diff --git a/utils-untyped.rkt b/utils-untyped.rkt new file mode 100644 index 0000000..40a2c0d --- /dev/null +++ b/utils-untyped.rkt @@ -0,0 +1,717 @@ +#lang racket + +;;; dds/utils + +;;; Various utilities. + +(require + graph + (for-syntax syntax/parse racket/list)) + +(provide + ;; Functions + (contract-out [eval-with (-> variable-mapping? any/c any)] + [extract-symbols (-> any/c list?)] + [any->string (-> any/c string?)] + [stringify-variable-mapping (-> variable-mapping? string-variable-mapping?)] + [string->any (-> string? any/c)] + [read-org-sexp (-> string? (listof any/c))] + [map-sexp (-> procedure? any/c any/c)] + [unorg (-> string? (listof any/c))] + [unstringify-pairs (-> (listof (general-pair/c string? any/c)) + (listof (general-pair/c symbol? any/c)))] + [read-org-variable-mapping (-> string? variable-mapping?)] + [unorgv (-> string? variable-mapping?)] + [dotit (-> graph? void?)] + [read-symbol-list (-> string? (listof symbol?))] + [drop-first-last (-> string? string?)] + [list-sets->list-strings (-> (listof (set/c any/c)) (listof string?))] + [pretty-print-set-sets (-> (set/c (set/c symbol?) #:kind 'dont-care) string?)] + [update-vertices/unweighted (-> graph? (-> any/c any/c) graph?)] + [update-graph (->* (graph?) + (#:v-func (-> any/c any/c) + #:e-func (-> any/c any/c)) + graph?)] + [pretty-print-set (-> generic-set? string?)] + [collect-by-key (-> (listof any/c) (listof any/c) (values (listof any/c) (listof (listof any/c))))] + [collect-by-key/sets (-> (listof any/c) (listof any/c) (values (listof any/c) (listof (set/c any/c))))] + + [ht-values/list->set (-> (hash/c any/c (listof any/c)) (hash/c any/c (set/c any/c)))] + [hash->list/ordered (-> hash? (listof (cons/c any/c any/c)))] + [multi-split-at (-> (listof (listof any/c)) number? + (values (listof (listof any/c)) (listof (listof any/c))))] + [lists-transpose (-> (listof (listof any/c)) (listof (listof any/c)))] + [procedure-fixed-arity? (-> procedure? boolean?)] + [in-random (case-> (-> (stream/c (and/c real? inexact? (>/c 0) ( (integer-in 1 4294967087) (stream/c exact-nonnegative-integer?)) + (-> exact-integer? (integer-in 1 4294967087) + (stream/c exact-nonnegative-integer?)))] + [cartesian-product/stream (->* () #:rest (listof stream?) stream?)] + [boolean-power (-> number? (listof (listof boolean?)))] + [boolean-power/stream (-> number? (stream/c (listof boolean?)))] + [any->01 (-> any/c (or/c 0 1))] + [01->boolean (-> (or/c 0 1) boolean?)]) + ;; Contracts + (contract-out [variable-mapping? contract?] + [string-variable-mapping? contract?] + [general-pair/c (-> contract? contract? contract?)]) + ;; Syntax + auto-hash-ref/explicit auto-hash-ref/:) + +(module+ test + (require rackunit)) + + +;;; =================== +;;; HashTable Injection +;;; =================== + +;;; This section of the file contains some utilities to streamline the +;;; usage of hash tables mapping symbols to values. The goal is +;;; essentially to avoid having to write explicit hash-ref calls. + +;;; A variable mapping is a hash table mapping symbols to values. +(define (variable-mapping? dict) (hash/c symbol? any/c)) + +;;; Given a (HashTable Symbol a) and a sequence of symbols, binds +;;; these symbols to the values they are associated to in the hash +;;; table, then puts the body in the context of these bindings. +;;; +;;; > (let ([ht #hash((a . 1) (b . 2))]) +;;; (auto-hash-ref/explicit (ht a b) (+ a (* 2 b)))) +;;; 5 +;;; +;;; Note that only one expression can be supplied in the body. +(define-syntax (auto-hash-ref/explicit stx) + (syntax-parse stx + [(_ (ht:id xs:id ...) body:expr) + #`(let #,(for/list ([x (syntax->list #'(xs ...))]) + #`[#,x (hash-ref ht '#,x)]) + body)])) + +(module+ test + (test-case "auto-hash-ref/explicit" + (define mytable #hash((a . 3) (b . 4))) + (check-equal? (auto-hash-ref/explicit (mytable b a) + (* a b)) + 12) + (define ht #hash((a . #t) (b . #f))) + (check-equal? (auto-hash-ref/explicit (ht a b) + (and (not a) b)) + #f))) + +;;; Given an expression and a (HashTable Symbol a), looks up the +;;; symbols with a leading semicolon and binds them to the value they +;;; are associated to in the hash table. +;;; +;;; > (let ([ht #hash((a . 1) (b . 2))]) +;;; (auto-hash-ref/: ht (+ :a (* 2 :b)))) +;;; 5 +;;; +;;; Note that the symbol :a is matched to the key 'a in the hash +;;; table. +;;; +;;; Note that only one expression can be supplied in the body. +(define-syntax (auto-hash-ref/: stx) + (syntax-parse stx + [(_ ht:id body) + (let* ([names/: (collect-colons (syntax->datum #'body))]) + #`(let #,(for/list ([x names/:]) + ;; put x in the same context as body + #`[#,(datum->syntax #'body x) + (hash-ref ht '#,(strip-colon x))]) + body))])) + +(module+ test + (test-case "auto-hash-ref/:" + (define ht1 #hash((x . #t) (y . #t) (t . #f))) + (define z #t) + (check-equal? (auto-hash-ref/: ht1 + (and :x (not :y) z (or (and :t) :x))) + #f) + (define ht2 #hash((a . 1) (b . 2))) + (check-equal? (auto-hash-ref/: ht2 (+ :a (* 2 :b))) + 5))) + +;;; The helper functions for auto-hash-ref/:. +(begin-for-syntax + ;; Collect all the symbols starting with a colon in datum. + (define (collect-colons datum) + (remove-duplicates + (flatten + (for/list ([token datum]) + (cond + [(symbol? token) + (let ([name (symbol->string token)]) + (if (eq? #\: (string-ref name 0)) + token + '()))] + [(list? token) + (collect-colons token)] + [else '()]))))) + + ;; Strip the leading colon off x. + (define (strip-colon x) + (let ([x-str (symbol->string x)]) + (if (eq? #\: (string-ref x-str 0)) + (string->symbol (substring x-str 1)) + x)))) + +;;; Temporarily injects the mappings from the given hash table as +;;; bindings in a namespace including racket/base and then evaluates +;;; the expression. +;;; +;;; > (let ([ht #hash((a . 1) (b . 1))]) +;;; (eval-with ht '(+ b a 1))) +;;; 3 +;;; +;;; The local bindings from the current lexical scope are not +;;; conserved. Therefore, the following outputs an error about a +;;; missing identifier: +;;; +;;; > (let ([ht #hash((a . 1) (b . 1))] +;;; [z 1]) +;;; (eval-with ht '(+ b z a 1))) +;;; +(define (eval-with ht expr) + (parameterize ([current-namespace (make-base-namespace)]) + (for ([(x val) ht]) (namespace-set-variable-value! x val)) + (eval expr))) + +(module+ test + (test-case "eval-with" + (check-equal? (let ([ht #hash((a . 1) (b . 1))]) + (eval-with ht '(+ b a 1))) + 3))) + +;;; Same as eval-with, but returns only the first value produced by +;;; the evaluated expression. +(define (eval-with1 ht expr) + (let ([vals (call-with-values (λ () (eval-with ht expr)) + (λ vals vals))]) + (car vals))) + + +;;; ============================== +;;; Analysis of quoted expressions +;;; ============================== + +;;; Produces a list of symbols appearing in the quoted expression +;;; passed in the first argument. +(define (extract-symbols form) + (match form + [(? symbol?) (list form)] + [(? list?) (flatten (for/list ([x form]) + (extract-symbols x)))] + [else '()])) + +(module+ test + (test-case "extract-symbols" + (check-equal? (extract-symbols '(1 (2 3) x (y z 3))) + '(x y z)))) + + +;;; ========================= +;;; Interaction with Org-mode +;;; ========================= + +;;; Org-mode supports laying out the output of code blocks as tables, +;;; which is very practical for various variable mappings (e.g., +;;; states). However, when the hash table maps variables to lists, +;;; Org-mode will create a column per list element, which may or may +;;; not be the desired effect. In this section I define some +;;; utilities for nicer interoperation with Org-mode tables. I also +;;; define some shortcuts to reduce the number of words to type when +;;; using dds with Org-mode. See example.org for examples of usage. + +;;; Converts any value to string. +(define (any->string x) + (with-output-to-string (λ () (display x)))) + +(module+ test + (test-case "any->string" + (check-equal? (any->string 'a) "a") + (check-equal? (any->string '(a 1 (x y))) "(a 1 (x y))") + (check-equal? (any->string "hello") "hello"))) + +;;; A string variable mapping is a mapping from variables to strings. +(define (string-variable-mapping? dict) (hash/c symbol? string?)) + +;;; Converts all the values of a variable mapping to string. +(define (stringify-variable-mapping ht) + (for/hash ([(key val) ht]) (values key (any->string val)))) + +(module+ test + (test-case "stringify-variable-mapping" + (define mp (stringify-variable-mapping #hash((a . (and a b)) (b . (not b))))) + (check-equal? (hash-ref mp 'a) "(and a b)") + (check-equal? (hash-ref mp 'b) "(not b)"))) + +;;; Reads any value from string. +(define (string->any str) + (with-input-from-string str (λ () (read)))) + +(module+ test + (test-case "string->any" + (check-equal? (string->any "(or b (not a))") '(or b (not a))) + (check-equal? (string->any "14") 14))) + +;;; Given a sexp, converts all "#f" to #f and "#t" to #t. +;;; +;;; When I read Org-mode tables, I pump them through a call to the +;;; prin1 because the elisp sexp seems incompatible with Racket. On +;;; the other hand, Racket Booleans seem to upset elisp a little, so +;;; prin1 wraps them in additional double quotes. This function +;;; removes those quotes. +(define/match (handle-org-booleans datum) + [("#t") #t] + [("#f") #f] + [((? list?)) (map handle-org-booleans datum)] + [ (_) datum]) + +;;; Given a sexp, applies the given function to any object which is +;;; not a list. +;;; +;;; The contract of this function will not check whether func is +;;; indeed applicable to every non-list element of the sexp. If this +;;; is not the case, a contract violation for func will be generated. +(define (map-sexp func sexp) + (match sexp + [(? list?) (map ((curry map-sexp) func) sexp)] + [datum (func datum)])) + +(module+ test + (test-case "map-sexp" + (check-equal? (map-sexp add1 '(1 2 (4 10) 3)) '(2 3 (5 11) 4)))) + +;;; Reads a sexp from a string produced by Org-mode for a named table. +;;; See example.org for examples. +(define read-org-sexp + (compose ((curry map-sexp) (match-lambda + [(and (? string?) str) (string->any str)] + [x x])) + string->any)) + +;;; A shortcut for read-org-sexp. +(define unorg read-org-sexp) + +(module+ test + (test-case "read-org-sexp" + (check-equal? (read-org-sexp "((\"a\" \"(and a b)\") (\"b\" \"(or b (not a))\"))") + '((a (and a b)) (b (or b (not a))))) + (check-equal? (read-org-sexp "(#t \"#t\" \"#t \" '(1 2 \"#f\"))") + '(#t #t #t '(1 2 #f))))) + +;;; A contract allowing pairs constructed via cons or via list. +(define (general-pair/c key-contract val-contract) + (or/c (list/c key-contract val-contract) + (cons/c key-contract val-contract))) + +;;; Given a list of pairs of strings and some other values (possibly +;;; strings), converts the first element of each pair to a string, and +;;; reads the second element with string->any or keeps it as is if it +;;; is not a string. +(define (unstringify-pairs pairs) + (for/list ([p pairs]) + (match p + [(list key val) + (cons (string->symbol key) (if (string? val) + (string->any val) + val))] + [(cons key val) ; also handle improper pairs + (cons (string->symbol key) (if (string? val) + (string->any val) + val))]))) + +(module+ test + (test-case "unstringify-pairs" + (check-equal? (unstringify-pairs '(("a" . "1") ("b" . "(and a (not b))"))) + '((a . 1) (b . (and a (not b))))) + (check-equal? (unstringify-pairs '(("a" . 1) ("b" . "(and a (not b))"))) + '((a . 1) (b . (and a (not b))))))) + +;;; Reads a variable mapping from a string, such as the one which +;;; Org-mode produces from tables. +(define read-org-variable-mapping + (compose make-immutable-hash unstringify-pairs string->any)) + +(module+ test + (test-case "read-org-variable-mapping" + (define m1 (read-org-variable-mapping "((\"a\" \"(and a b)\") (\"b\" \"(or b (not a))\"))")) + (define m2 (read-org-variable-mapping "((\"a\" . \"(and a b)\") (\"b\" . \"(or b (not a))\"))")) + (define m3 (unorgv "((\"a\" . \"(and a b)\") (\"b\" . \"(or b (not a))\"))")) + (check-equal? (hash-ref m1 'a) '(and a b)) + (check-equal? (hash-ref m2 'a) '(and a b)) + (check-equal? (hash-ref m3 'a) '(and a b)) + (check-equal? (hash-ref m1 'b) '(or b (not a))) + (check-equal? (hash-ref m2 'b) '(or b (not a))) + (check-equal? (hash-ref m3 'b) '(or b (not a))))) + +;;; A synonym for read-org-variable-mapping. +(define unorgv read-org-variable-mapping) + +;;; Typeset the graph via graphviz and display it. +(define dotit (compose display graphviz)) + +;;; Reads a list of symbols from a string. +(define (read-symbol-list str) + (string->any (string-append "(" str ")"))) + +(module+ test + (test-case "read-symbol-list" + (check-equal? (read-symbol-list "a b c") '(a b c)))) + +;;; Removes the first and the last symbol of a given string. +;;; +;;; Useful for removing the parentheses in string representations of +;;; lists. +(define (drop-first-last str) + (substring str 1 (- (string-length str) 1))) + +(module+ test + (test-case "drop-first-last" + (check-equal? (drop-first-last "(a b)") "a b"))) + +;;; Converts a list of sets of symbols to a list of strings containing +;;; those symbols. +(define (list-sets->list-strings lst) + (map (compose drop-first-last any->string set->list) lst)) + +(module+ test + (test-case "list-sets->list-strings" + (check-equal? (list-sets->list-strings (list (set 'x 'y) (set 'z) (set) (set 't))) + '("y x" "z" "" "t")))) + +;;; Pretty-prints a set of sets of symbols. +;;; +;;; Typically used for pretty-printing the annotations on the edges of +;;; the state graph. +(define (pretty-print-set-sets ms) + (string-join (for/list ([m ms]) (format "{~a}" (pretty-print-set m))) "")) + +(module+ test + (test-case "pretty-print-set-sets" + (check-equal? (pretty-print-set-sets (set (set 'a 'b) (set 'c))) "{a b}{c}"))) + + +;;; ========================== +;;; Additional graph utilities +;;; ========================== + +;;; Apply a transformation to every vertex in the unweighted graph, +;;; return the new graph. If the transformation function maps two +;;; vertices to the same values, these vertices will be merged in the +;;; resulting graph. The transformation function may be called +;;; multiple times for the same vertex. +;;; +;;; This function does not rely on rename-vertex!, so it can be used +;;; to permute vertex labels. +(define (update-vertices/unweighted gr func) + (unweighted-graph/directed + (for/list ([e (in-edges gr)]) + (match-let ([(list u v) e]) + (list (func u) (func v)))))) + +(module+ test + (test-case "update-vertices/unweighted" + (define gr1 (directed-graph '((a b) (b c)))) + (define gr2 (undirected-graph '((a b) (b c)))) + (define dbl (λ (x) (let ([x-str (symbol->string x)]) + (string->symbol (string-append x-str x-str))))) + (define new-gr1 (update-vertices/unweighted gr1 dbl)) + (define new-gr2 (update-vertices/unweighted gr2 dbl)) + + (check-false (has-vertex? new-gr1 'a)) + (check-true (has-vertex? new-gr1 'aa)) + (check-false (has-vertex? new-gr1 'b)) + (check-true (has-vertex? new-gr1 'bb)) + (check-false (has-vertex? new-gr1 'c)) + (check-true (has-vertex? new-gr1 'cc)) + (check-true (has-edge? new-gr1 'aa 'bb)) + (check-true (has-edge? new-gr1 'bb 'cc)) + + (check-true (has-edge? new-gr2 'aa 'bb)) + (check-true (has-edge? new-gr2 'bb 'aa)) + (check-true (has-edge? new-gr2 'bb 'cc)) + (check-true (has-edge? new-gr2 'cc 'bb)))) + +;;; Given a graph, apply a transformation v-func to every vertex label +;;; and, if the graph is a weighted graph, the transformation e-func +;;; to every edge label. Both transformations default to identity +;;; functions. If gr is an weighted graph, the result is a weighted +;;; graph. If gr is an unweighted graph, the result is an unweighted +;;; graph. +(define (update-graph gr + #:v-func [v-func identity] + #:e-func [e-func identity]) + (define edges + (for/list ([e (in-edges gr)]) + (match-let ([(list u v) e]) + (cond + [(unweighted-graph? gr) (list (v-func u) (v-func v))] + [else (list (e-func (edge-weight gr u v)) + (v-func u) (v-func v))])))) + (cond + [(unweighted-graph? gr) (unweighted-graph/directed edges)] + [else + (weighted-graph/directed edges)])) + +(module+ test + (test-case "update-graph" + (define gr1 (directed-graph '((a b) (b c)))) + (define gr2 (undirected-graph '((a b) (b c)))) + (define dbl (λ (x) (let ([x-str (symbol->string x)]) + (string->symbol (string-append x-str x-str))))) + (define new-gr1-ug (update-graph gr1 #:v-func dbl)) + (define new-gr2-ug (update-graph gr2 #:v-func dbl)) + (define gr3 (weighted-graph/directed '((10 a b) (11 b c)))) + (define new-gr3 (update-graph gr3 #:v-func dbl #:e-func (λ (x) (* 2 x)))) + + (check-false (has-vertex? new-gr1-ug 'a)) + (check-true (has-vertex? new-gr1-ug 'aa)) + (check-false (has-vertex? new-gr1-ug 'b)) + (check-true (has-vertex? new-gr1-ug 'bb)) + (check-false (has-vertex? new-gr1-ug 'c)) + (check-true (has-vertex? new-gr1-ug 'cc)) + (check-true (has-edge? new-gr1-ug 'aa 'bb)) + (check-true (has-edge? new-gr1-ug 'bb 'cc)) + + (check-true (has-edge? new-gr2-ug 'aa 'bb)) + (check-true (has-edge? new-gr2-ug 'bb 'aa)) + (check-true (has-edge? new-gr2-ug 'bb 'cc)) + (check-true (has-edge? new-gr2-ug 'cc 'bb)) + + (check-true (has-edge? new-gr3 'aa 'bb)) + (check-false (has-edge? new-gr3 'bb 'aa)) + (check-true (has-edge? new-gr3 'bb 'cc)) + (check-false (has-edge? new-gr3 'cc 'bb)) + (check-equal? (edge-weight new-gr3 'aa 'bb) 20) + (check-equal? (edge-weight new-gr3 'bb 'cc) 22))) + + +;;; =============== +;;; Pretty printing +;;; =============== + +;;; Pretty print a set by listing its elements in alphabetic order. +(define (pretty-print-set s) + (string-join (sort (set-map s any->string) stringset ls)))) + +(module+ test + (test-case "collect-by-key/sets" + (define-values (e3 l3) (collect-by-key/sets '(a b a) '(1 2 1))) + (check-equal? e3 '(a b)) (check-equal? l3 (list (set 1) (set 2))))) + +;;; Converts the values of a hash table from lists to sets. +(define (ht-values/list->set ht) + (for/hash ([(k v) (in-hash ht)]) + (values k (list->set v)))) + +(module+ test + (test-case "ht-values/list->set" + (check-equal? (ht-values/list->set #hash((a . (1 1)))) + (hash 'a (set 1))))) + +;;; Returns the key-value pairs of a given hash table in the order in +;;; which the hash table orders them for hash-map and hash-for-each. +(define (hash->list/ordered ht) (hash-map ht cons #t)) + +(module+ test + (test-case "hash->list/ordered" + (check-equal? (hash->list/ordered #hash((b . 1) (a . 1))) + '((a . 1) (b . 1))))) + +;;; Given a list of lists, splits every single list at the given +;;; position, and then returns two lists: one consisting of the first +;;; halves, and the one consisting of the second halves. +(define (multi-split-at lsts pos) + (for/fold ([lefts '()] + [rights '()] + #:result (values (reverse lefts) (reverse rights))) + ([lst (in-list lsts)]) + (define-values (left right) (split-at lst pos)) + (values (cons left lefts) (cons right rights)))) + +(module+ test + (test-case "multi-split-at" + (define-values (l1 l2) (multi-split-at '((1 2 3) (a b c)) 2)) + (check-equal? l1 '((1 2) (a b))) (check-equal? l2 '((3) (c))))) + +;;; Given a list of lists of the same length, transposes them. +;;; +;;; > (lists-transpose '((1 2) (a b))) +;;; '((1 a) (2 b)) +;;; +;;; This function is essentially in-parallel, wrapped in a couple +;;; conversions. +(define lists-transpose + (compose sequence->list + in-values-sequence + ((curry apply) in-parallel))) + +(module+ test + (test-case "lists-transpose" + (check-equal? (lists-transpose '((1 2) (a b))) '((1 a) (2 b))))) + + +;;; ========= +;;; Functions +;;; ========= + +;;; Returns #t if the function has fixed arity (i.e. if it does not +;;; take a variable number of arguments). +(define (procedure-fixed-arity? func) + (match (procedure-arity func) + [(arity-at-least _) #f] [arity #t])) + +(module+ test + (test-case "procedure-fixed-arity?" + (check-true (procedure-fixed-arity? not)) + (check-false (procedure-fixed-arity? +)))) + + +;;; ========== +;;; Randomness +;;; ========== + +;;; Generates a stream of inexact random numbers. The meaning of the +;;; arguments is the same as for the function random: +;;; +;;; (in-randoms k) — a sequence of random exact integers in the range +;;; 0 to k-1. +;;; +;;; (in-randoms min max) — a sequence of random exact integers the +;;; range min to max-1. +;;; +;;; (in-randoms) — a sequence of random inexact numbers between +;;; 0 and 1. +(define in-random + (case-lambda + [() (for/stream ([i (in-naturals)]) (random))] + [(k) (for/stream ([i (in-naturals)]) (random k))] + [(min max) (for/stream ([i (in-naturals)]) (random min max))])) + +(module+ test + (test-case "in-random" + (random-seed 0) + (check-equal? (stream->list (stream-take (in-random 100) 10)) + '(85 65 20 40 89 45 54 38 26 62)) + (check-equal? (stream->list (stream-take (in-random 50 100) 10)) + '(75 59 82 85 61 85 59 64 75 53)) + (check-equal? (stream->list (stream-take (in-random) 10)) + '(0.1656109603231493 + 0.9680391127132195 + 0.051518813640790355 + 0.755901955353936 + 0.5923534604277275 + 0.5513340634474264 + 0.7022057040731392 + 0.48375400938578744 + 0.7538961707172924 + 0.01828428516237329)))) + + +;;; =========================== +;;; Additional stream utilities +;;; =========================== + + +;;; Returns the Cartesian product of the given streams. The result is +;;; a stream whose elements are the elements of the Cartesian product. +;;; +;;; The implementation is inspired from the implementation of +;;; cartesian-product in racket/list. +(define (cartesian-product/stream . ss) + ;; Cartesian product of two streams, produces an improper pair. + (define (cp-2 ss1 ss2) + (for*/stream ([s1 (in-stream ss1)] [s2 (in-stream ss2)]) (cons s1 s2))) + ;; Fold-right over the list of streams. The value for the fold is a + ;; 1-value stream containing the empty list, which makes all the + ;; lists proper. + (foldr cp-2 (sequence->stream (in-value (list))) ss)) + +(module+ test + (test-case "cartesian-product/stream" + (check-equal? (stream->list (cartesian-product/stream (in-range 3) (in-range 4 6) '(a b))) + '((0 4 a) + (0 4 b) + (0 5 a) + (0 5 b) + (1 4 a) + (1 4 b) + (1 5 a) + (1 5 b) + (2 4 a) + (2 4 b) + (2 5 a) + (2 5 b))))) + + +;;; ================== +;;; Boolean operations +;;; ================== + +;;; Returns the n-th Cartesian power of the Boolean domain: {0,1}^n. +(define (boolean-power n) (apply cartesian-product (make-list n '(#f #t)))) + +(module+ test + (test-case "boolean-power" + (check-equal? (boolean-power 2) '((#f #f) (#f #t) (#t #f) (#t #t))))) + +;;; Like boolean-power, but returns a stream whose elements the +;;; elements of the Cartesian power. +(define (boolean-power/stream n) (apply cartesian-product/stream (make-list n '(#f #t)))) + +(module+ test + (test-case "boolean-power/stream" + (check-equal? (stream->list (boolean-power/stream 2)) '((#f #f) (#f #t) (#t #f) (#t #t))))) + +;;; Converts any non-#f value to 1 and #f to 0. +(define (any->01 x) (if x 1 0)) + +(module+ test + (test-case "any->01" + (check-equal? (any->01 #t) 1) + (check-equal? (any->01 #f) 0))) + +;;; Converts 0 to #f and 1 to #t +(define (01->boolean x) + (case x [(0) #f] [else #t])) + +(module+ test + (test-case "01->boolean" + (check-equal? (01->boolean 0) #f) + (check-equal? (01->boolean 1) #t))) diff --git a/utils.rkt b/utils.rkt index c4c066a..17b8ccc 100644 --- a/utils.rkt +++ b/utils.rkt @@ -1,716 +1,8 @@ -#lang racket +#lang typed/racket -;;; dds/utils +(require) -;;; Various utilities. - -(require - graph - (for-syntax syntax/parse racket/list)) - -(provide - ;; Functions - (contract-out [eval-with (-> variable-mapping? any/c any)] - [extract-symbols (-> any/c list?)] - [any->string (-> any/c string?)] - [stringify-variable-mapping (-> variable-mapping? string-variable-mapping?)] - [string->any (-> string? any/c)] - [read-org-sexp (-> string? (listof any/c))] - [map-sexp (-> procedure? any/c any/c)] - [unorg (-> string? (listof any/c))] - [unstringify-pairs (-> (listof (general-pair/c string? any/c)) - (listof (general-pair/c symbol? any/c)))] - [read-org-variable-mapping (-> string? variable-mapping?)] - [unorgv (-> string? variable-mapping?)] - [dotit (-> graph? void?)] - [read-symbol-list (-> string? (listof symbol?))] - [drop-first-last (-> string? string?)] - [list-sets->list-strings (-> (listof (set/c any/c)) (listof string?))] - [pretty-print-set-sets (-> (set/c (set/c symbol?) #:kind 'dont-care) string?)] - [update-vertices/unweighted (-> graph? (-> any/c any/c) graph?)] - [update-graph (->* (graph?) - (#:v-func (-> any/c any/c) - #:e-func (-> any/c any/c)) - graph?)] - [pretty-print-set (-> generic-set? string?)] - [collect-by-key (-> (listof any/c) (listof any/c) (values (listof any/c) (listof (listof any/c))))] - [collect-by-key/sets (-> (listof any/c) (listof any/c) (values (listof any/c) (listof (set/c any/c))))] - - [ht-values/list->set (-> (hash/c any/c (listof any/c)) (hash/c any/c (set/c any/c)))] - [hash->list/ordered (-> hash? (listof (cons/c any/c any/c)))] - [multi-split-at (-> (listof (listof any/c)) number? - (values (listof (listof any/c)) (listof (listof any/c))))] - [lists-transpose (-> (listof (listof any/c)) (listof (listof any/c)))] - [procedure-fixed-arity? (-> procedure? boolean?)] - [in-random (case-> (-> (stream/c (and/c real? inexact? (>/c 0) ( (integer-in 1 4294967087) (stream/c exact-nonnegative-integer?)) - (-> exact-integer? (integer-in 1 4294967087) - (stream/c exact-nonnegative-integer?)))] - [cartesian-product/stream (->* () #:rest (listof stream?) stream?)] - [boolean-power (-> number? (listof (listof boolean?)))] - [boolean-power/stream (-> number? (stream/c (listof boolean?)))] - [any->01 (-> any/c (or/c 0 1))] - [01->boolean (-> (or/c 0 1) boolean?)]) - ;; Contracts - (contract-out [variable-mapping? contract?] - [string-variable-mapping? contract?] - [general-pair/c (-> contract? contract? contract?)]) - ;; Syntax - auto-hash-ref/explicit auto-hash-ref/:) +(provide) (module+ test (require rackunit)) - - -;;; =================== -;;; HashTable Injection -;;; =================== - -;;; This section of the file contains some utilities to streamline the -;;; usage of hash tables mapping symbols to values. The goal is -;;; essentially to avoid having to write explicit hash-ref calls. - -;;; A variable mapping is a hash table mapping symbols to values. -(define (variable-mapping? dict) (hash/c symbol? any/c)) - -;;; Given a (HashTable Symbol a) and a sequence of symbols, binds -;;; these symbols to the values they are associated to in the hash -;;; table, then puts the body in the context of these bindings. -;;; -;;; > (let ([ht #hash((a . 1) (b . 2))]) -;;; (auto-hash-ref/explicit (ht a b) (+ a (* 2 b)))) -;;; 5 -;;; -;;; Note that only one expression can be supplied in the body. -(define-syntax (auto-hash-ref/explicit stx) - (syntax-parse stx - [(_ (ht:id xs:id ...) body:expr) - #`(let #,(for/list ([x (syntax->list #'(xs ...))]) - #`[#,x (hash-ref ht '#,x)]) - body)])) - -(module+ test - (test-case "auto-hash-ref/explicit" - (define mytable #hash((a . 3) (b . 4))) - (check-equal? (auto-hash-ref/explicit (mytable b a) - (* a b)) - 12) - (define ht #hash((a . #t) (b . #f))) - (check-equal? (auto-hash-ref/explicit (ht a b) - (and (not a) b)) - #f))) - -;;; Given an expression and a (HashTable Symbol a), looks up the -;;; symbols with a leading semicolon and binds them to the value they -;;; are associated to in the hash table. -;;; -;;; > (let ([ht #hash((a . 1) (b . 2))]) -;;; (auto-hash-ref/: ht (+ :a (* 2 :b)))) -;;; 5 -;;; -;;; Note that the symbol :a is matched to the key 'a in the hash -;;; table. -;;; -;;; Note that only one expression can be supplied in the body. -(define-syntax (auto-hash-ref/: stx) - (syntax-parse stx - [(_ ht:id body) - (let* ([names/: (collect-colons (syntax->datum #'body))]) - #`(let #,(for/list ([x names/:]) - ;; put x in the same context as body - #`[#,(datum->syntax #'body x) - (hash-ref ht '#,(strip-colon x))]) - body))])) - -(module+ test - (test-case "auto-hash-ref/:" - (define ht1 #hash((x . #t) (y . #t) (t . #f))) - (define z #t) - (check-equal? (auto-hash-ref/: ht1 - (and :x (not :y) z (or (and :t) :x))) - #f) - (define ht2 #hash((a . 1) (b . 2))) - (check-equal? (auto-hash-ref/: ht2 (+ :a (* 2 :b))) - 5))) - -;;; The helper functions for auto-hash-ref/:. -(begin-for-syntax - ;; Collect all the symbols starting with a colon in datum. - (define (collect-colons datum) - (remove-duplicates - (flatten - (for/list ([token datum]) - (cond - [(symbol? token) - (let ([name (symbol->string token)]) - (if (eq? #\: (string-ref name 0)) - token - '()))] - [(list? token) - (collect-colons token)] - [else '()]))))) - - ;; Strip the leading colon off x. - (define (strip-colon x) - (let ([x-str (symbol->string x)]) - (if (eq? #\: (string-ref x-str 0)) - (string->symbol (substring x-str 1)) - x)))) - -;;; Temporarily injects the mappings from the given hash table as -;;; bindings in a namespace including racket/base and then evaluates -;;; the expression. -;;; -;;; > (let ([ht #hash((a . 1) (b . 1))]) -;;; (eval-with ht '(+ b a 1))) -;;; 3 -;;; -;;; The local bindings from the current lexical scope are not -;;; conserved. Therefore, the following outputs an error about a -;;; missing identifier: -;;; -;;; > (let ([ht #hash((a . 1) (b . 1))] -;;; [z 1]) -;;; (eval-with ht '(+ b z a 1))) -;;; -(define (eval-with ht expr) - (parameterize ([current-namespace (make-base-namespace)]) - (for ([(x val) ht]) (namespace-set-variable-value! x val)) - (eval expr))) - -(module+ test - (test-case "eval-with" - (check-equal? (let ([ht #hash((a . 1) (b . 1))]) - (eval-with ht '(+ b a 1))) - 3))) - -;;; Same as eval-with, but returns only the first value produced by -;;; the evaluated expression. -(define (eval-with1 ht expr) - (let ([vals (call-with-values (λ () (eval-with ht expr)) - (λ vals vals))]) - (car vals))) - - -;;; ============================== -;;; Analysis of quoted expressions -;;; ============================== - -;;; Produces a list of symbols appearing in the quoted expression -;;; passed in the first argument. -(define (extract-symbols form) - (match form - [(? symbol?) (list form)] - [(? list?) (flatten (for/list ([x form]) - (extract-symbols x)))] - [else '()])) - -(module+ test - (test-case "extract-symbols" - (check-equal? (extract-symbols '(1 (2 3) x (y z 3))) - '(x y z)))) - - -;;; ========================= -;;; Interaction with Org-mode -;;; ========================= - -;;; Org-mode supports laying out the output of code blocks as tables, -;;; which is very practical for various variable mappings (e.g., -;;; states). However, when the hash table maps variables to lists, -;;; Org-mode will create a column per list element, which may or may -;;; not be the desired effect. In this section I define some -;;; utilities for nicer interoperation with Org-mode tables. I also -;;; define some shortcuts to reduce the number of words to type when -;;; using dds with Org-mode. See example.org for examples of usage. - -;;; Converts any value to string. -(define (any->string x) - (with-output-to-string (λ () (display x)))) - -(module+ test - (test-case "any->string" - (check-equal? (any->string 'a) "a") - (check-equal? (any->string '(a 1 (x y))) "(a 1 (x y))") - (check-equal? (any->string "hello") "hello"))) - -;;; A string variable mapping is a mapping from variables to strings. -(define (string-variable-mapping? dict) (hash/c symbol? string?)) - -;;; Converts all the values of a variable mapping to string. -(define (stringify-variable-mapping ht) - (for/hash ([(key val) ht]) (values key (any->string val)))) - -(module+ test - (test-case "stringify-variable-mapping" - (define mp (stringify-variable-mapping #hash((a . (and a b)) (b . (not b))))) - (check-equal? (hash-ref mp 'a) "(and a b)") - (check-equal? (hash-ref mp 'b) "(not b)"))) - -;;; Reads any value from string. -(define (string->any str) - (with-input-from-string str (λ () (read)))) - -(module+ test - (test-case "string->any" - (check-equal? (string->any "(or b (not a))") '(or b (not a))) - (check-equal? (string->any "14") 14))) - -;;; Given a sexp, converts all "#f" to #f and "#t" to #t. -;;; -;;; When I read Org-mode tables, I pump them through a call to the -;;; prin1 because the elisp sexp seems incompatible with Racket. On -;;; the other hand, Racket Booleans seem to upset elisp a little, so -;;; prin1 wraps them in additional double quotes. This function -;;; removes those quotes. -(define/match (handle-org-booleans datum) - [("#t") #t] - [("#f") #f] - [((? list?)) (map handle-org-booleans datum)] - [ (_) datum]) - -;;; Given a sexp, applies the given function to any object which is -;;; not a list. -;;; -;;; The contract of this function will not check whether func is -;;; indeed applicable to every non-list element of the sexp. If this -;;; is not the case, a contract violation for func will be generated. -(define (map-sexp func sexp) - (match sexp - [(? list?) (map ((curry map-sexp) func) sexp)] - [datum (func datum)])) - -(module+ test - (test-case "map-sexp" - (check-equal? (map-sexp add1 '(1 2 (4 10) 3)) '(2 3 (5 11) 4)))) - -;;; Reads a sexp from a string produced by Org-mode for a named table. -;;; See example.org for examples. -(define read-org-sexp - (compose ((curry map-sexp) (match-lambda - [(and (? string?) str) (string->any str)] - [x x])) - string->any)) - -;;; A shortcut for read-org-sexp. -(define unorg read-org-sexp) - -(module+ test - (test-case "read-org-sexp" - (check-equal? (read-org-sexp "((\"a\" \"(and a b)\") (\"b\" \"(or b (not a))\"))") - '((a (and a b)) (b (or b (not a))))) - (check-equal? (read-org-sexp "(#t \"#t\" \"#t \" '(1 2 \"#f\"))") - '(#t #t #t '(1 2 #f))))) - -;;; A contract allowing pairs constructed via cons or via list. -(define (general-pair/c key-contract val-contract) - (or/c (list/c key-contract val-contract) - (cons/c key-contract val-contract))) - -;;; Given a list of pairs of strings and some other values (possibly -;;; strings), converts the first element of each pair to a string, and -;;; reads the second element with string->any or keeps it as is if it -;;; is not a string. -(define (unstringify-pairs pairs) - (for/list ([p pairs]) - (match p - [(list key val) - (cons (string->symbol key) (if (string? val) - (string->any val) - val))] - [(cons key val) ; also handle improper pairs - (cons (string->symbol key) (if (string? val) - (string->any val) - val))]))) - -(module+ test - (test-case "unstringify-pairs" - (check-equal? (unstringify-pairs '(("a" . "1") ("b" . "(and a (not b))"))) - '((a . 1) (b . (and a (not b))))) - (check-equal? (unstringify-pairs '(("a" . 1) ("b" . "(and a (not b))"))) - '((a . 1) (b . (and a (not b))))))) - -;;; Reads a variable mapping from a string, such as the one which -;;; Org-mode produces from tables. -(define read-org-variable-mapping - (compose make-immutable-hash unstringify-pairs string->any)) - -(module+ test - (test-case "read-org-variable-mapping" - (define m1 (read-org-variable-mapping "((\"a\" \"(and a b)\") (\"b\" \"(or b (not a))\"))")) - (define m2 (read-org-variable-mapping "((\"a\" . \"(and a b)\") (\"b\" . \"(or b (not a))\"))")) - (define m3 (unorgv "((\"a\" . \"(and a b)\") (\"b\" . \"(or b (not a))\"))")) - (check-equal? (hash-ref m1 'a) '(and a b)) - (check-equal? (hash-ref m2 'a) '(and a b)) - (check-equal? (hash-ref m3 'a) '(and a b)) - (check-equal? (hash-ref m1 'b) '(or b (not a))) - (check-equal? (hash-ref m2 'b) '(or b (not a))) - (check-equal? (hash-ref m3 'b) '(or b (not a))))) - -;;; A synonym for read-org-variable-mapping. -(define unorgv read-org-variable-mapping) - -;;; Typeset the graph via graphviz and display it. -(define dotit (compose display graphviz)) - -;;; Reads a list of symbols from a string. -(define (read-symbol-list str) - (string->any (string-append "(" str ")"))) - -(module+ test - (test-case "read-symbol-list" - (check-equal? (read-symbol-list "a b c") '(a b c)))) - -;;; Removes the first and the last symbol of a given string. -;;; -;;; Useful for removing the parentheses in string representations of -;;; lists. -(define (drop-first-last str) - (substring str 1 (- (string-length str) 1))) - -(module+ test - (test-case "drop-first-last" - (check-equal? (drop-first-last "(a b)") "a b"))) - -;;; Converts a list of sets of symbols to a list of strings containing -;;; those symbols. -(define (list-sets->list-strings lst) - (map (compose drop-first-last any->string set->list) lst)) - -(module+ test - (test-case "list-sets->list-strings" - (check-equal? (list-sets->list-strings (list (set 'x 'y) (set 'z) (set) (set 't))) - '("y x" "z" "" "t")))) - -;;; Pretty-prints a set of sets of symbols. -;;; -;;; Typically used for pretty-printing the annotations on the edges of -;;; the state graph. -(define (pretty-print-set-sets ms) - (string-join (for/list ([m ms]) (format "{~a}" (pretty-print-set m))) "")) - -(module+ test - (test-case "pretty-print-set-sets" - (check-equal? (pretty-print-set-sets (set (set 'a 'b) (set 'c))) "{a b}{c}"))) - - -;;; ========================== -;;; Additional graph utilities -;;; ========================== - -;;; Apply a transformation to every vertex in the unweighted graph, -;;; return the new graph. If the transformation function maps two -;;; vertices to the same values, these vertices will be merged in the -;;; resulting graph. The transformation function may be called -;;; multiple times for the same vertex. -;;; -;;; This function does not rely on rename-vertex!, so it can be used -;;; to permute vertex labels. -(define (update-vertices/unweighted gr func) - (unweighted-graph/directed - (for/list ([e (in-edges gr)]) - (match-let ([(list u v) e]) - (list (func u) (func v)))))) - -(module+ test - (test-case "update-vertices/unweighted" - (define gr1 (directed-graph '((a b) (b c)))) - (define gr2 (undirected-graph '((a b) (b c)))) - (define dbl (λ (x) (let ([x-str (symbol->string x)]) - (string->symbol (string-append x-str x-str))))) - (define new-gr1 (update-vertices/unweighted gr1 dbl)) - (define new-gr2 (update-vertices/unweighted gr2 dbl)) - - (check-false (has-vertex? new-gr1 'a)) - (check-true (has-vertex? new-gr1 'aa)) - (check-false (has-vertex? new-gr1 'b)) - (check-true (has-vertex? new-gr1 'bb)) - (check-false (has-vertex? new-gr1 'c)) - (check-true (has-vertex? new-gr1 'cc)) - (check-true (has-edge? new-gr1 'aa 'bb)) - (check-true (has-edge? new-gr1 'bb 'cc)) - - (check-true (has-edge? new-gr2 'aa 'bb)) - (check-true (has-edge? new-gr2 'bb 'aa)) - (check-true (has-edge? new-gr2 'bb 'cc)) - (check-true (has-edge? new-gr2 'cc 'bb)))) - -;;; Given a graph, apply a transformation v-func to every vertex label -;;; and, if the graph is a weighted graph, the transformation e-func -;;; to every edge label. Both transformations default to identity -;;; functions. If gr is an weighted graph, the result is a weighted -;;; graph. If gr is an unweighted graph, the result is an unweighted -;;; graph. -(define (update-graph gr - #:v-func [v-func identity] - #:e-func [e-func identity]) - (define edges - (for/list ([e (in-edges gr)]) - (match-let ([(list u v) e]) - (cond - [(unweighted-graph? gr) (list (v-func u) (v-func v))] - [else (list (e-func (edge-weight gr u v)) - (v-func u) (v-func v))])))) - (cond - [(unweighted-graph? gr) (unweighted-graph/directed edges)] - [else - (weighted-graph/directed edges)])) - -(module+ test - (test-case "update-graph" - (define gr1 (directed-graph '((a b) (b c)))) - (define gr2 (undirected-graph '((a b) (b c)))) - (define dbl (λ (x) (let ([x-str (symbol->string x)]) - (string->symbol (string-append x-str x-str))))) - (define new-gr1-ug (update-graph gr1 #:v-func dbl)) - (define new-gr2-ug (update-graph gr2 #:v-func dbl)) - (define gr3 (weighted-graph/directed '((10 a b) (11 b c)))) - (define new-gr3 (update-graph gr3 #:v-func dbl #:e-func (λ (x) (* 2 x)))) - - (check-false (has-vertex? new-gr1-ug 'a)) - (check-true (has-vertex? new-gr1-ug 'aa)) - (check-false (has-vertex? new-gr1-ug 'b)) - (check-true (has-vertex? new-gr1-ug 'bb)) - (check-false (has-vertex? new-gr1-ug 'c)) - (check-true (has-vertex? new-gr1-ug 'cc)) - (check-true (has-edge? new-gr1-ug 'aa 'bb)) - (check-true (has-edge? new-gr1-ug 'bb 'cc)) - - (check-true (has-edge? new-gr2-ug 'aa 'bb)) - (check-true (has-edge? new-gr2-ug 'bb 'aa)) - (check-true (has-edge? new-gr2-ug 'bb 'cc)) - (check-true (has-edge? new-gr2-ug 'cc 'bb)) - - (check-true (has-edge? new-gr3 'aa 'bb)) - (check-false (has-edge? new-gr3 'bb 'aa)) - (check-true (has-edge? new-gr3 'bb 'cc)) - (check-false (has-edge? new-gr3 'cc 'bb)) - (check-equal? (edge-weight new-gr3 'aa 'bb) 20) - (check-equal? (edge-weight new-gr3 'bb 'cc) 22))) - - -;;; =============== -;;; Pretty printing -;;; =============== - -;;; Pretty print a set by listing its elements in alphabetic order. -(define (pretty-print-set s) - (string-join (sort (set-map s any->string) stringset ls)))) - -(module+ test - (test-case "collect-by-key/sets" - (define-values (e3 l3) (collect-by-key/sets '(a b a) '(1 2 1))) - (check-equal? e3 '(a b)) (check-equal? l3 (list (set 1) (set 2))))) - -;;; Converts the values of a hash table from lists to sets. -(define (ht-values/list->set ht) - (for/hash ([(k v) (in-hash ht)]) - (values k (list->set v)))) - -(module+ test - (test-case "ht-values/list->set" - (check-equal? (ht-values/list->set #hash((a . (1 1)))) - (hash 'a (set 1))))) - -;;; Returns the key-value pairs of a given hash table in the order in -;;; which the hash table orders them for hash-map and hash-for-each. -(define (hash->list/ordered ht) (hash-map ht cons #t)) - -(module+ test - (test-case "hash->list/ordered" - (check-equal? (hash->list/ordered #hash((b . 1) (a . 1))) - '((a . 1) (b . 1))))) - -;;; Given a list of lists, splits every single list at the given -;;; position, and then returns two lists: one consisting of the first -;;; halves, and the one consisting of the second halves. -(define (multi-split-at lsts pos) - (for/fold ([lefts '()] - [rights '()] - #:result (values (reverse lefts) (reverse rights))) - ([lst (in-list lsts)]) - (define-values (left right) (split-at lst pos)) - (values (cons left lefts) (cons right rights)))) - -(module+ test - (test-case "multi-split-at" - (define-values (l1 l2) (multi-split-at '((1 2 3) (a b c)) 2)) - (check-equal? l1 '((1 2) (a b))) (check-equal? l2 '((3) (c))))) - -;;; Given a list of lists of the same length, transposes them. -;;; -;;; > (lists-transpose '((1 2) (a b))) -;;; '((1 a) (2 b)) -;;; -;;; This function is essentially in-parallel, wrapped in a couple -;;; conversions. -(define lists-transpose - (compose sequence->list - in-values-sequence - ((curry apply) in-parallel))) - -(module+ test - (test-case "lists-transpose" - (check-equal? (lists-transpose '((1 2) (a b))) '((1 a) (2 b))))) - -;;; ========= -;;; Functions -;;; ========= - -;;; Returns #t if the function has fixed arity (i.e. if it does not -;;; take a variable number of arguments). -(define (procedure-fixed-arity? func) - (match (procedure-arity func) - [(arity-at-least _) #f] [arity #t])) - -(module+ test - (test-case "procedure-fixed-arity?" - (check-true (procedure-fixed-arity? not)) - (check-false (procedure-fixed-arity? +)))) - - -;;; ========== -;;; Randomness -;;; ========== - -;;; Generates a stream of inexact random numbers. The meaning of the -;;; arguments is the same as for the function random: -;;; -;;; (in-randoms k) — a sequence of random exact integers in the range -;;; 0 to k-1. -;;; -;;; (in-randoms min max) — a sequence of random exact integers the -;;; range min to max-1. -;;; -;;; (in-randoms) — a sequence of random inexact numbers between -;;; 0 and 1. -(define in-random - (case-lambda - [() (for/stream ([i (in-naturals)]) (random))] - [(k) (for/stream ([i (in-naturals)]) (random k))] - [(min max) (for/stream ([i (in-naturals)]) (random min max))])) - -(module+ test - (test-case "in-random" - (random-seed 0) - (check-equal? (stream->list (stream-take (in-random 100) 10)) - '(85 65 20 40 89 45 54 38 26 62)) - (check-equal? (stream->list (stream-take (in-random 50 100) 10)) - '(75 59 82 85 61 85 59 64 75 53)) - (check-equal? (stream->list (stream-take (in-random) 10)) - '(0.1656109603231493 - 0.9680391127132195 - 0.051518813640790355 - 0.755901955353936 - 0.5923534604277275 - 0.5513340634474264 - 0.7022057040731392 - 0.48375400938578744 - 0.7538961707172924 - 0.01828428516237329)))) - - -;;; =========================== -;;; Additional stream utilities -;;; =========================== - - -;;; Returns the Cartesian product of the given streams. The result is -;;; a stream whose elements are the elements of the Cartesian product. -;;; -;;; The implementation is inspired from the implementation of -;;; cartesian-product in racket/list. -(define (cartesian-product/stream . ss) - ;; Cartesian product of two streams, produces an improper pair. - (define (cp-2 ss1 ss2) - (for*/stream ([s1 (in-stream ss1)] [s2 (in-stream ss2)]) (cons s1 s2))) - ;; Fold-right over the list of streams. The value for the fold is a - ;; 1-value stream containing the empty list, which makes all the - ;; lists proper. - (foldr cp-2 (sequence->stream (in-value (list))) ss)) - -(module+ test - (test-case "cartesian-product/stream" - (check-equal? (stream->list (cartesian-product/stream (in-range 3) (in-range 4 6) '(a b))) - '((0 4 a) - (0 4 b) - (0 5 a) - (0 5 b) - (1 4 a) - (1 4 b) - (1 5 a) - (1 5 b) - (2 4 a) - (2 4 b) - (2 5 a) - (2 5 b))))) - - -;;; ================== -;;; Boolean operations -;;; ================== - -;;; Returns the n-th Cartesian power of the Boolean domain: {0,1}^n. -(define (boolean-power n) (apply cartesian-product (make-list n '(#f #t)))) - -(module+ test - (test-case "boolean-power" - (check-equal? (boolean-power 2) '((#f #f) (#f #t) (#t #f) (#t #t))))) - -;;; Like boolean-power, but returns a stream whose elements the -;;; elements of the Cartesian power. -(define (boolean-power/stream n) (apply cartesian-product/stream (make-list n '(#f #t)))) - -(module+ test - (test-case "boolean-power/stream" - (check-equal? (stream->list (boolean-power/stream 2)) '((#f #f) (#f #t) (#t #f) (#t #t))))) - -;;; Converts any non-#f value to 1 and #f to 0. -(define (any->01 x) (if x 1 0)) - -(module+ test - (test-case "any->01" - (check-equal? (any->01 #t) 1) - (check-equal? (any->01 #f) 0))) - -;;; Converts 0 to #f and 1 to #t -(define (01->boolean x) - (case x [(0) #f] [else #t])) - -(module+ test - (test-case "01->boolean" - (check-equal? (01->boolean 0) #f) - (check-equal? (01->boolean 1) #t)))