash((a . (#t #f)) (b . (1 2 3)))) '(#hash((a . #t) (b . 1)) #hash((a . #t) (b . 2)) #hash((a . #t) (b . 3)) #hash((a . #f) (b . 1)) #hash((a . #f) (b . 2)) #hash((a . #f) (b . 3)))))) ;;; Makes a hash set mapping all variables to a single domain. (define (make-same-domains vars domain) (for/hash ([var vars]) (values var domain))) ;;; Makes a hash set mapping all variables to the Boolean domain. (define (make-boolean-domains vars) (make-same-domains vars '(#f #t))) (module+ test (test-case "make-same-domains, make-boolean-domains" (check-equal? (make-boolean-domains '(a b)) #hash((a . (#f #t)) (b . (#f #t)))))) ;;; Makes a hash set mapping all variables to the Boolean domain, ;;; expressed as {0,1}. (define (make-01-domains vars) (make-same-domains vars '(0 1))) (module+ test (test-case "make-01-domains" (check-equal? (make-01-domains '(a b)) '#hash((a . (0 1)) (b . (0 1)))))) ;;; Builds all boolean states possible over a given set of variables. (define (build-all-boolean-states vars) (build-all-states (make-boolean-domains vars))) (module+ test (test-case "build-all-boolean-states" (check-equal? (build-all-boolean-states '(a b)) '(#hash((a . #f) (b . #f)) #hash((a . #f) (b . #t)) #hash((a . #t) (b . #f)) #hash((a . #t) (b . #t)))))) ;;; Builds all Boolean states over a given set of variables, but with ;;; 0 and 1 for Boolean values. (define build-all-01-states (compose build-all-states make-01-domains)) (module+ test (test-case "build-all-01-states" (check-equal? (build-all-01-states '(a b)) '(#hash((a . 0) (b . 0)) #hash((a . 0) (b . 1)) #hash((a . 1) (b . 0)) #hash((a . 1) (b . 1)))))) ;;; Given two interacting variables of a network and the domains ;;; of the variables, returns '+ if the interaction is monotonously ;;; increasing, '- if it is monotonously decreasing, and '0 otherwise. ;;; ;;; This function does not check whether the two variables indeed ;;; interact. Its behaviour is undefined if the variables do not ;;; interact. ;;; ;;; /!\ This function iterates through almost all of the states of the ;;; network, so its performance decreases very quickly with network ;;; size. (define (get-interaction-sign network doms x y) (let* ([dom-x (hash-ref doms x)] [dom-y (hash-ref doms y)] ;; Replace the domain of x by a dummy singleton. [doms-no-x (hash-set doms x '(#f))] ;; Build all the states, but as if x were not there: since I ;; replace its domain by a singleton, all states will contain ;; the same value for x. [states-no-x (build-all-states doms-no-x)] ;; Go through all states, then through all ordered pairs of ;; values of x, generate pairs of states (s1, s2) such that x ;; has a smaller value in s1, and check that updating y in s1 ;; yields a smaller value than updating y in s2. I rely on ;; the fact that the domains are ordered. [x-y-interactions (for*/list ([s states-no-x] [x1 dom-x] ; ordered pairs of values of x [x2 (cdr (member x1 dom-x))]) (let* ([s1 (hash-set s x x1)] ; s1(x) < s2(x) [s2 (hash-set s x x2)] [y1 ((hash-ref network y) s1)] [y2 ((hash-ref network y) s2)]) ;; y1 <= y2? (<= (index-of dom-y y1) (index-of dom-y y2))))]) (cond ;; If, in all interactions, y1 <= y2, then we have an ;; increasing/promoting interaction between x and y. [(andmap (λ (x) (eq? x #t)) x-y-interactions) '+] ;; If, in all interactions, y1 > y2, then we have an ;; decreasing/inhibiting interaction between x and y. [(andmap (λ (x) (eq? x #f)) x-y-interactions) '-] ;; Otherwise the interaction is neither increasing nor ;; decreasing. [else '0]))) (module+ test (test-case "get-interaction-sign" (define n #hash((a . (not b)) (b . a))) (define doms (make-boolean-domains '(a b))) (check-equal? (get-interaction-sign (network-form->network n) doms 'a 'b) '+) (check-equal? (get-interaction-sign (network-form->network n) doms 'b 'a) '-))) ;;; Constructs a signed interaction graph of a given network form, ;;; given the ordered domains of its variables. The order on the ;;; domains determines the signs which will appear on the interaction ;;; graph. ;;; ;;; /!\ This function iterates through almost all states of the ;;; network for every arrow in the unsigned interaction graph, so its ;;; performance decreases very quickly with the size of the network. (define (build-signed-interaction-graph/form network-form doms) (let ([ig (build-interaction-graph network-form)] [network (network-form->network network-form)]) ;; Label every edge of the interaction graph with the sign. (define sig (weighted-graph/directed (for/list ([e (in-edges ig)]) (match-let ([(list x y) e]) (list (get-interaction-sign network doms x y) x y))))) ;; Ensure that every variable of the network appears in the signed ;; interaction graph as well. (for ([v (in-vertices ig)]) (add-vertex! sig v)) sig)) (module+ test (test-case "build-signed-interaction-graph/form" (define n #hash((a . (not b)) (b . a))) (define doms (make-boolean-domains '(a b))) (define sig1 (build-signed-interaction-graph/form n doms)) (check-true (has-vertex? sig1 'a)) (check-true (has-vertex? sig1 'b)) (check-false (has-vertex? sig1 'c)) (check-false (has-edge? sig1 'a 'a)) (check-true (has-edge? sig1 'b 'a)) (check-false (has-edge? sig1 'b 'b)) (check-false (has-edge? sig1 'c 'b)) (check-false (has-edge? sig1 'c 'a)) (check-equal? (edge-weight sig1 'a 'b) '+) (check-equal? (edge-weight sig1 'b 'a) '-))) ;;; Calls build-signed-interaction-graph with the Boolean domain for ;;; all variable. ;;; ;;; /!\ The same performance warning applies as for ;;; build-signed-interaction-graph. (define (build-boolean-signed-interaction-graph/form network-form) (build-signed-interaction-graph/form network-form (make-boolean-domains (hash-keys network-form)))) (module+ test (test-case "build-boolean-signed-interaction-graph/form" (define n #hash((a . (not b)) (b . a))) (define sig2 (build-boolean-signed-interaction-graph/form n)) (check-true (has-vertex? sig2 'a)) (check-true (has-vertex? sig2 'b)) (check-false (has-vertex? sig2 'c)) (check-false (has-edge? sig2 'a 'a)) (check-true (has-edge? sig2 'b 'a)) (check-false (has-edge? sig2 'b 'b)) (check-false (has-edge? sig2 'c 'b)) (check-false (has-edge? sig2 'c 'a)) (check-equal? (edge-weight sig2 'a 'b) '+) (check-equal? (edge-weight sig2 'b 'a) '-))) ;;; Similar to build-signed-interaction-graph/form, but operates on a ;;; network rather than a form. The resulting graph only includes the ;;; edges for positive or negative interactions. ;;; ;;; This function has operates with much less knowledge than ;;; build-signed-interaction-graph/form, so prefer using the latter ;;; when you can get a network form. ;;; ;;; /!\ This function iterates through all states of the network for ;;; every arrow in the unsigned interaction graph, so its performance ;;; decreases very quickly with the size of the network. (define (build-signed-interaction-graph network doms) (define sig (weighted-graph/directed (for*/fold ([edges '()]) ([(x _) (in-hash network)] [(y _) (in-hash network)]) (match (get-interaction-sign network doms x y) ['0 edges] [sign (cons (list sign x y) edges)])))) ;; Ensure that all variables of the network appear in the signed ;; interaction graph. (for ([(v _) (in-hash network)]) (add-vertex! sig v)) sig) ;;; Calls build-signed-interaction-graph assuming that the domains of ;;; all variables are Boolean. ;;; ;;; This function has operates with much less knowledge than ;;; build-boolean-signed-interaction-graph/form, so prefer using the ;;; latter when you can get a network form. ;;; ;;; /!\ This function iterates through all states of the network for ;;; every arrow in the unsigned interaction graph, so its performance ;;; decreases very quickly with the size of the network. (define (build-boolean-signed-interaction-graph network) (build-signed-interaction-graph network (make-boolean-domains (hash-keys network)))) (module+ test (test-case "build-signed-interaction-graph, build-boolean-signed-interaction-graph" (define n #hash((a . (not b)) (b . a))) (define sig3 (build-boolean-signed-interaction-graph (network-form->network n))) (check-true (has-vertex? sig3 'a)) (check-true (has-vertex? sig3 'b)) (check-equal? (edge-weight sig3 'a 'a) '+) (check-equal? (edge-weight sig3 'b 'b) '+) (check-equal? (edge-weight sig3 'a 'b) '+) (check-equal? (edge-weight sig3 'b 'a) '-))) ;;; Interaction graphs for networks without interactions must still ;;; contain all nodes. (module+ test (test-case "Interaction must graphs always contain all nodes." (define n #hash((a . #t) (b . #t))) (define ig (build-interaction-graph n)) (define sig-nf (build-boolean-signed-interaction-graph/form n)) (define sig (build-boolean-signed-interaction-graph (network-form->network n))) (check-equal? (get-vertices ig) '(b a)) (check-true (empty? (get-edges ig))) (check-equal? (get-vertices sig-nf) '(b a)) (check-true (empty? (get-edges sig-nf))) (check-equal? (get-vertices sig) '(b a)))) ;;; ==================== ;;; Dynamics of networks ;;; ==================== ;;; This section contains definitions for building and analysing the ;;; dynamics of networks. ;;; A modality is a set of variable. (define modality? (set/c variable?)) ;;; A mode is a set of modalities. (define mode? (set/c modality?)) ;;; A network dynamics is a network plus a mode. (struct dynamics (network mode) #:methods gen:dds [;; Annotates each result state with the modality which lead to it. (define/match (dds-step-one-annotated dyn s) [((dynamics network mode) s) (for/set ([m mode]) (cons m (update network s m)))])]) ;;; Given a list of variables, builds the asynchronous mode (a set of ;;; singletons). (define (make-asyn vars) (for/set ([v vars]) (set v))) ;;; Given a list of variables, builds the synchronous mode (a set ;;; containing the set of variables). (define (make-syn vars) (set (list->set vars))) (module+ test (test-case "make-asyn, make-syn" (define vars '(a b c)) (check-equal? (make-asyn vars) (set (set 'a) (set 'b) (set 'c))) (check-equal? (make-syn vars) (set (set 'a 'b 'c))))) ;;; Given a network, applies a function for building a mode to its ;;; variables and returns the corresponding network dynamics. (define (make-dynamics-from-func network mode-func) (dynamics network (mode-func (hash-keys network)))) ;;; Creates the asynchronous dynamics for a given network. (define (make-asyn-dynamics network) (make-dynamics-from-func network make-asyn)) ;;; Creates the synchronous dynamics for a given network. (define (make-syn-dynamics network) (make-dynamics-from-func network make-syn)) (module+ test (test-case "make-asyn-dynamics, make-syn-dynamics" (define n (network-form->network #hash((a . (not a)) (b . b)))) (define asyn (make-asyn-dynamics n)) (define syn (make-syn-dynamics n)) (check-equal? (dynamics-network asyn) n) (check-equal? (dynamics-mode asyn) (set (set 'a) (set 'b))) (check-equal? (dynamics-network syn) n) (check-equal? (dynamics-mode syn) (set (set 'a 'b))))) ;;; Reads an Org-mode-produced sexp, converts it into a network, and ;;; builds the asyncronous dynamics out of it. (define read-org-network-make-asyn (compose make-asyn-dynamics network-form->network read-org-variable-mapping)) ;;; Reads an Org-mode-produced sexp, converts it into a network, and ;;; builds the synchronous dynamics out of it. (define read-org-network-make-syn (compose make-syn-dynamics network-form->network read-org-variable-mapping)) ;;; Pretty-prints a state of the network. (define (pretty-print-state s) (string-join (hash-map s (λ (key val) (format "~a:~a" key val)) #t))) (module+ test (test-case "pretty-print-state" (check-equal? (pretty-print-state (make-state '((a . #f) (b . 3) (c . 4)))) "a:#f b:3 c:4"))) ;;; Pretty-prints a state of the network to Boolean values 0 or 1. (define (pretty-print-boolean-state s) (string-join (hash-map s (λ (key val) (format "~a:~a" key (any->01 val))) #t))) (module+ test (test-case "pretty-print-boolean-state" (check-equal? (pretty-print-boolean-state (make-state '((a . #f) (b . #t) (c . #t)))) "a:0 b:1 c:1"))) ;;; Given a state graph and a pretty-printer for states build a new ;;; state graph with pretty-printed vertices and edges. (define (pretty-print-state-graph-with gr pprinter) (update-graph gr #:v-func pprinter #:e-func pretty-print-set-sets)) ;;; Pretty prints a state graph with pretty-print-state. (define (pretty-print-state-graph gr) (pretty-print-state-graph-with gr pretty-print-state)) ;;; A shortcut for pretty-print-state-graph. (define ppsg pretty-print-state-graph) ;;; Pretty prints a state graph with pretty-print-boolean-state. (define (pretty-print-boolean-state-graph gr) (pretty-print-state-graph-with gr pretty-print-boolean-state)) ;;; A shortcut for pretty-print-boolean-state-graph. (define ppsgb pretty-print-boolean-state-graph) ;;; Builds the full state graph of a Boolean network. (define (build-full-boolean-state-graph dyn) (dds-build-state-graph dyn (list->set (build-all-boolean-states (hash-keys (dynamics-network dyn)))))) ;;; Build the full annotated state graph of a Boolean network. (define (build-full-boolean-state-graph-annotated dyn) (dds-build-state-graph-annotated dyn (list->set (build-all-boolean-states (hash-keys (dynamics-network dyn)))))) (module+ test (test-case "Dynamics of networks" (define n (network-form->network #hash((a . (not a)) (b . b)))) (define asyn (make-asyn-dynamics n)) (define syn (make-syn-dynamics n)) (define s (make-state '((a . #t) (b . #f)))) (define ss (set (make-state '((a . #t) (b . #t))) (make-state '((a . #f) (b . #t))))) (define gr1 (dds-build-n-step-state-graph asyn (set s) 1)) (define gr-full (dds-build-state-graph asyn (set s))) (define gr-full-pp (pretty-print-state-graph gr-full)) (define gr-full-ppb (pretty-print-boolean-state-graph gr-full)) (define gr-complete-bool (build-full-boolean-state-graph asyn)) (define gr-complete-bool-ann (build-full-boolean-state-graph-annotated asyn)) (check-equal? (dds-step-one asyn s) (set (make-state '((a . #f) (b . #f))) (make-state '((a . #t) (b . #f))))) (check-equal? (dds-step-one-annotated asyn s) (set (cons (set 'b) '#hash((a . #t) (b . #f))) (cons (set 'a) '#hash((a . #f) (b . #f))))) (check-equal? (dds-step-one syn s) (set (make-state '((a . #f) (b . #f))))) (check-equal? (dds-step asyn ss) (set (make-state '((a . #f) (b . #t))) (make-state '((a . #t) (b . #t))))) (check-true (has-vertex? gr1 #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr1 #hash((a . #f) (b . #f)))) (check-false (has-vertex? gr1 #hash((a . #t) (b . #t)))) (check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-edge? gr1 #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))) (check-false (has-edge? gr1 #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr-full #hash((a . #t) (b . #f)))) (check-true (has-vertex? gr-full #hash((a . #f) (b . #f)))) (check-false (has-vertex? gr-full #hash((a . #t) (b . #t)))) (check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f)))) (check-true (has-edge? gr-full #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f)))) (check-true (has-vertex? gr-full-pp "a:#f b:#f")) (check-true (has-vertex? gr-full-pp "a:#t b:#f")) (check-true (has-vertex? gr-full-ppb "a:0 b:0")) (check-true (has-vertex? gr-full-ppb "a:1 b:0")) (check-true (set=? (get-edges gr-complete-bool) '((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))))) (check-true (set=? (get-edges gr-complete-bool-ann) '((#hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (#hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (#hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (#hash((a . #f) (b . #t)) #hash((a . #t) (b . #t)))))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #f)) #hash((a . #t) (b . #f))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #f)) #hash((a . #f) (b . #f))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #f)) #hash((a . #t) (b . #f))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #f)) #hash((a . #f) (b . #f))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #t)) #hash((a . #f) (b . #t))) (set (set 'a))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #t) (b . #t)) #hash((a . #t) (b . #t))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #t)) #hash((a . #f) (b . #t))) (set (set 'b))) (check-equal? (edge-weight gr-complete-bool-ann #hash((a . #f) (b . #t)) #hash((a . #t) (b . #t))) (set (set 'a))))) ;;; Like build-full-boolean-state-graph, but the states are expressed ;;; in 0 and 1, instead of #f and #t. (define (build-full-01-state-graph dyn) (dds-build-state-graph dyn (list->set (build-all-01-states (hash-keys (dynamics-network dyn)))))) ;;; Like build-full-boolean-state-graph-annotated, but the states are expressed ;;; in 0 and 1, instead of #f and #t. (define (build-full-01-state-graph-annotated dyn) (dds-build-state-graph-annotated dyn (list->set (build-all-01-states (hash-keys (dynamics-network dyn)))))) ;;; ================================= ;;; Tabulating functions and networks ;;; ================================= ;;; Like tabulate, but supposes that the function works on states. ;;; ;;; The argument domains defines the domains of each of the component ;;; of the states. If headers it true, the resulting list starts with ;;; a listing the names of the variables of the domain and ending with ;;; the symbol 'f, which indicates the values of the function. (define (tabulate-state func domains #:headers [headers #t]) (define tab (tabulate-state* `(,func) domains #:headers headers)) (cond [headers ;; Replace 'f1 in the headers by 'f. (match tab [(cons hdrs vals) (cons (append (drop-right hdrs 1) '(f)) vals)])] [else tab])) ;;; Like tabulate-state, but assumes the function is a Boolean ;;; function. args is a list of names of the arguments which can ;;; appear in the states. (define (tabulate-state/boolean func args #:headers [headers #t]) (tabulate-state func (make-boolean-domains args) #:headers headers)) (module+ test (test-case "tabulate-state/boolean" (define func (λ (st) (not (hash-ref st 'a)))) (check-equal? (tabulate-state/boolean func '(a)) '((a f) (#f #t) (#t #f))))) ;;; Like tabulate-state, but takes a list of functions over the same ;;; domain. If headers is #t, the first list of the result enumerates ;;; the variable names, and then contains a symbol 'fi for each of the ;;; functions, where i is replaced by the number of the function in ;;; the list. (define (tabulate-state* funcs domains #:headers [headers #t]) (define tab (for/list ([st (build-all-states domains)]) (append (hash-map st (λ (x y) y) #t) (for/list ([f funcs]) (f st))))) (cond [headers (define var-names (hash-map domains (λ (x y) x) #t)) (define func-names (for/list ([_ funcs] [i (in-naturals 1)]) (string->symbol (format "f~a" i)))) (cons (append var-names func-names) tab)] [else tab])) ;;; Like tabulate-state/boolean, but takes a list of functions. (define (tabulate-state*/boolean funcs args #:headers [headers #t]) (tabulate-state* funcs (make-boolean-domains args) #:headers headers)) (module+ test (test-case "tabulate-state*/boolean" (define f1 (λ (st) (and (hash-ref st 'a) (hash-ref st 'b)))) (define f2 (λ (st) (or (hash-ref st 'a) (hash-ref st 'b)))) (check-equal? (tabulate-state*/boolean (list f1 f2) '(a b)) '((a b f1 f2) (#f #f #f #f) (#f #t #f #t) (#t #f #f #t) (#t #t #t #t))))) ;;; Tabulates a given network. ;;; ;;; For a Boolean network with n variables, returns a table with 2n ;;; columns and 2^n rows. The first n columns correspond to the ;;; different values of the variables of the networks. The last n ;;; columns represent the values of the n update functions of the ;;; network. If headers is #t, prepends a list of variable names and ;;; update functions (f-x, where x is the name of the corresponding ;;; variable) to the result. (define (tabulate-network network domains #:headers [headers #t]) ;; I use hash-map with try-order? set to #t to ask the hash table to ;; sort the keys for me. (define-values (vars funcs) (for/lists (l1 l2) ([pair (hash-map network cons #t)]) (values (car pair) (cdr pair)))) (define tab (tabulate-state* funcs domains #:headers headers)) (cond [headers ;; Replace the names of the functions tabulate-state* gave us by ;; what we promise in the comment. (define fnames (for/list ([x (in-list vars)]) (string->symbol (format "f-~a" x)))) (match tab [(cons hdrs vals) (cons (append (take hdrs (length vars)) fnames) vals)])] [else tab])) ;;; Like tabulate-network, but assumes all the variables are Boolean. (define (tabulate-boolean-network bn #:headers [headers #t]) (tabulate-network bn (make-boolean-domains (hash-map bn (λ (x y) x) #t)) #:headers headers)) (module+ test (test-case "tabulate-boolean-network" (define bn (network-form->network #hash((a . (not a)) (b . b)))) (check-equal? (tabulate-boolean-network bn) '((a b f-a f-b) (#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t))) (check-equal? (tabulate-boolean-network bn #:headers #f) '((#f #f #t #f) (#f #t #t #t) (#t #f #f #f) (#t #t #f #t))))) ;;; =================================== ;;; Constructing functions and networks ;;; =================================== ;;; Given a table like the one produced by tabulate-network, ;;; constructs a Boolean network having this behaviour. If headers is ;;; #t, considers that the first element of the list are the headers ;;; and reads the names of the variables from them. Otherwise ;;; generates names for variables of the form xi, where 0 ≤ i < number ;;; of variables, and treats all rows in the table as defining the ;;; behaviour of the functions of the network. The columns defining ;;; the functions are taken to be in the same order as the variables ;;; in the first half of the function. The headers of the columns ;;; defining the functions are therefore discarded. ;;; ;;; This function relies on table->function, so the same caveats ;;; apply. (define (table->network table #:headers [headers #t]) (define n (/ (length (car table)) 2)) ;; Get the variable names from the table or generate them, if ;; necessary. (define var-names (cond [headers (take (car table) n)] [else (for ([i (in-range n)]) (symbol->string (format "x~a" i)))])) ;; Drop the headers if they are present. (define tab (cond [headers (cdr table)] [else table])) ;; Split the table into the inputs and the outputs of the functions. (define-values (ins outs) (multi-split-at tab n)) ;; Transpose outs to have functions define by lines instead of by ;; columns. (define func-lines (lists-transpose outs)) ;; Make states out of inputs. (define st-ins (for/list ([in ins]) (make-state (map cons var-names in)))) ;; Construct the functions. (define funcs (for/list ([out func-lines]) (table->function (for/list ([in st-ins] [o out]) (list in o))))) ;; Construct the network. (make-network-from-functions (map cons var-names funcs))) (module+ test (test-case "table->network" (define n (table->network '((x1 x2 f1 f2) (#f #f #f #f) (#f #t #f #t) (#t #f #t #f) (#t #t #t #t)))) (define f1 (hash-ref n 'x1)) (define f2 (hash-ref n 'x2)) (check-false (f1 (make-state '((x1 . #f) (x2 . #f))))) (check-false (f1 (make-state '((x1 . #f) (x2 . #t))))) (check-true (f1 (make-state '((x1 . #t) (x2 . #f))))) (check-true (f1 (make-state '((x1 . #t) (x2 . #t))))) (check-false (f2 (make-state '((x1 . #f) (x2 . #f))))) (check-true (f2 (make-state '((x1 . #f) (x2 . #t))))) (check-false (f2 (make-state '((x1 . #t) (x2 . #f))))) (check-true (f2 (make-state '((x1 . #t) (x2 . #t))))))) ;;; ============================= ;;; Random functions and networks ;;; ============================= ;;; Generates a random function accepting a state over the domains ;;; given by arg-domains and producing values in func-domain. (define (random-function/state arg-domains func-domain) (table->function (for/list ([st (build-all-states arg-domains)]) (list st (random-ref func-domain))))) ;;; Like random-function/state, but the domains of the arguments and ;;; of the function are Boolean. args is a list of names of the ;;; variables appearing in the state. (define (random-boolean-function/state args) (random-function/state (make-boolean-domains args) '(#f #t))) (module+ test (test-case "random-boolean-function/state" (random-seed 0) (define f (random-boolean-function/state '(x1 x2))) (check-equal? (tabulate-state/boolean f '(x1 x2)) '((x1 x2 f) (#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t))) (check-equal? (tabulate-state/boolean f '(x1 x2) #:headers #f) '((#f #f #f) (#f #t #f) (#t #f #t) (#t #t #t))) (define bn (random-boolean-network/vars 3)) (check-equal? (tabulate-boolean-network bn) '((x0 x1 x2 f-x0 f-x1 f-x2) (#f #f #f #f #t #f) (#f #f #t #t #f #f) (#f #t #f #f #t #t) (#f #t #t #t #f #f) (#t #f #f #t #f #t) (#t #f #t #f #f #t) (#t #t #f #f #f #f) (#t #t #t #t #t #t))))) ;;; Generates a random network from the given domain mapping. (define (random-network domains) (for/hash ([(x x-dom) (in-hash domains)]) (values x (random-function/state domains x-dom)))) ;;; Generates a random Boolean network with the given variables. (define (random-boolean-network vars) (random-network (make-boolean-domains vars))) ;;; Like random-boolean-network, but also generates the names of the ;;; variables for the network. The variables have the names x0 to xk, ;;; where k = n - 1. (define (random-boolean-network/vars n) (random-boolean-network (for/list ([i (in-range n)]) (string->symbol (format "x~a" i))))) ;;; =================== ;;; TBF/TBN and SBF/SBN ;;; =================== ;;; Applies a TBF to a state. ;;; ;;; The values of the variables of the state are ordered by hash-map ;;; and fed to the TBF in order. The number of the inputs of the TBF ;;; must match the number of variables in the state. (define (apply-tbf-to-state tbf st) (apply-tbf tbf (list->vector (hash-map st (λ (_ val) val))))) (module+ test (test-case "apply-tbf-to-state" (define st (make-state '((x1 . 0) (x2 . 1)))) (define f (tbf #(1 1) 1)) (check-equal? (apply-tbf-to-state f st) 0))) ;;; A state TBF is a TBF with named inputs. A state TBF can be ;;; applied to states in an unambiguous ways. (struct tbf/state (weights threshold) #:transparent) ;;; Shortcuts for acessing fields of a state/tbf. (define tbf/state-w tbf/state-weights) (define tbf/state-θ tbf/state-threshold) ;;; Makes a state/tbf from a list of pairs of names of variables and ;;; weights, as well as a threshold. (define (make-tbf/state pairs threshold) (tbf/state (make-immutable-hash pairs) threshold)) (module+ test (test-case "tbf/state" (define f (make-tbf/state '((x1 . 1) (x2 . 1)) 1)) (check-equal? (tbf/state-w f) #hash((x1 . 1) (x2 . 1))) (check-equal? (tbf/state-θ f) 1))) ;;; A sign Boolean function (SBF) is a TBF whose threshold is 0. (define sbf/state? (and/c tbf/state? (λ (tbf) (zero? (tbf/state-θ tbf))))) (module+ test (test-case "sbf/state?" (check-true (sbf/state? (tbf/state #hash((a . -1) (b . 1)) 0))))) ;;; Makes a state/tbf which is an SBF from a list of pairs of names of ;;; variables and weights. (define (make-sbf/state pairs) (make-tbf/state pairs 0)) (module+ test (test-case "make-sbf/state" (check-equal? (make-sbf/state '((a . -1) (b . 1))) (make-tbf/state '((a . -1) (b . 1)) 0)))) ;;; Applies a state TBF to its inputs. ;;; ;;; Applying a TBF consists in multiplying the weights by the ;;; corresponding inputs and comparing the sum of the products to the ;;; threshold. ;;; ;;; This function is similar to apply-tbf, but applies a state TBF (a ;;; TBF with explicitly named inputs) to a state whose values are 0 ;;; and 1. (define (apply-tbf/state tbf st) (any->01 (> (foldl + 0 (hash-values (hash-intersect (tbf/state-w tbf) st #:combine *))) (tbf/state-θ tbf)))) (module+ test (test-case "apply-tbf/state" (define st1 (make-state '((a . 1) (b . 0) (c . 1)))) (define st2 (make-state '((a . 1) (b . 1) (c . 0)))) (define tbf (make-tbf/state '((a . 2) (b . -2)) 1)) (check-equal? (apply-tbf/state tbf st1) 1) (check-equal? (apply-tbf/state tbf st2) 0))) ;;; Reads a list of tbf/state from a list of list of numbers. ;;; ;;; The last element of each list is taken to be the threshold of the ;;; TBFs, and the rest of the elements are taken to be the weights. ;;; ;;; If headers is #t, the names of the variables to appear as the ;;; inputs of the TBF are taken from the first list. The last element ;;; of this list is discarded. ;;; ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. (define (lists->tbfs/state lsts #:headers [headers #t]) (define-values (var-names rows) (if headers (values (car lsts) (cdr lsts)) (values (for/list ([i (in-range (length (car lsts)))]) (string->symbol (format "x~a" i))) lsts))) (for/list ([lst (in-list rows)]) (define-values (ws θ) (split-at-right lst 1)) (make-tbf/state (for/list ([x (in-list var-names)] [w (in-list ws)]) (cons x w)) (car θ)))) (module+ test (test-case "lists->tbfs/state" (define tbfs '((1 2 3) (1 1 2))) (check-equal? (lists->tbfs/state tbfs #:headers #f) (list (tbf/state '#hash((x0 . 1) (x1 . 2)) 3) (tbf/state '#hash((x0 . 1) (x1 . 1)) 2))) (check-equal? (lists->tbfs/state (cons '(a b f) tbfs)) (list (tbf/state '#hash((a . 1) (b . 2)) 3) (tbf/state '#hash((a . 1) (b . 1)) 2))))) ;;; Like lists->tbfs/state, but does not expect thresholds in the ;;; input. ;;; ;;; Every lists in the list contains the weights of the SBF. If ;;; headers is #t, the names of the variables to appear as the inputs ;;; of the TBF are taken from the first list. ;;; ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. (define (lists->sbfs/state lsts #:headers [headers #t]) (define rows (if headers (cdr lsts) lsts)) (define rows-θ (for/list ([lst (in-list rows)]) (append lst '(0)))) (lists->tbfs/state (if headers (cons (car lsts) rows-θ) rows-θ) #:headers headers)) (module+ test (test-case "lists->sbfs/state" (define tbfs '((1 2) (1 -1))) (check-equal? (lists->sbfs/state tbfs #:headers #f) (list (tbf/state '#hash((x0 . 1) (x1 . 2)) 0) (tbf/state '#hash((x0 . 1) (x1 . -1)) 0))) (check-equal? (lists->sbfs/state (cons '(a b) tbfs) #:headers #t) (list (tbf/state '#hash((a . 1) (b . 2)) 0) (tbf/state '#hash((a . 1) (b . -1)) 0))))) ;;; Reads a list of tbf/state from an Org-mode string containing a ;;; sexp, containing a list of lists of numbers. As in ;;; lists->tbfs/state, the last element of each list is taken to be ;;; the threshold of the TBFs, and the rest of the elements are taken ;;; to be the weights. ;;; ;;; If headers is #t, the names of the variables to appear as the ;;; inputs of the TBF are taken from the first list. The last element ;;; of this list is discarded. ;;; ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. (define (read-org-tbfs/state str #:headers [headers #t]) (lists->tbfs/state (read-org-sexp str) #:headers headers)) (module+ test (test-case "read-org-tbfs/state" (check-equal? (read-org-tbfs/state "((a b f) (1 2 3) (1 1 2))") (list (tbf/state '#hash((a . 1) (b . 2)) 3) (tbf/state '#hash((a . 1) (b . 1)) 2))) (check-equal? (read-org-tbfs/state "((1 2 3) (1 1 2))" #:headers #f) (list (tbf/state '#hash((x0 . 1) (x1 . 2)) 3) (tbf/state '#hash((x0 . 1) (x1 . 1)) 2))))) ;;; Like read-org-tbfs/state, but reads a list of SBFs. Therefore, ;;; the lists of numbers in the sexp are taken to be the weights of ;;; the SBFs. ;;; ;;; If headers is #t, the names of the variables to appear as the ;;; inputs of the TBF are taken from the first list. If headers is ;;; #f, the names of the variables are generated as xi, where i is the ;;; index of the variable. (define (read-org-sbfs/state str #:headers [headers #t]) (lists->sbfs/state (read-org-sexp str) #:headers headers)) (module+ test (test-case "read-org-sbfs/state" (check-equal? (read-org-sbfs/state "((a b) (-1 2) (1 1))") (list (tbf/state '#hash((a . -1) (b . 2)) 0) (tbf/state '#hash((a . 1) (b . 1)) 0))) (check-equal? (read-org-sbfs/state "((-1 2) (1 1))" #:headers #f) (list (tbf/state '#hash((x0 . -1) (x1 . 2)) 0) (tbf/state '#hash((x0 . 1) (x1 . 1)) 0))))) ;;; Given a list of tbf/state, produces a sexp that Org-mode can ;;; interpret as a table. ;;; ;;; All tbf/state in the list must have the same inputs. The function ;;; does not check this property. ;;; ;;; If #:headers is #f, does not print the names of the inputs of the ;;; TBFs. If #:headers is #t, the output starts by a list giving the ;;; names of the variables, as well as the symbol 'θ to represent the ;;; column giving the thresholds of the TBF. (define (print-org-tbfs/state tbfs #:headers [headers #t]) (define table (for/list ([tbf (in-list tbfs)]) (append (hash-map (tbf/state-w tbf) (λ (_ w) w) #t) (list (tbf/state-θ tbf))))) (if headers (cons (append (hash-map (tbf/state-w (car tbfs)) (λ (x _) x) #t) '(θ)) table) table)) (module+ test (test-case "print-org-tbfs/state" (define tbfs (list (make-tbf/state '((a . 1) (b . 2)) 3) (make-tbf/state '((a . -2) (b . 1)) 1))) (check-equal? (print-org-tbfs/state tbfs) '((a b θ) (1 2 3) (-2 1 1))))) ;;; Like print-org-tbfs/state, but expects a list of SBFs. The ;;; thresholds are therefore not included in the output. ;;; ;;; All sbf/state in the list must have the same inputs. The function ;;; does not check this property. ;;; ;;; If #:headers is #f, does not print the names of the inputs of the ;;; TBFs. If #:headers is #t, the output starts by a list giving the ;;; names of the variables. (define (print-org-sbfs/state sbfs #:headers [headers #t]) (define table (for/list ([sbf (in-list sbfs)]) (hash-map (tbf/state-w sbf) (λ (_ w) w) #t))) (if headers (cons (hash-map (tbf/state-w (car sbfs)) (λ (x _) x) #t) table) table)) (module+ test (define sbfs (list (make-sbf/state '((a . 1) (b . 2))) (make-sbf/state '((a . -2) (b . 1))))) (check-equal? (print-org-sbfs/state sbfs) '((a b) (1 2) (-2 1))) (check-equal? (print-org-sbfs/state sbfs #:headers #f) '((1 2) (-2 1)))) ;;; Tabulates a list of tbf/state. ;;; ;;; As in the case of tbf-tabulate*, the result is a list of lists ;;; giving the truth tables of the given TBFs. The first elements of ;;; each row give the values of the inputs, while the last elements ;;; give the values of each function corresponding to the input. ;;; ;;; All the TBFs must have exactly the same inputs. This function ;;; does not check this property. ;;; ;;; If #:headers is #t, the output starts by a list giving the names ;;; of the variables, and then the symbols 'fi, where i is the number ;;; of the TBF in the list. (define (tbf/state-tabulate* tbfs #:headers [headers #t]) (define vars (hash-map (tbf/state-w (car tbfs)) (λ (x _) x) #t)) (tabulate-state* (map (curry apply-tbf/state) tbfs) (make-same-domains vars '(0 1)) #:headers headers)) (module+ test (test-case "tbf/state-tabulate*" (define tbfs (list (make-tbf/state '((a . 1) (b . 2)) 1) (make-tbf/state '((a . -2) (b . 3)) 1))) (check-equal? (tbf/state-tabulate* tbfs) '((a b f1 f2) (0 0 0 0) (0 1 1 1) (1 0 0 0) (1 1 1 0))))) ;;; Like tbf/state-tabulate*, but only tabulates a single TBF. (define (tbf/state-tabulate tbf #:headers [headers #t]) (tbf/state-tabulate* (list tbf) #:headers headers)) (module+ test (test-case "tbf/state-tabulate" (define tbf (make-tbf/state '((a . -2) (b . 3)) 1)) (check-equal? (tbf/state-tabulate tbf) '((a b f1) (0 0 0) (0 1 1) (1 0 0) (1 1 0))))) ;;; A TBN is a network form mapping variables to tbf/state. ;;; ;;; The tbf/state must only reference variables appearing in the ;;; network. This contract does not check this condition. (define tbn? (hash/c variable? tbf/state?)) ;;; Builds a TBN from a list of pairs (variable, tbf/state). (define make-tbn make-immutable-hash) (module+ test (test-case "make-tbn" (define tbf-not (make-tbf/state '((a . -1)) -1)) (define tbf-id (make-sbf/state '((a . 1)))) (check-equal? (make-tbn `((a . ,tbf-not) (b . ,tbf-id))) (hash 'a (tbf/state '#hash((a . -1)) -1) 'b (tbf/state '#hash((a . 1)) 0))))) ;;; A SBN is a network form mapping variables to sbf/state. ;;; ;;; The tbf/state must only reference variables appearing in the ;;; network. This contract does not check this condition. (define sbn? (hash/c variable? sbf/state?)) ;;; Builds an SBN from a list of pairs (variable, sbf/state). (define make-sbn make-immutable-hash) (module+ test (test-case "make-sbn" (define sbf1 (make-sbf/state '((a . -1)))) (define sbf2 (make-sbf/state '((a . 1)))) (check-equal? (make-sbn `((a . ,sbf1) (b . ,sbf2))) (hash 'a (tbf/state '#hash((a . -1)) 0) 'b (tbf/state '#hash((a . 1)) 0))))) ;;; Constructs a network from a network form defining a TBN. (define (tbn->network tbn) (for/hash ([(var tbf) (in-hash tbn)]) (values var ((curry apply-tbf/state) tbf)))) (module+ test (test-case "tbn->network" (define tbn (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1))))) (define n (tbn->network tbn)) (define s1 (make-state '((a . 0) (b . 0)))) (check-equal? (update n s1 '(a b)) (make-state '((a . 0) (b . 1)))) (define sbn (make-sbn `((a . ,(make-sbf/state '((b . -1)))) (b . ,(make-sbf/state '((a . 1))))))) (define sn (tbn->network sbn)) (define s2 (make-state '((a . 1) (b . 1)))) (check-equal? (update sn s2 '(a b)) (make-state '((a . 0) (b . 1)))))) ;;; A helper function for read-org-tbn and read-org-sbn. It reads a ;;; TBN from an Org-mode sexp containing a list of lists of numbers. ;;; As in lists->tbfs/state, the last element of each list is taken to ;;; be the threshold of the TBFs, and the rest of the elements are ;;; taken to be the weights. ;;; ;;; As in read-org-tbfs/state, if headers is #t, the names of the ;;; variables to appear as the inputs of the TBF are taken from the ;;; first list. The last element of this list is discarded. ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. ;;; ;;; If func-names is #t, the first element in every row except the ;;; first one, are taken to be the name of the variable to which the ;;; TBF should be associated. If func-names is #f, the functions are ;;; assigned to variables in alphabetical order. ;;; ;;; func-names cannot be #t if headers is #f. The function does not ;;; check this condition. (define (parse-org-tbn sexp #:headers [headers #t] #:func-names [func-names #t]) (cond [(eq? func-names #t) (define-values (vars rows) (multi-split-at sexp 1)) (define tbfs (lists->tbfs/state rows #:headers headers)) (for/hash ([tbf (in-list tbfs)] [var (in-list (cdr vars))]) (values (car var) tbf))] [else (define tbfs (lists->tbfs/state sexp #:headers headers)) (define vars (hash-map (tbf/state-w (car tbfs)) (λ (x _) x) #t)) (for/hash ([tbf (in-list tbfs)] [var (in-list vars)]) (values var tbf))])) ;;; Reads a TBN from an Org-mode string containing a sexp, containing ;;; a list of lists of numbers. As in lists->tbfs/state, the last ;;; element of each list is taken to be the threshold of the TBFs, and ;;; the rest of the elements are taken to be the weights. ;;; ;;; As in read-org-tbfs/state, if headers is #t, the names of the ;;; variables to appear as the inputs of the TBF are taken from the ;;; first list. The last element of this list is discarded. ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. ;;; ;;; If func-names is #t, the first element in every row except the ;;; first one, are taken to be the name of the variable to which the ;;; TBF should be associated. If func-names is #f, the functions are ;;; assigned to variables in alphabetical order. ;;; ;;; func-names cannot be #t if headers is #f. The function does not ;;; check this condition. (define (read-org-tbn str #:headers [headers #t] #:func-names [func-names #t]) (parse-org-tbn (read-org-sexp str) #:headers headers #:func-names func-names)) (module+ test (test-case "read-org-tbn, parse-org-tbn" (check-equal? (read-org-tbn "((\"-\" \"x\" \"y\" \"θ\") (\"y\" -1 0 -1) (\"x\" 0 -1 -1))") (hash 'x (tbf/state '#hash((x . 0) (y . -1)) -1) 'y (tbf/state '#hash((x . -1) (y . 0)) -1))) (check-equal? (read-org-tbn "((\"x\" \"y\" \"θ\") (-1 0 -1) (0 -1 -1))" #:func-names #f) (hash 'x (tbf/state '#hash((x . -1) (y . 0)) -1) 'y (tbf/state '#hash((x . 0) (y . -1)) -1))) (check-equal? (read-org-tbn "((-1 0 -1) (0 -1 -1))" #:headers #f #:func-names #f) (hash 'x0 (tbf/state '#hash((x0 . -1) (x1 . 0)) -1) 'x1 (tbf/state '#hash((x0 . 0) (x1 . -1)) -1))))) ;;; Like read-org-tbn, but reads an SBN from an Org-mode string ;;; containing a sexp, containing a list of lists of numbers. ;;; ;;; As in read-org-sbfs/state, if headers is #t, the names of the ;;; variables to appear as the inputs of the SBF are taken from the ;;; first list. The last element of this list is discarded. ;;; If headers is #f, the names of the variables are generated as xi, ;;; where i is the index of the variable. ;;; ;;; If func-names is #t, the first element in every row except the ;;; first one, are taken to be the name of the variable to which the ;;; TBF should be associated. If func-names is #f, the functions are ;;; assigned to variables in alphabetical order. ;;; ;;; func-names cannot be #t if headers is #f. The function does not ;;; check this condition. (define (read-org-sbn str #:headers [headers #t] #:func-names [func-names #t]) (define sexp (read-org-sexp str)) ;; Inject the 0 thresholds into the rows of the sexp we have just read. (define (inject-0 rows) (for/list ([row (in-list rows)]) (append row '(0)))) (define sexp-ready (if headers (cons (car sexp) (inject-0 (cdr sexp))) (inject-0 sexp))) (parse-org-tbn sexp-ready #:headers headers #:func-names func-names)) (module+ test (test-case "read-org-sbn, parse-org-tbn" (check-equal? (read-org-sbn "((\"-\" \"x\" \"y\") (\"y\" -1 0) (\"x\" 0 -1))") (hash 'x (tbf/state '#hash((x . 0) (y . -1)) 0) 'y (tbf/state '#hash((x . -1) (y . 0)) 0))) (check-equal? (read-org-sbn "((\"x\" \"y\") (-1 0) (0 -1))" #:func-names #f) (hash 'x (tbf/state '#hash((x . -1) (y . 0)) 0) 'y (tbf/state '#hash((x . 0) (y . -1)) 0))) (check-equal? (read-org-sbn "((-1 0) (0 -1))" #:headers #f #:func-names #f) (hash 'x0 (tbf/state '#hash((x0 . -1) (x1 . 0)) 0) 'x1 (tbf/state '#hash((x0 . 0) (x1 . -1)) 0))))) ;;; A shortcut for building the state graphs of TBN. (define build-tbn-state-graph (compose pretty-print-state-graph build-full-01-state-graph make-syn-dynamics tbn->network)) ;;; Checks whether a TBN is normalized: whether all of the functions ;;; have the same inputs, and whether these inputs are exactly the ;;; variables of the TBN. (define (normalized-tbn? tbn) (define tbn-vars (hash-keys tbn)) (for/and ([tbf (in-list (hash-values tbn))]) (set=? tbn-vars (hash-keys (tbf/state-w tbf))))) (module+ test (test-case "normalized-tbn?" (check-false (normalized-tbn? (make-tbn `((a . ,(make-sbf/state '((b . 1)))) (b . ,(make-tbf/state '((a . -1)) -1)))))) (check-true (normalized-tbn? (make-tbn `((a . ,(make-sbf/state '((a . 1) (b . -1)))) (b . ,(make-tbf/state '((a . -1) (b . 1)) -1))))))))