Initial commit

This commit is contained in:
Martin Potier 2017-07-08 17:42:46 +02:00
commit 39d7daf528
135 changed files with 19184 additions and 0 deletions
README
biblio
builderbot
common-headers.tex
data
default.nix
figures

20
README Normal file
View file

@ -0,0 +1,20 @@
Dépot git de mon mémoire de thèse.
La manière la plus simple de compiler le manuscrit passe par `nix-env` (il
faut avoir le gestionnaire de paquet `nix` installé [0]). Cet outil se charge de
récupérer ou construire toutes les dépendances nécessaires à la compilation,
puis de les mettre à disposition dans l'environnement de l'utilisateur.
Dans le répertoire racine du dépot, entrez:
$ nix-shell
puis (à cause du fonctionnement de tex):
$ buildthesis && buildthesis
LACL - Université Paris Est Créteil
Financé par le projet ANR SYNBIOTIC
Martin POTIER
[0] http://nixos.org/nix/

23
biblio/my.bib Normal file
View file

@ -0,0 +1,23 @@
@inproceedings{potier_topological_2013,
title = {Topological computation of activity regions},
url = {http://doi.acm.org/10.1145/2486092.2486136},
doi = {10.1145/2486092.2486136},
booktitle = {{SIGSIM} {Principles} of {Advanced} {Discrete} {Simulation}, {SIGSIM}-{PADS} '13, {Montreal}, {QC}, {Canada}, {May} 19-22, 2013},
author = {Potier, Martin and Spicher, Antoine and Michel, Olivier},
year = {2013},
pages = {337--342}
}
@inproceedings{potier_computing_2013,
title = {Computing activity in space},
booktitle = {{AAMAS} Spatial Computing Workshop, {AAMAS}-{SCW} '13, {St Paul}, {Minnesota}, {USA}, {May} 6-10, 2013},
author = {Potier, Martin and Spicher, Antoine and Michel, Olivier},
year = {2013},
}
@article{pascalie_morphogenetic_2016,
title = {Morphogenetic {Engineering} in {Synthetic} {Biology}},
journal = {ACS Synthetic Biology},
author = {Pascalie, Jonathan and Potier, Martin and Kowaliw, Taras and Giavitto, Jean-Louis and Michel, Olivier and Spicher, Antoine and Doursat, René},
year = {2016}
}

9
biblio/standards.bib Normal file
View file

@ -0,0 +1,9 @@
@standard{UML,
author = {OMG},
institution = {Object Management Group},
organization = {Object Management Group},
year = 2015,
title = {{OMG Unified Modeling Language (OMG UML), Version 2.5}},
url = {http://www.omg.org/spec/UML/2.5}
}

764
biblio/these2015.bib Normal file
View file

@ -0,0 +1,764 @@
@article{muzy_refounding_2013,
title = {Refounding of the activity concept? {Towards} a federative paradigm for modeling and simulation},
volume = {89},
number = {2},
journal = {Simulation},
author = {Muzy, Alexandre and Varenne, Franck and Zeigler, Bernard P and Caux, Jonathan and Coquillard, Patrick and Touraille, Luc and Prunetti, Dominique and Caillou, Philippe and Michel, Olivier and Hill, David RC},
year = {2013},
pages = {156--177}
}
@phdthesis{axen_topological_1998,
address = {Champaign, IL, USA},
title = {Topological {Analysis} {Using} {Morse} {Theory} and {Auditory} {Display}},
school = {University of Illinois at Urbana-Champaign},
author = {Axen, U.},
year = {1998}
}
@article{hu_devs-fire:_2011,
title = {{DEVS}-{FIRE}: design and application of formal discrete event wildfire spread and suppression models},
volume = {88},
issn = {0037-5497, 1741-3133},
shorttitle = {{DEVS}-{FIRE}},
url = {http://sim.sagepub.com/cgi/doi/10.1177/0037549711414592},
doi = {10.1177/0037549711414592},
number = {3},
urldate = {2013-01-29},
journal = {SIMULATION},
author = {Hu, X. and Sun, Y. and Ntaimo, L.},
month = oct,
year = {2011},
pages = {259--279}
}
@article{karafyllidis_model_1997,
title = {A model for predicting forest fire spreading using cellular automata},
volume = {99},
number = {1},
journal = {Ecological Modelling},
author = {Karafyllidis, Ioannis and Thanailakis, Adonios},
year = {1997},
pages = {87--97}
}
@article{filippi_discrete_2010,
title = {Discrete event front-tracking simulation of a physical fire-spread model},
volume = {86},
number = {10},
journal = {Simulation},
author = {Filippi, Jean-Baptiste and Morandini, Frédéric and Balbi, Jacques Henri and Hill, David RC},
year = {2010},
pages = {629--646}
}
@book{toffoli_cellular_1987,
address = {Cambridge},
title = {Cellular automata machines: a new environment for modeling},
publisher = {MIT press},
author = {Toffoli, Tommaso and Margolus, Norman},
year = {1987}
}
@inproceedings{kubera_interaction-oriented_2008,
title = {Interaction-{Oriented} {Agent} {Simulations}: {From} {Theory} to {Implementation}.},
booktitle = {{ECAI}},
author = {Kubera, Yoann and Mathieu, Philippe and Picault, Sébastien and {others}},
year = {2008},
pages = {383--387}
}
@book{mamei_field-based_2006,
title = {Field-based coordination for pervasive multiagent systems},
publisher = {Springer Science \& Business Media},
author = {Mamei, Marco and Zambonelli, Franco},
year = {2006}
}
@incollection{mamei_co-fields:_2003,
title = {Co-fields: {Towards} a unifying approach to the engineering of swarm intelligent systems},
booktitle = {Engineering {Societies} in the {Agents} {World} {III}},
publisher = {Springer},
author = {Mamei, Marco and Zambonelli, Franco and Leonardi, Letizia},
year = {2003},
pages = {68--81}
}
@article{chopard_cellular_1998,
title = {Cellular automata modeling of physical systems},
journal = {Cellular automata modeling of physical systems},
author = {Chopard, Bastien and Droz, Michel},
year = {1998}
}
@incollection{giavitto_computations_2005,
title = {Computations in space and space in computations},
booktitle = {Unconventional {Programming} {Paradigms}},
publisher = {Springer},
author = {Giavitto, Jean-Louis and Michel, Olivier and Cohen, Julien and Spicher, Antoine},
year = {2005},
pages = {137--152}
}
@inproceedings{muzy_activity_2010,
title = {Activity regions for the specification of discrete event systems},
booktitle = {Proceedings of the 2010 {Spring} {Simulation} {Multiconference}},
publisher = {Society for Computer Simulation International},
author = {Muzy, Alexandre and Touraille, Luc and Vangheluwe, Hans and Michel, Olivier and Traoré, Mamadou Kaba and Hill, David RC},
year = {2010},
pages = {136}
}
@article{shi_activity-based_1999,
title = {Activity-based construction ({ABC}) modeling and simulation method},
volume = {125},
number = {5},
journal = {Journal of construction engineering and management},
author = {Shi, Jonathan Jingsheng},
year = {1999},
pages = {354--360}
}
@inproceedings{potier_topological_2013,
title = {Topological computation of activity regions},
url = {http://doi.acm.org/10.1145/2486092.2486136},
doi = {10.1145/2486092.2486136},
booktitle = {{SIGSIM} {Principles} of {Advanced} {Discrete} {Simulation}, {SIGSIM}-{PADS} '13, {Montreal}, {QC}, {Canada}, {May} 19-22, 2013},
author = {Potier, Martin and Spicher, Antoine and Michel, Olivier},
year = {2013},
pages = {337--342}
}
@book{tocher_art_1967,
title = {The {Art} of {Simulation}},
isbn = {B0007ITI4E},
publisher = {English Universities Press},
author = {Tocher, K. D},
year = {1967}
}
@phdthesis{louail_comparer_2010,
title = {Comparer les morphogénèses urbaines en {Europe} et aux États-{Unis} par la simulation à base d'agents{Approches} multi-niveaux et environnements de simulation spatiale},
school = {Université d'Evry-Val d'Essonne},
author = {Louail, Thomas},
year = {2010}
}
@article{bretagnolle_theory_2006,
title = {From theory to modelling: urban systems as complex systems},
journal = {Cybergeo: European Journal of Geography},
author = {Bretagnolle, Anne and Daudé, Eric and Pumain, Denise},
year = {2006}
}
@article{karr_whole-cell_2012,
title = {A whole-cell computational model predicts phenotype from genotype},
volume = {150},
number = {2},
journal = {Cell},
author = {Karr, Jonathan R and Sanghvi, Jayodita C and Macklin, Derek N and Gutschow, Miriam V and Jacobs, Jared M and Bolival, Benjamin and Assad-Garcia, Nacyra and Glass, John I and Covert, Markus W},
year = {2012},
pages = {389--401}
}
@article{lighthill_kinematic_1955,
title = {On kinematic waves. {II}. {A} theory of traffic flow on long crowded roads},
volume = {229},
number = {1178},
journal = {Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences},
author = {Lighthill, Michael J and Whitham, Gerald Beresford},
year = {1955},
pages = {317--345}
}
@article{nagel_cellular_1992,
title = {A cellular automaton model for freeway traffic},
volume = {2},
number = {12},
journal = {Journal de physique I},
author = {Nagel, Kai and Schreckenberg, Michael},
year = {1992},
pages = {2221--2229}
}
@article{banos_simuler_2008,
title = {Simuler les interactions piétons-automobilistes dans un environnement urbain : une approche à base dagents},
copyright = {© Tous droits réservés},
issn = {1954-4863},
shorttitle = {Simuler les interactions piétons-automobilistes dans un environnement urbain},
url = {http://tem.revues.org/1048},
abstract = {Afin dexplorer le rôle des interactions piétons-automobilistes dans lavènement des accidents de la circulation en milieu urbain, un modèle à base dagents - SAMU - a été développé. SAMU permet dexplorer des dynamiques complexes à partir de règles comportementales simples. Les principaux éléments de ce modèle sont exposés et discutés., An agent-based model - SAMU - has been designed, which allows exploring pedestrians-drivers interaction in a virtual urban environment. Complex dynamics are obtained from simple behaviours. The key elements of SAMU are presented and discussed.},
language = {fr},
number = {1},
urldate = {2015-01-05},
journal = {Territoire en mouvement Revue de géographie et aménagement. Territory in movement Journal of geography and planning},
author = {Banos, Arnaud and Lassarre, Sylvain},
month = dec,
year = {2008},
note = {Afin dexplorer le rôle des interactions piétons-automobilistes dans lavènement des accidents de la circulation en milieu urbain, un modèle à base dagents - SAMU - a été développé. SAMU permet dexplorer des dynamiques complexes à partir de règles comportementales simples. Les principaux éléments de ce modèle sont exposés et discutés.},
keywords = {accidentologie, agent-based simulation, environnement urbain, multi-agents, risque routier, road safety, simulation, urban environment},
pages = {58--66}
}
@article{willems_paradigms_1991,
title = {Paradigms and puzzles in the theory of dynamical systems},
volume = {36},
number = {3},
journal = {Automatic Control, IEEE Transactions on},
author = {Willems, Jan C},
year = {1991},
pages = {259--294}
}
@article{kurtz_relationship_1972,
title = {The relationship between stochastic and deterministic models for chemical reactions},
volume = {57},
number = {7},
journal = {The Journal of Chemical Physics},
author = {Kurtz, Thomas G},
year = {1972},
pages = {2976--2978}
}
@article{gillespie_exact_1977,
title = {Exact stochastic simulation of coupled chemical reactions},
volume = {81},
number = {25},
journal = {The journal of physical chemistry},
author = {Gillespie, Daniel T},
year = {1977},
pages = {2340--2361}
}
@book{mainzer_local_2013,
title = {Local {Activity} {Principle}: {The} {Cause} of {Complexity} and {Symmetry} {Breaking}},
isbn = {978-1-908977-09-0},
publisher = {Imperial College Press},
author = {Mainzer, Klaus and Chua, Leon O.},
year = {2013},
lccn = {2013427768}
}
@incollection{abbott_model_1990,
title = {Model {Neurons}: from {Hodgkin}-{Huxley} to {Hopfield}},
booktitle = {Statistical mechanics of neural networks},
publisher = {Springer},
author = {Abbott, LF and Kepler, Thomas B},
year = {1990},
pages = {5--18}
}
@article{burkitt_review_2006,
title = {A review of the integrate-and-fire neuron model: {I}. {Homogeneous} synaptic input},
volume = {95},
number = {1},
journal = {Biological cybernetics},
author = {Burkitt, Anthony N},
year = {2006},
pages = {1--19}
}
@article{hindmarsh_model_1984,
title = {A model of neuronal bursting using three coupled first order differential equations},
volume = {221},
number = {1222},
journal = {Proceedings of the Royal society of London. Series B. Biological sciences},
author = {Hindmarsh, JL and Rose, RM},
year = {1984},
pages = {87--102}
}
@article{fitzhugh_impulses_1961,
title = {Impulses and physiological states in theoretical models of nerve membrane},
volume = {1},
number = {6},
journal = {Biophysical journal},
author = {FitzHugh, Richard},
year = {1961},
pages = {445}
}
@article{stein_improved_1974,
title = {Improved neuronal models for studying neural networks},
volume = {15},
number = {1},
journal = {Kybernetik},
author = {Stein, RB and Leung, KV and Mangeron, D and Oğuztöreli, MN},
year = {1974},
pages = {1--9}
}
@article{abarbanel_synchronisation_1996,
title = {Synchronisation in neural networks},
volume = {39},
number = {4},
journal = {Physics-Uspekhi},
author = {Abarbanel, HDI and Rabinovich, Mikhail Izrailevich and Selverston, A and Bazhenov, MV and Huerta, R and Sushchik, MM and Rubchinskii, LL},
year = {1996},
pages = {337--362}
}
@article{golomb_reduction_1993,
title = {Reduction of a channel-based model for a stomatogastric ganglion {LP} neuron},
volume = {69},
number = {2},
journal = {Biological cybernetics},
author = {Golomb, David and Guckenheimer, John and Gueron, Shay},
year = {1993},
pages = {129--137}
}
@article{morris_voltage_1981,
title = {Voltage oscillations in the barnacle giant muscle fiber.},
volume = {35},
number = {1},
journal = {Biophysical journal},
author = {Morris, Catherine and Lecar, Harold},
year = {1981},
pages = {193}
}
@article{prusinkiewicz_introduction_2003,
title = {Introduction to {Modeling} with {L}-systems},
journal = {L-systems and Beyond-SIGGRAPH 2003 Course Notes},
author = {Prusinkiewicz, Przemyslaw},
year = {2003},
pages = {1--26}
}
@inproceedings{kovalevsky_algorithms_2001,
title = {Algorithms and data structures for computer topology},
booktitle = {Digital and image geometry},
publisher = {Springer},
author = {Kovalevsky, Vladimir},
year = {2001},
pages = {38--58}
}
@incollection{polack_architecture_2005,
title = {An architecture for modelling emergence in {CA}-like systems},
booktitle = {Advances in {Artificial} {Life}},
publisher = {Springer},
author = {Polack, Fiona and Stepney, Susan and Turner, Heather and Welch, Peter and Barnes, Fred},
year = {2005},
pages = {433--442}
}
@phdthesis{louail_comparer_2010-1,
type = {Theses},
title = {Comparer les morphogénèses urbaines en {Europe} et aux États-{Unis} par la simulation à base d'agents {Approches} multi-niveaux et environnements de simulation spatiale},
url = {https://tel.archives-ouvertes.fr/tel-00584495},
school = {Université d'Evry-Val d'Essonne},
author = {Louail, Thomas},
month = dec,
year = {2010},
keywords = {agent based simulation, city, environnements de simulation, modélisation multi-niveaux, morphogenèses urbaines, multilevel modeling, simulation à base d'agents, simulation environements, urban morphogenesis, ville}
}
@article{codd_relational_1970,
title = {A relational model of data for large shared data banks},
volume = {13},
number = {6},
journal = {Communications of the ACM},
author = {Codd, Edgar F},
year = {1970},
pages = {377--387}
}
@techreport{gratie_quantitative_2013,
title = {Quantitative model refinement in four different frameworks, with applications to the heat shock response},
institution = {Technical Report 1067, TUCS},
author = {Gratie, Diana-Elena and Iancu, Bogdan and Azimi, Sepinoud and Petre, Ion},
year = {2013}
}
@article{grace_integrative_2016,
title = {Integrative modelling reveals mechanisms linking productivity and plant species richness},
volume = {529},
number = {7586},
journal = {Nature},
author = {Grace, James B and Anderson, T Michael and Seabloom, Eric W and Borer, Elizabeth T and Adler, Peter B and Harpole, W Stanley and Hautier, Yann and Hillebrand, Helmut and Lind, Eric M and Pärtel, Meelis and {others}},
year = {2016},
pages = {390--393}
}
@article{karr_whole-cell_2012-1,
title = {A whole-cell computational model predicts phenotype from genotype},
volume = {150},
number = {2},
journal = {Cell},
author = {Karr, Jonathan R and Sanghvi, Jayodita C and Macklin, Derek N and Gutschow, Miriam V and Jacobs, Jared M and Bolival, Benjamin and Assad-Garcia, Nacyra and Glass, John I and Covert, Markus W},
year = {2012},
pages = {389--401}
}
@article{mens_taxonomy_2006,
title = {A taxonomy of model transformation},
volume = {152},
journal = {Electronic Notes in Theoretical Computer Science},
author = {Mens, Tom and Van Gorp, Pieter},
year = {2006},
pages = {125--142}
}
@article{adamek_abstract_2004,
title = {Abstract and concrete categories. {The} joy of cats},
author = {Adámek, Jiří and Herrlich, Horst and Strecker, George E},
year = {2004}
}
@incollection{ehresmann_mens:_2012,
address = {Berlin, Heidelberg},
title = {{MENS}: {From} {Neurons} to {Higher} {Mental} {Processes} up to {Consciousness}},
isbn = {978-3-642-28111-2},
url = {http://dx.doi.org/10.1007/978-3-642-28111-2_3},
booktitle = {Integral {Biomathics}: {Tracing} the {Road} to {Reality}},
publisher = {Springer Berlin Heidelberg},
author = {Ehresmann, Andrée C.},
editor = {Simeonov, L. Plamen and Smith, S. Leslie and Ehresmann, C. Andrée},
year = {2012},
pages = {29--30}
}
@article{jang_specification_2012,
title = {Specification and simulation of synthetic multicelled behaviors},
volume = {1},
number = {8},
journal = {ACS synthetic biology},
author = {Jang, Seunghee S and Oishi, Kevin T and Egbert, Robert G and Klavins, Eric},
year = {2012},
pages = {365--374}
}
@article{hallatschek_genetic_2007,
title = {Genetic drift at expanding frontiers promotes gene segregation},
volume = {104},
number = {50},
journal = {Proceedings of the National Academy of Sciences},
author = {Hallatschek, Oskar and Hersen, Pascal and Ramanathan, Sharad and Nelson, David R},
year = {2007},
pages = {19926--19930}
}
@article{mittal_motility_2003,
title = {Motility of {Escherichia} coli cells in clusters formed by chemotactic aggregation},
volume = {100},
number = {23},
journal = {Proceedings of the National Academy of Sciences},
author = {Mittal, Nikhil and Budrene, Elena O and Brenner, Michael P and van Oudenaarden, Alexander},
year = {2003},
pages = {13259--13263}
}
@misc{thesoundofscience_motions_2010,
title = {Motions of {Swarming} {E} coli {Bacteria}},
url = {https://www.youtube.com/watch?v=q27Jn3h4kpE&feature=youtube_gdata_player},
abstract = {A dense group of E. coli swims in the roughly two dimensional space at an air water interface. Their collective motion is significantly different from their motion as single cells. Under these conditions they behave more like an active fluid, hence changing the way that nutrients are shared within the group. Notice the appearance of turbulence-like flow fields. Groups of cells form and swim together, other groups split and join, the average trajectory of a single cell can be quite erratic as shown by the cell labeled in red.
Video courtesy Matthew Copeland, University of Wisconsin, Madison.},
urldate = {2015-01-05},
collaborator = {{thesoundofscience}},
month = feb,
year = {2010}
}
@book{toffoli_cellular_1987-1,
title = {Cellular automata machines: a new environment for modeling},
publisher = {MIT press},
author = {Toffoli, Tommaso and Margolus, Norman},
year = {1987}
}
@article{margolus_physics-like_1984,
title = {Physics-like models of computation},
volume = {10},
number = {1},
journal = {Physica D: Nonlinear Phenomena},
author = {Margolus, Norman},
year = {1984},
pages = {81--95}
}
@article{morita_computation_1989,
title = {Computation universality of one-dimensional reversible (injective) cellular automata},
volume = {72},
number = {6},
journal = {IEICE TRANSACTIONS (1976-1990)},
author = {Morita, Kenichi and Harao, Masateru},
year = {1989},
pages = {758--762}
}
@article{kari_reversibility_1994,
title = {Reversibility and surjectivity problems of cellular automata},
volume = {48},
number = {1},
journal = {Journal of Computer and System Sciences},
author = {Kari, Jarkko},
year = {1994},
pages = {149--182}
}
@phdthesis{michel_representations_1996,
title = {Représentations dynamiques de l'espace dans un langage déclaratif de simulation},
school = {Université de Paris-Sud, centre d'Orsay},
author = {Michel, O.},
month = dec,
year = {1996}
}
@article{pascalie_morphogenetic_2016,
title = {Morphogenetic {Engineering} in {Synthetic} {Biology}},
journal = {ACS Synthetic Biology},
author = {Pascalie, Jonathan and Potier, Martin and Kowaliw, Taras and Giavitto, Jean-Louis and Michel, Olivier and Spicher, Antoine and Doursat, René},
year = {2016}
}
@article{blattner_complete_1997,
title = {The complete genome sequence of {Escherichia} coli {K}-12},
volume = {277},
number = {5331},
journal = {Science},
author = {Blattner, Frederick R and Plunkett, Guy and Bloch, Craig A and Perna, Nicole T and Burland, Valerie and Riley, Monica and Collado-Vides, Julio and Glasner, Jeremy D and Rode, Christopher K and Mayhew, George F and {others}},
year = {1997},
pages = {1453--1462}
}
@article{bremer_modulation_1996,
title = {Modulation of chemical composition and other parameters of the cell by growth rate},
author = {Bremer, Hans and Dennis, Patrick P.},
year = {1996},
file = {[PDF] à partir de researchgate.net:/home/eeva/work/thesis/biblio/zotero/storage/7SUBW2MM/Bremer et Dennis - 1996 - Modulation of chemical composition and other param.pdf:application/pdf}
}
@article{kubitschek_cell_1990,
title = {Cell volume increase in {Escherichia} coli after shifts to richer media.},
volume = {172},
number = {1},
journal = {Journal of bacteriology},
author = {Kubitschek, HE},
year = {1990},
pages = {94--101}
}
@article{zaritsky_growth_1982,
title = {Growth and form in bacteria},
volume = {1},
journal = {Comments Mol. Cell. Biophys},
author = {Zaritsky, A and Grover, NB and Naaman, J and Woldringh, CL and Rosenberger, RF},
year = {1982},
pages = {237--260}
}
@article{skarstad_cell_1983,
title = {Cell cycle parameters of slowly growing {Escherichia} coli {B}/r studied by flow cytometry.},
volume = {154},
number = {2},
journal = {Journal of Bacteriology},
author = {Skarstad, Kirsten and Steen, Harold B and Boye, Erik},
year = {1983},
pages = {656--662}
}
@misc{britanica_online_encyclopedia_bacteria_2016,
title = {Bacteria article},
url = {http://www.britannica.com/print/article/48203},
urldate = {2016-01-30},
author = {Britanica Online Encyclopedia},
year = {2016}
}
@article{trueba_changes_1980,
title = {Changes in cell diameter during the division cycle of {Escherichia} coli.},
volume = {142},
number = {3},
journal = {Journal of bacteriology},
author = {Trueba, Frank J and Woldringh, Conrad L},
year = {1980},
pages = {869--878}
}
@article{diluzio_escherichia_2005,
title = {Escherichia coli swim on the right-hand side},
volume = {435},
issn = {0028-0836},
url = {http://dx.doi.org/10.1038/nature03660},
doi = {10.1038/nature03660},
number = {7046},
journal = {Nature},
author = {DiLuzio, Willow R. and Turner, Linda and Mayer, Michael and Garstecki, Piotr and Weibel, Douglas B. and Berg, Howard C. and Whitesides, George M.},
year = {2005},
pages = {1271--1274}
}
@article{berg_chemotaxis_1972,
title = {Chemotaxis in {Escherichia} coli analysed by three-dimensional tracking},
volume = {239},
number = {5374},
journal = {Nature},
author = {Berg, Howard C and Brown, Douglas A and {others}},
year = {1972},
pages = {500--504}
}
@article{bourgoin_spoc:_2012,
title = {{SPOC}: {GPGPU} programming through stream processing with {OCaml}},
volume = {22},
number = {02},
journal = {Parallel Processing Letters},
author = {Bourgoin, Mathias and Chailloux, Emmanuel and Lamotte, Jean-Luc},
year = {2012},
pages = {1240007}
}
@incollection{medvedev_multi-particle_2010,
title = {Multi-particle cellular-automata models for diffusion simulation},
booktitle = {Methods and tools of parallel programming multicomputers},
publisher = {Springer},
author = {Medvedev, Yu},
year = {2010},
pages = {204--211}
}
@article{bray_chemotactic_2007,
title = {The chemotactic behavior of computer-based surrogate bacteria},
volume = {17},
number = {1},
journal = {Current biology},
author = {Bray, Dennis and Levin, Matthew D and Lipkow, Karen},
year = {2007},
pages = {12--19}
}
@article{goeddel_expression_1979,
title = {Expression in {Escherichia} coli of chemically synthesized genes for human insulin},
volume = {76},
number = {1},
journal = {Proceedings of the National Academy of Sciences},
author = {Goeddel, David V and Kleid, Dennis G and Bolivar, Francisco and Heyneker, Herbert L and Yansura, Daniel G and Crea, Roberto and Hirose, Tadaaki and Kraszewski, Adam and Itakura, Keiichi and Riggs, Arthur D},
year = {1979},
pages = {106--110}
}
@article{darnton_torque_2007,
title = {On torque and tumbling in swimming {Escherichia} coli},
volume = {189},
url = {http://jb.asm.org/content/189/5/1756.short},
number = {5},
urldate = {2016-02-05},
journal = {Journal of bacteriology},
author = {Darnton, Nicholas C. and Turner, Linda and Rojevsky, Svetlana and Berg, Howard C.},
year = {2007},
pages = {1756--1764},
file = {[HTML] à partir de asm.org:/home/eeva/work/thesis/biblio/zotero/storage/CGEI8NH7/1756.html:text/html;Snapshot:/home/eeva/work/thesis/biblio/zotero/storage/JK49X6HH/1756.html:text/html}
}
@article{turner_real-time_2000,
title = {Real-{Time} {Imaging} of {Fluorescent} {Flagellar} {Filaments}},
volume = {182},
issn = {0021-9193, 1098-5530},
url = {http://jb.asm.org/content/182/10/2793},
doi = {10.1128/JB.182.10.2793-2801.2000},
abstract = {Bacteria swim by rotating flagellar filaments that are several micrometers long, but only about 20 nm in diameter. The filaments can exist in different polymorphic forms, having distinct values of curvature and twist. Rotation rates are on the order of 100 Hz. In the past, the motion of individual filaments has been visualized by dark-field or differential-interference-contrast microscopy, methods hampered by intense scattering from the cell body or shallow depth of field, respectively. We have found a simple procedure for fluorescently labeling cells and filaments that allows recording their motion in real time with an inexpensive video camera and an ordinary fluorescence microscope with mercury-arc or strobed laser illumination. We report our initial findings with cells of Escherichia coli. Tumbles (events that enable swimming cells to alter course) are remarkably varied. Not every filament on a cell needs to change its direction of rotation: different filaments can change directions at different times, and a tumble can result from the change in direction of only one. Polymorphic transformations tend to occur in the sequence normal, semicoiled, curly 1, with changes in the direction of movement of the cell body correlated with transformations to the semicoiled form.},
language = {en},
number = {10},
urldate = {2016-02-05},
journal = {Journal of Bacteriology},
author = {Turner, Linda and Ryu, William S. and Berg, Howard C.},
month = may,
year = {2000},
pmid = {10781548},
pages = {2793--2801},
file = {Full Text PDF:/home/eeva/work/thesis/biblio/zotero/storage/MQ5R6TIB/Turner et al. - 2000 - Real-Time Imaging of Fluorescent Flagellar Filamen.pdf:application/pdf;Snapshot:/home/eeva/work/thesis/biblio/zotero/storage/NA5FUS4J/2793.html:text/html}
}
@article{sourjik_receptor_2004,
title = {Receptor clustering and signal processing in {E}. coli chemotaxis},
volume = {12},
url = {http://www.sciencedirect.com/science/article/pii/S0966842X04002343},
number = {12},
urldate = {2016-02-06},
journal = {Trends in microbiology},
author = {Sourjik, Victor},
year = {2004},
pages = {569--576},
file = {[PDF] à partir de psu.edu:/home/eeva/work/thesis/biblio/zotero/storage/PEM88DQE/Sourjik - 2004 - Receptor clustering and signal processing in E. co.pdf:application/pdf;Snapshot:/home/eeva/work/thesis/biblio/zotero/storage/K65JZAUM/S0966-842X(04)00234-3.html:text/html}
}
@article{shimizu_spatially_2003,
title = {A {Spatially} {Extended} {Stochastic} {Model} of the {Bacterial} {Chemotaxis} {Signalling} {Pathway}},
volume = {329},
issn = {00222836},
url = {http://linkinghub.elsevier.com/retrieve/pii/S0022283603004376},
doi = {10.1016/S0022-2836(03)00437-6},
language = {en},
number = {2},
urldate = {2016-02-06},
journal = {Journal of Molecular Biology},
author = {Shimizu, Thomas S. and Aksenov, Sergej V. and Bray, Dennis},
month = may,
year = {2003},
pages = {291--309}
}
@article{mello_quantitative_2003,
title = {Quantitative modeling of sensitivity in bacterial chemotaxis: {The} role of coupling among different chemoreceptor species},
volume = {100},
issn = {0027-8424, 1091-6490},
shorttitle = {Quantitative modeling of sensitivity in bacterial chemotaxis},
url = {http://www.pnas.org/content/100/14/8223},
doi = {10.1073/pnas.1330839100},
abstract = {We propose a general theoretical framework for modeling receptor sensitivity in bacterial chemotaxis, taking into account receptor interactions, including those among different receptor species. We show that our model can quantitatively explain the recent in vivo measurements of receptor sensitivity at different ligand concentrations for both mutant and wild-type strains. For mutant strains, our model can fit the experimental data exactly. For the wild-type cell, our model is capable of achieving high gain while having modest values of Hill coefficient for the response curves. Furthermore, the high sensitivity of the wild-type cell in our model is maintained for a wide range of ambient ligand concentrations, facilitated by near-perfect adaptation and dependence of ligand binding on receptor activity. Our study reveals the importance of coupling among different chemoreceptor species, in particular strong interactions between the aspartate (Tar) and serine (Tsr) receptors, which is crucial in explaining both the mutant and wild-type data. Predictions for the sensitivity of other mutant strains and possible improvements of our model for the wild-type cell are also discussed.},
language = {en},
number = {14},
urldate = {2016-02-06},
journal = {Proceedings of the National Academy of Sciences},
author = {Mello, Bernardo A. and Tu, Yuhai},
month = jul,
year = {2003},
pmid = {12826616},
pages = {8223--8228},
file = {Full Text PDF:/home/eeva/work/thesis/biblio/zotero/storage/SNG3NCZX/Mello et Tu - 2003 - Quantitative modeling of sensitivity in bacterial .pdf:application/pdf;Snapshot:/home/eeva/work/thesis/biblio/zotero/storage/PIGH9TS7/8223.html:text/html}
}
@article{stewart_aging_2005,
title = {Aging and {Death} in an {Organism} {That} {Reproduces} by {Morphologically} {Symmetric} {Division}},
volume = {3},
url = {http://dx.doi.org/10.1371/journal.pbio.0030045},
doi = {10.1371/journal.pbio.0030045},
abstract = {Detailed time lapse photography reveals that organisms that divide symmetrically, such as the bacterium E. coli, can indeed age and consequently that no organism is immune to mortality.},
number = {2},
urldate = {2016-02-07},
journal = {PLoS Biol},
author = {Stewart, Eric J and Madden, Richard and Paul, Gregory and Taddei, François},
month = feb,
year = {2005},
pages = {e45},
file = {PLoS Full Text PDF:/home/eeva/work/thesis/biblio/zotero/storage/IP932H39/Stewart et al. - 2005 - Aging and Death in an Organism That Reproduces by .pdf:application/pdf}
}
@incollection{hoekstra_complex_2010,
title = {Complex automata: multi-scale modeling with coupled cellular automata},
booktitle = {Simulating complex systems by cellular automata},
publisher = {Springer},
author = {Hoekstra, Alfons G and Caiazzo, Alfonso and Lorenz, Eric and Falcone, Jean-Luc and Chopard, Bastien},
year = {2010},
pages = {29--57}
}
@article{bray_javascript_2014,
title = {The javascript object notation (json) data interchange format},
author = {Bray, Tim},
year = {2014}
}
@article{dilao_validation_1998,
title = {Validation and calibration of models for reactiondiffusion systems},
volume = {8},
number = {06},
journal = {International Journal of Bifurcation and Chaos},
author = {Dilão, Rui and Sainhas, Joaquim},
year = {1998},
pages = {1163--1182}
}

1379
biblio/these2016.bib Normal file

File diff suppressed because it is too large Load diff

Binary file not shown.

After

(image error) Size: 590 B

Binary file not shown.

After

(image error) Size: 5.3 KiB

View file

@ -0,0 +1,31 @@
[
{
"name": "CrossRef Lookup",
"alias": "CrossRef",
"icon": "file:///home/eeva/.mozilla/firefox/bmo4pesa.default/zotero/locate/CrossRef%20Lookup.gif",
"_urlTemplate": "http://crossref.org/openurl?{z:openURL}&pid=zter:zter321",
"description": "CrossRef Search Engine",
"hidden": false,
"_urlParams": [],
"_urlNamespaces": {
"z": "http://www.zotero.org/namespaces/openSearch#",
"": "http://a9.com/-/spec/opensearch/1.1/"
},
"_iconSourceURI": "http://crossref.org/favicon.ico"
},
{
"name": "Google Scholar Search",
"alias": "Google Scholar",
"icon": "file:///home/eeva/.mozilla/firefox/bmo4pesa.default/zotero/locate/Google%20Scholar%20Search.ico",
"_urlTemplate": "http://scholar.google.com/scholar?as_q=&as_epq={z:title}&as_occt=title&as_sauthors={rft:aufirst?}+{rft:aulast?}&as_ylo={z:year?}&as_yhi={z:year?}&as_sdt=1.&as_sdtp=on&as_sdtf=&as_sdts=22&",
"description": "Google Scholar Search",
"hidden": false,
"_urlParams": [],
"_urlNamespaces": {
"rft": "info:ofi/fmt:kev:mtx:journal",
"z": "http://www.zotero.org/namespaces/openSearch#",
"": "http://a9.com/-/spec/opensearch/1.1/"
},
"_iconSourceURI": "http://scholar.google.com/favicon.ico"
}
]

BIN
biblio/zotero/zotero.sqlite Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

28
builderbot/Build.cabal Normal file
View file

@ -0,0 +1,28 @@
-- Initial Build.cabal generated by cabal init. For further documentation,
-- see http://haskell.org/cabal/users-guide/
name: buildthesis
version: 0.1.0.0
-- synopsis:
-- description:
-- license:
license-file: LICENSE
author: eeva
maintainer: eeva@canine
-- copyright:
-- category:
build-type: Simple
-- extra-source-files:
cabal-version: >=1.10
executable buildthesis
main-is: Build.hs
-- other-modules:
-- other-extensions:
build-depends: base >=4.8
,directory >=1.2
,shake
,Glob
-- hs-source-dirs:
default-language: Haskell2010

121
builderbot/Build.hs Normal file
View file

@ -0,0 +1,121 @@
import System.IO
import Development.Shake
import Development.Shake.FilePath
import System.Directory (createDirectory)
import System.FilePath.Glob
import Data.List (isSuffixOf)
target :: FilePath
target = "main"
finalTarget :: FilePath
finalTarget = "potier.these.2015" <.> "pdf"
buildDir :: FilePath
buildDir = "_build"
fullTarget :: FilePath
fullTarget = buildDir </> target <.> "pdf"
sanityFile :: FilePath
sanityFile = buildDir </> "sanity.check"
texCmd :: String -> [String]
texCmd target = ["xelatex", "-halt-on-error", target]
foldersource :: FilePath -> [FilePattern] -> Action [FilePath]
foldersource folder wildcards = do
files <- getDirectoryFiles folder wildcards
return $ map (folder </>) files
foldersourceIO :: FilePath -> [String] -> IO [FilePath]
foldersourceIO folder wildcards = do
let patterns = map compile wildcards
(results,_) <- globDir patterns folder
return $ concat results
allfiles :: Action [FilePath]
allfiles = do
tex <- getDirectoryFiles "" ["*.tex"]
bib <- foldersource "biblio" ["*"]
dots <- foldersource "data" ["*"]
figures <- foldersource "figures" ["*"]
fonts <- foldersource "fonts" ["*"]
let files = tex ++ bib ++ dots ++ figures ++ fonts
return $ map (buildDir </>) files
-- Without link
compiledTikzFiguresIO :: IO [FilePath]
compiledTikzFiguresIO = do
tikz <- foldersourceIO "figures" ["*.tikz"]
let pdfs = map (-<.> "pdf") tikz
return $ map (buildDir </>) $ filter (not . isSuffixOf "link.pdf") pdfs
main :: IO ()
main = do
-- preping
compiledTikzFigures <- compiledTikzFiguresIO
shakeArgs shakeOptions { shakeFiles = buildDir
, shakeThreads = 0
, shakeProgress = progressSimple } $ do
want [ finalTarget ]
-- Populate when needed
(map (buildDir </>) ["*.tex", "biblio/*", "data/*", "figures/*", "fonts/*"]) |%> \out -> do
copyFile' (dropDirectory1 out) out
-- creating a sanity file (erk!)
sanityFile %> \out -> do
writeFile' sanityFile "building sanely"
-- Turn *.tikz in *.pdf
compiledTikzFigures |%> \out -> do
let source = out -<.> "tikz"
need [source]
cmd (EchoStdout False) [ "xelatex", "-halt-on-error",
"-output-directory=" ++ (buildDir </> "figures"), source]
-- Build link.pdf
buildDir </> "figures/link.pdf" %> \out -> do
let source = out -<.> "tikz"
need $ source : map (buildDir </>)
[ "common-headers.tex", "sigles.tex",
"figures/operateursS.pdf", "figures/operateursStS.pdf",
"figures/operateursfS.pdf", "figures/operateursfStS.pdf",
"figures/operateursStfS.pdf", "figures/operateursLkS.pdf" ]
cmd (Cwd buildDir) (EchoStdout False)
[ "xelatex", "-halt-on-error",
"-output-directory=figures", (dropDirectory1 source)]
fullTarget %> \out -> do
removeFilesAfter sanityFile ["*"]
allSrc <- allfiles
need $ sanityFile : (out -<.> "bbl")
: (buildDir </> "figures/link.pdf")
: compiledTikzFigures ++ allSrc
cmd (Cwd buildDir) (EchoStdout False) $ texCmd target
-- generate "main.bbl"
fullTarget -<.> "bbl" %> \out -> do
allSrc <- allfiles
need $ (buildDir </> "figures/link.pdf") : compiledTikzFigures ++ allSrc
existsAux <- doesFileExist $ fullTarget -<.> "aux"
existsSane <- doesFileExist $ sanityFile
if (not existsAux || existsSane)
then cmd (Cwd buildDir) (EchoStdout False) $ texCmd target
else return ()
cmd (EchoStdout False) ["biber", dropExtension out]
finalTarget %> \out -> do
need [fullTarget]
copyFileChanged fullTarget out
phony "clean" $ do
removeFilesAfter "_build" ["//*"]

1
builderbot/LICENSE Normal file
View file

@ -0,0 +1 @@
dummy text

24
builderbot/default.nix Normal file
View file

@ -0,0 +1,24 @@
{ nixpkgs ? import <nixpkgs> {}, compiler ? "default" }:
let
inherit (nixpkgs) pkgs;
f = { mkDerivation, base, directory, Glob, shake, stdenv }:
mkDerivation {
pname = "buildthesis";
version = "0.1.0.0";
src = ./.;
isLibrary = false;
isExecutable = true;
executableHaskellDepends = [ base directory Glob shake ];
license = stdenv.lib.licenses.publicDomain;
};
haskellPackages = if compiler == "default"
then pkgs.haskellPackages
else pkgs.haskell.packages.${compiler};
in
haskellPackages.callPackage f {}

139
common-headers.tex Normal file
View file

@ -0,0 +1,139 @@
% All packages and parameters usefull
% for generating standalone figures.
\usepackage{xspace}
\usepackage{polyglossia}
\setmainlanguage{french}
\setotherlanguage{english}
% Do this BEFORE unicode-math
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amssymb}
% Do this AFTER any math font package (see fontspec doc)
\usepackage{fontspec}
\usepackage{unicode-math}
\defaultfontfeatures{Scale=MatchLowercase,Mapping=tex-text}
%\setromanfont{Linux Libertine O}
\setromanfont{LinLibertine}[
Path = fonts/ ,
Extension = .otf ,
UprightFont = *-R ,
BoldFont = *-RB ,
ItalicFont = *-RI ,
BoldItalicFont = *-RBI ]
%\setsansfont {Linux Biolinum O}
\setsansfont{LinBiolinum}[
Path = fonts/ ,
Extension = .otf ,
UprightFont = *-R ,
BoldFont = *-RB ,
ItalicFont = *-RI ]
%\setmonofont {Fantasque Sans Mono}
\setmonofont{FantasqueSansMono}[
Path = fonts/ ,
Extension = .ttf ,
UprightFont = *-Regular ,
BoldFont = *-Bold ,
ItalicFont = *-Italic ,
BoldItalicFont = *-BoldItalic ]
%\setmathfont[mathbf=sym] {Asana Math}
\setmathfont[mathbf=sym] {Asana-Math}[
Path = fonts/ ,
Extension = .otf ]
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usetikzlibrary{backgrounds}
\usetikzlibrary{bending}
\usetikzlibrary{calc}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{decorations.text}
\usetikzlibrary{positioning}
\usetikzlibrary{fit}
\usetikzlibrary{shapes.geometric}
\usepackage{pgfplots}
\pgfplotsset{compat=1.13}
\usepackage[
locale = FR % Gives comma as decimal separator.
]{siunitx}
% SOLARIZED HEX 16/8 TERMCOL XTERM/HEX L*A*B RGB HSB
% --------- ------- ---- ------- ----------- ---------- ----------- -----------
% base03 #002b36 8/4 brblack 234 #1c1c1c 15 -12 -12 0 43 54 193 100 21
% base02 #073642 0/4 black 235 #262626 20 -12 -12 7 54 66 192 90 26
% base01 #586e75 10/7 brgreen 240 #585858 45 -07 -07 88 110 117 194 25 46
% base00 #657b83 11/7 bryellow 241 #626262 50 -07 -07 101 123 131 195 23 51
% base0 #839496 12/6 brblue 244 #808080 60 -06 -03 131 148 150 186 13 59
% base1 #93a1a1 14/4 brcyan 245 #8a8a8a 65 -05 -02 147 161 161 180 9 63
% base2 #eee8d5 7/7 white 254 #e4e4e4 92 -00 10 238 232 213 44 11 93
% base3 #fdf6e3 15/7 brwhite 230 #ffffd7 97 00 10 253 246 227 44 10 99
% yellow #b58900 3/3 yellow 136 #af8700 60 10 65 181 137 0 45 100 71
% orange #cb4b16 9/3 brred 166 #d75f00 50 50 55 203 75 22 18 89 80
% red #dc322f 1/1 red 160 #d70000 50 65 45 220 50 47 1 79 86
% magenta #d33682 5/5 magenta 125 #af005f 50 65 -05 211 54 130 331 74 83
% violet #6c71c4 13/5 brmagenta 61 #5f5faf 50 15 -45 108 113 196 237 45 77
% blue #268bd2 4/4 blue 33 #0087ff 55 -10 -45 38 139 210 205 82 82
% cyan #2aa198 6/6 cyan 37 #00afaf 60 -35 -05 42 161 152 175 74 63
% green #859900 2/2 green 64 #5f8700 60 -20 65 133 153 0 68 100 60
\definecolor{base03} {HTML}{002b36} \colorlet{unused1} {base03}
\definecolor{base02} {HTML}{073642} \colorlet{unused2} {base02}
\definecolor{base01} {HTML}{586e75} \colorlet{fghl} {base01}
\definecolor{base00} {HTML}{657b83} \colorlet{fg} {base00}
\definecolor{base0 } {HTML}{839496} \colorlet{unused3} {base0 }
\definecolor{base1 } {HTML}{93a1a1} \colorlet{bgcomment}{base1 }
\definecolor{base2 } {HTML}{eee8d5} \colorlet{bghl} {base2 }
\definecolor{base3 } {HTML}{fdf6e3} \colorlet{bg} {base3 }
\definecolor{yellow} {HTML}{b58900}
\definecolor{orange} {HTML}{cb4b16}
\definecolor{red} {HTML}{dc322f}
\definecolor{magenta}{HTML}{d33682}
\definecolor{violet} {HTML}{6c71c4}
\definecolor{blue} {HTML}{268bd2}
\definecolor{cyan} {HTML}{2aa198}
\definecolor{green} {HTML}{859900}
%Theme SMYCK
% 0x00 (dark black ) #000000
% 0x01 (dark red ) #C75646
% 0x02 (dark green ) #8EB33B
% 0x03 (dark yellow ) #D0B03C
% 0x04 (dark blue ) #72B3CC
% 0x05 (dark magenta) #C8A0D1
% 0x06 (dark cyan ) #218693
% 0x07 (dark white ) #B0B0B0
% 0x10 (light black ) #5D5D5D
% 0x11 (light red ) #E09690
% 0x12 (light green ) #CDEE69
% 0x13 (light yellow ) #FFE377
% 0x14 (light blue ) #9CD9F0
% 0x15 (light magenta) #FBB1F9
% 0x16 (light cyan ) #77DFD8
% 0x17 (light white ) #F7F7F7
%\definecolor{ darkblack }{HTML}{#000000}
%\definecolor{ darkred }{HTML}{#C75646}
%\definecolor{ darkgreen }{HTML}{#8EB33B}
%\definecolor{ darkyellow }{HTML}{#D0B03C}
%\definecolor{ darkblue }{HTML}{#72B3CC}
%\definecolor{ darkmagenta}{HTML}{#C8A0D1}
%\definecolor{ darkcyan }{HTML}{#218693}
%\definecolor{ darkwhite }{HTML}{#B0B0B0}
%\definecolor{lightblack }{HTML}{#5D5D5D}
%\definecolor{lightred }{HTML}{#E09690}
%\definecolor{lightgreen }{HTML}{#CDEE69}
%\definecolor{lightyellow }{HTML}{#FFE377}
%\definecolor{lightblue }{HTML}{#9CD9F0}
%\definecolor{lightmagenta}{HTML}{#FBB1F9}
%\definecolor{lightcyan }{HTML}{#77DFD8}
%\definecolor{lightwhite }{HTML}{#F7F7F7}
%NoUglyEmptySet
%\let\oldemptyset\emptyset
\let\emptyset\varnothing

107
data/bench.tex Normal file
View file

@ -0,0 +1,107 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolorfalse
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\begin{picture}(6800.00,5100.00)%
\gplgaddtomacro\gplbacktext{%
\csname LTb\endcsname%
\put(561,595){\makebox(0,0)[r]{\strut{} 0}}%
\put(561,1455){\makebox(0,0)[r]{\strut{} 0.2}}%
\put(561,2315){\makebox(0,0)[r]{\strut{} 0.4}}%
\put(561,3175){\makebox(0,0)[r]{\strut{} 0.6}}%
\put(561,4035){\makebox(0,0)[r]{\strut{} 0.8}}%
\put(561,4895){\makebox(0,0)[r]{\strut{} 1}}%
\put(663,409){\makebox(0,0){\strut{} 0}}%
\put(1311,409){\makebox(0,0){\strut{} 100}}%
\put(1959,409){\makebox(0,0){\strut{} 200}}%
\put(2606,409){\makebox(0,0){\strut{} 300}}%
\put(3254,409){\makebox(0,0){\strut{} 400}}%
\put(3902,409){\makebox(0,0){\strut{} 500}}%
\put(4550,409){\makebox(0,0){\strut{} 600}}%
\put(5197,409){\makebox(0,0){\strut{} 700}}%
\put(5845,409){\makebox(0,0){\strut{} 800}}%
\put(6493,409){\makebox(0,0){\strut{} 900}}%
\put(144,2745){\rotatebox{-270}{\makebox(0,0)[c]{}}}%
\put(3578,130){\makebox(0,0)[c]{Iterations}}%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%
\put(5705,4728){\makebox(0,0)[r]{$T_{opt}/T_{norm}$}}%
\csname LTb\endcsname%
\put(5705,4542){\makebox(0,0)[r]{Active$/100^2$}}%
}%
\gplbacktext
\put(0,0){\includegraphics{bench}}%
\gplfronttext
\end{picture}%
\endgroup

View file

@ -0,0 +1,41 @@
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 970"
CUDA Driver Version / Runtime Version 8.0 / 7.5
CUDA Capability Major/Minor version number: 5.2
Total amount of global memory: 4093 MBytes (4291493888 bytes)
(13) Multiprocessors, (128) CUDA Cores/MP: 1664 CUDA Cores
GPU Max Clock rate: 1253 MHz (1.25 GHz)
Memory Clock rate: 3505 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 1835008 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = GeForce GTX 970
Result = PASS

View file

@ -0,0 +1,41 @@
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Tesla K20m"
CUDA Driver Version / Runtime Version 6.5 / 6.5
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 4800 MBytes (5032706048 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Clock rate: 706 MHz (0.71 GHz)
Memory Clock rate: 2600 Mhz
Memory Bus Width: 320-bit
L2 Cache Size: 1310720 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 5 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = Tesla K20m
Result = PASS

Binary file not shown.

33
data/moduleTree.gv Normal file
View file

@ -0,0 +1,33 @@
digraph G {
size="10,7.5";
ratio="fill";
rotate=90;
fontsize="12pt";
rankdir = TB ;
"Bacterium" [style=filled, color=darkturquoise];
"Bacterium" -> "Viewer";
"Bacterium" -> "Packfile";
"Bacterium" -> "OpenCL";
"Bacterium" -> "BoundingBox";
"BoundingBox" [style=filled, color=darkturquoise];
"Coupling" [style=filled, color=darkturquoise];
"Coupling" -> "OpenCL";
"Main" [style=filled, color=darkturquoise];
"Main" -> "Zone";
"Main" -> "Viewer";
"Main" -> "Morphogen";
"Main" -> "Coupling";
"Main" -> "BoundingBox";
"Main" -> "Bacterium";
"Morphogen" [style=filled, color=darkturquoise];
"Morphogen" -> "Viewer";
"Morphogen" -> "Packfile";
"Morphogen" -> "OpenCL";
"Morphogen" -> "BoundingBox";
"OpenCL" [style=filled, color=darkturquoise];
"Packfile" [style=filled, color=darkturquoise];
"Viewer" [style=filled, color=darkturquoise];
"Zone" [style=filled, color=darkturquoise];
"Zone" -> "OpenCL";
"Zone" -> "BoundingBox";
}

987
data/speedup2.data Normal file
View file

@ -0,0 +1,987 @@
ITER NON OPT ACTIVE NONITER OPTITER NONITERNORM OPTITERNORM ACTIVENORM
0 9.553332 10.039998 8 11.3473051258883 0 1 0 3.2E-05
1 21.873331 10.043332 25 12.319999 0.003334 1.02 0.00029381425484 0.0001
2 34.793329 10.043332 49 12.919998 0 1.02 0 0.000196
3 49.443328 10.046665 81 14.649999 0.003333 1.02 0.00029372612819 0.000324
4 63.409993 10.053332 121 13.966665 0.006667 1.02 0.00058754038303 0.000484
5 75.409992 10.059998 169 11.999999 0.006666 1.02 0.00058745225638 0.000676
6 87.969991 10.069998 225 12.559999 0.01 1.02 0.00088126651122 0.0009
7 99.986656 10.079998 289 12.016665 0.01 1.02 0.00088126651122 0.001156
8 112.086655 10.096665 361 12.099999 0.016667 1.02 0.00146880689424 0.001444
9 123.80332 10.113332 441 11.716665 0.016667 1.03255044876417 0.00146880689424 0.001764
10 135.426653 10.136665 525 11.623333 0.023333 1.02432541216169 0.00205625915062 0.0021
11 147.013318 10.163332 613 11.586665 0.026667 1.02109398411836 0.00235007340546 0.002452
12 158.623317 10.196665 707 11.609999 0.033333 1.02315033139563 0.00293752566184 0.002828
13 170.376649 10.233332 808 11.753332 0.036667 1.03578178868085 0.00323133991668 0.003232
14 182.199981 10.273332 915 11.823332 0.04 1.02 0.00352506604487 0.00366
15 193.93998 10.319998 1024 11.739999 0.046666 1.03460679604144 0.00411251830124 0.004096
16 205.553312 10.373332 1146 11.613332 0.053334 1.02344405752382 0.00470014681092 0.004584
17 217.136644 10.429998 1268 11.583332 0.056666 1.02080025799017 0.00499378481246 0.005072
18 228.819977 10.496665 1398 11.683333 0.066667 1.02961301122899 0.00587513945033 0.005592
19 240.553309 10.566665 1538 11.733332 0.07 1.03401925565842 0.00616886557852 0.006152
20 252.283308 10.646665 1681 11.729999 0.08 1.03372552953023 0.00705013208973 0.006724
21 263.939973 10.729998 1831 11.656665 0.083333 1.02726284969688 0.00734385821792 0.007324
22 275.533305 10.823332 1983 11.593332 0.093334 1.02168152450139 0.00822521285579 0.007932
23 287.156637 10.929998 2153 11.623332 0.106666 1.02432532403504 0.00940011736854 0.008612
24 298.926636 11.043332 2311 11.769999 0.113334 1.03725059557509 0.00998774587822 0.009244
25 310.666635 11.166665 2491 11.739999 0.123333 1.03460679604145 0.01086892426279 0.009964
26 322.389967 11.303332 2668 11.723332 0.136667 1.0331379891472 0.01204400502884 0.010672
27 333.976633 11.443332 2853 11.586666 0.14 1.02109407224501 0.01233773115703 0.011412
28 346.243298 11.596665 3049 12.266665 0.153333 1.02 0.01351272379643 0.012196
29 357.923297 11.759998 3242 11.679999 0.163333 1.02931919697415 0.01439399030765 0.012968
30 369.683296 11.933332 3446 11.759999 0.173334 1.03636932906388 0.01527534494552 0.013784
31 381.433295 12.116665 3656 11.749999 0.183333 1.03548806255266 0.01615652333008 0.014624
32 393.12996 12.316665 3873 11.696665 0.2 1.03078791574174 0.01762533022433 0.015492
33 404.729959 12.519998 4097 11.599999 0.203333 1.02226906488442 0.01791905635252 0.016388
34 416.336625 12.743332 4323 11.606666 0.223334 1.02285660526745 0.0196816775016 0.017292
35 428.186623 12.976665 4561 11.849998 0.233333 1.02 0.02056285588617 0.018244
36 440.949955 13.226665 4793 12.763332 0.25 1.02 0.02203166278041 0.019172
37 452.653288 13.479998 5043 11.703333 0.253333 1.03137554425142 0.0223253889086 0.020172
38 464.283286 13.743331 5297 11.629998 0.263333 1.02491277629141 0.02320665541982 0.021188
39 475.866619 14.026665 5548 11.583333 0.283334 1.02080034611683 0.0249692765689 0.022192
40 487.576617 14.326665 5819 11.709998 0.3 1.03196290838114 0.02643799533649 0.023276
41 499.313283 14.633331 6081 11.736666 0.306666 1.03431306991326 0.02702544759287 0.024324
42 511.039948 14.956665 6357 11.726665 0.323334 1.03343171527539 0.02849434261377 0.025428
43 522.689947 15.286665 6639 11.649999 0.33 1.0266753974405 0.02908179487014 0.026556
44 534.269946 15.643331 6931 11.579999 0.356666 1.02050653186199 0.03143178014895 0.027724
45 545.909945 16.009998 7221 11.639999 0.366667 1.02579413092928 0.03231313478682 0.028884
46 557.659944 16.396665 7516 11.749999 0.386667 1.03548806255266 0.03407566780925 0.030064
47 569.419943 16.796664 7829 11.759999 0.399999 1.03636932906388 0.03525057232201 0.031316
48 581.116608 17.226664 8131 11.6966650000001 0.43 1.03078791574175 0.03789445998231 0.032524
49 592.686607 17.636664 8455 11.5699989999999 0.41 1.01962526535076 0.03613192695987 0.03382
50 604.243272 18.063331 8771 11.5566650000001 0.426667 1.01845018458472 0.03760073385412 0.035084
51 615.983271 18.503331 9106 11.7399989999999 0.44 1.03460679604144 0.03877572649352 0.036424
52 627.719937 18.959998 9434 11.736666 0.456667 1.03431306991326 0.04024453338777 0.037736
53 639.453269 19.433331 9774 11.733332 0.473333 1.03401925565842 0.04171325215536 0.039096
54 651.066601 19.919998 10125 11.613332 0.486667 1.02344405752382 0.04288833292142 0.0405
55 662.653267 20.426664 10471 11.586666 0.506666 1.02109407224501 0.0446507778172 0.041884
56 674.356599 20.946664 10834 11.7033319999999 0.52 1.03137545612476 0.04582585858325 0.043336
57 686.106598 21.486664 11194 11.749999 0.54 1.03548806255266 0.04758839160569 0.044776
58 697.833263 22.039997 11558 11.726665 0.553333 1.03343171527539 0.04876338424509 0.046232
59 709.426595 22.616664 11943 11.593332 0.576667 1.02168152450139 0.05081973152236 0.047772
60 720.906594 23.226664 12323 11.479999 0.61 1.01169386674982 0.0537572571842 0.049292
61 732.459926 23.859997 12711 11.553332 0.633333 1.01815645845652 0.05581351633482 0.050844
62 744.096592 24.566664 13107 11.636666 0.706667 1.02550040480109 0.06227619616818 0.052428
63 755.729924 25.28333 13499 11.633332 0.716666 1.02520659054625 0.06315737455274 0.053996
64 767.323256 26.03333 13910 11.593332 0.75 1.02168152450139 0.06609498834123 0.05564
65 778.773255 26.776663 14313 11.4499989999999 0.743333 1.00905006721616 0.0655074479582 0.057252
66 790.213254 27.536663 14729 11.4399990000001 0.76 1.00816880070496 0.06697625485245 0.058916
67 801.769919 28.259997 15158 11.556665 0.723334 1.01845018458471 0.06374500306242 0.060632
68 813.346585 28.999997 15579 11.576666 0.74 1.0202128057338 0.06521372183002 0.062316
69 824.90325 29.766663 16017 11.556665 0.766666 1.01845018458471 0.06756370710883 0.064068
70 836.343249 30.54333 16450 11.4399990000001 0.776667 1.00816880070496 0.06844506174669 0.0658
71 847.763248 31.339996 16906 11.419999 0.796666 1.00640626768252 0.07020750664248 0.067624
72 859.25658 32.16333 17341 11.493332 0.823334 1.01286885938922 0.07255766817459 0.069364
73 870.816579 33.006663 17808 11.5599990000001 0.843333 1.01874399883956 0.07432011307037 0.071232
74 882.396578 33.893329 18267 11.5799989999999 0.886666 1.02050653186198 0.07813890524342 0.073068
75 893.866577 34.799996 18725 11.469999 0.906667 1.01081260023861 0.07990152639251 0.0749
76 905.216576 35.736663 19208 11.349999 0.936667 1.00023740210401 0.08254532592616 0.076832
77 916.656575 36.743329 19692 11.4399989999999 1.006666 1.00816880070495 0.08871410337802 0.078768
78 928.20324 37.826662 20174 11.5466650000001 1.083333 1.0175689180735 0.09547050933956 0.080696
79 939.733239 38.809996 20675 11.529999 0.983334 1.0161001993059 0.08665793235405 0.0827
80 951.223238 39.823329 21172 11.489999 1.013333 1.01257513326104 0.08930164376105 0.084688
81 962.59657 40.856662 21660 11.373332 1.033333 1.00229366125463 0.09106417678348 0.08664
82 973.963235 41.906662 22174 11.366665 1.05 1.0017061208716 0.09253298367773 0.088696
83 985.483234 42.983329 22683 11.519999 1.076667 1.01521893279468 0.09488305708319 0.090732
84 997.0299 44.106662 23210 11.546666 1.123333 1.01756900620014 0.09899557538443 0.09284
85 1008.519899 45.266662 23734 11.489999 1.16 1.01257513326104 0.10222691530111 0.094936
86 1019.873231 46.449995 24270 11.353332 1.183333 1.0005311282322 0.10428317445173 0.09708
87 1031.226563 47.719995 24805 11.3533319999999 1.27 1.00053112823219 0.11192084692449 0.09922
88 1042.643229 48.996661 25348 11.4166660000001 1.27666600000001 1.00611254155434 0.11250829918086 0.101392
89 1054.119894 50.239994 25895 11.4766649999999 1.243333 1.01140005249497 0.10957077351903 0.10358
90 1065.579893 51.499994 26448 11.4599990000002 1.26 1.0099313337274 0.11103958041327 0.105792
91 1076.986558 52.783328 27021 11.406665 1.283334 1.00523118691646 0.11309592769054 0.108084
92 1088.286557 54.103327 27573 11.2999989999998 1.319999 0.99583106954791 0.11632709135392 0.110292
93 1099.613223 55.483327 28148 11.3266660000002 1.38 0.9981811429534 0.12161477854787 0.112592
94 1111.086555 56.893327 28727 11.473332 1.41 1.01110632636679 0.12425857808152 0.114908
95 1122.509887 58.379994 29306 11.4233319999998 1.486667 1.0066999938107 0.13101498404306 0.117224
96 1133.936553 59.883327 29898 11.4266660000001 1.503333 1.00699380806555 0.13248370281065 0.119592
97 1145.243218 61.343327 30488 11.3066650000001 1.46 0.99641852180431 0.1286649106376 0.121952
98 1156.549884 62.833327 31099 11.306666 1.48999999999999 0.99641860993095 0.13130871017125 0.124396
99 1167.963216 64.34666 31686 11.4133320000001 1.513333 1.0058187272995 0.13336496932187 0.126744
100 1179.399882 65.919993 32304 11.4366659999998 1.57333300000001 1.00787507457675 0.13865256838917 0.129216
101 1190.803214 67.539993 32922 11.4033320000001 1.61999999999999 1.00493746078828 0.14276517481706 0.131688
102 1202.093213 69.263326 33546 11.2899990000001 1.72333300000001 0.99494980303671 0.15187156605742 0.134184
103 1213.369878 70.939992 34170 11.2766649999999 1.676666 0.99377472227064 0.14775895962952 0.13668
104 1224.696544 72.613326 34817 11.3266659999999 1.673334 0.99818114295338 0.14746532162798 0.139268
105 1236.103209 74.313325 35450 11.4066650000002 1.69999900000001 1.00523118691648 0.14981521878014 0.1418
106 1247.519875 76.053325 36091 11.4166659999999 1.73999999999999 1.00611254155432 0.15334037295166 0.144364
107 1258.879874 77.863325 36749 11.359999 1.81 1.00111866861522 0.15950923853018 0.146996
108 1270.136539 79.703325 37388 11.2566650000001 1.84 0.99201218924823 0.16215303806382 0.149552
109 1281.446538 81.646658 38063 11.3099989999998 1.943333 0.99671233605912 0.17125942930418 0.152252
110 1292.85987 83.506658 38743 11.4133320000001 1.86 1.0058187272995 0.16391557108626 0.154972
111 1304.256536 85.399991 39399 11.3966660000001 1.893333 1.00435000853191 0.16685309674809 0.157596
112 1315.639868 87.346657 40076 11.3833319999999 1.94666599999999 1.00317492776583 0.17155315543237 0.160304
113 1326.936533 89.356657 40781 11.2966650000001 2.01000000000001 0.99553725529309 0.1771345687545 0.163124
114 1338.199866 91.483324 41451 11.2633329999999 2.126667 0.99259981775789 0.18741604076091 0.165804
115 1349.576531 93.533323 42156 11.376665 2.049999 1.00258738738282 0.18065954667272 0.168624
116 1360.969863 95.593323 42856 11.3933320000001 2.06 1.00405619427707 0.18154090131059 0.171424
117 1372.363196 97.686656 43565 11.393333 2.093333 1.00405628240371 0.18447842697242 0.17426
118 1383.659861 99.876656 44263 11.2966650000001 2.19 0.99553725529309 0.1929973659564 0.177052
119 1394.923193 102.143323 45004 11.263332 2.266667 0.99259972963124 0.19975377191794 0.180016
120 1406.263192 104.419989 45713 11.3399989999998 2.27666600000001 0.99935613559277 0.20063495030251 0.182852
121 1417.669858 106.656656 46445 11.4066660000001 2.236667 1.00523127504312 0.19710997238429 0.18578
122 1429.069857 108.926655 47198 11.399999 2.269999 1.00464373466009 0.20004740991948 0.188792
123 1440.446522 111.296655 47911 11.376665 2.37 1.00258738738282 0.2088601631583 0.191644
124 1451.693188 113.826655 48663 11.246666 2.53 0.99113101086365 0.22296042733776 0.194652
125 1462.95652 116.233321 49426 11.263332 2.406666 0.99259972963124 0.21209141494832 0.197704
126 1474.383185 118.646654 50180 11.426665 2.41333299999999 1.00699371993889 0.21267895533135 0.20072
127 1485.799851 121.129987 50930 11.4166660000001 2.483333 1.00611254155434 0.21884782090987 0.20372
128 1497.18985 123.689987 51701 11.389999 2.56 1.00376246814887 0.22560422687141 0.206804
129 1508.489849 126.35332 52486 11.2999990000001 2.66333299999999 0.99583106954793 0.23471061811176 0.209944
130 1519.766514 128.926653 53246 11.2766649999999 2.57333299999999 0.99377472227064 0.22677921951081 0.212984
131 1531.149846 131.52332 54030 11.3833320000001 2.59666700000002 1.00317492776585 0.22883556678809 0.21612
132 1542.563179 134.246653 54806 11.413333 2.723333 1.00581881542614 0.23999821717906 0.219224
133 1553.986511 137.076652 55602 11.4233320000001 2.82999899999999 1.00669999381072 0.2493983345476 0.222408
134 1565.313176 139.813319 56390 11.326665 2.73666700000001 0.99818105482674 0.24117329794512 0.22556
135 1576.579842 142.556652 57195 11.266666 2.74333300000001 0.99289354388608 0.24176075020149 0.22878
136 1587.906507 145.433318 57991 11.3266649999998 2.876666 0.99818105482672 0.25351094097549 0.231964
137 1599.29984 148.509985 58791 11.393333 3.07666699999999 1.00405628240371 0.27113635932647 0.235164
138 1610.719838 151.393318 59616 11.4199980000001 2.88333299999999 1.00640617955588 0.25409848135852 0.238464
139 1622.126504 154.309984 60419 11.4066660000001 2.91666599999999 1.00523127504312 0.25703600702036 0.241676
140 1633.389836 157.35665 61246 11.263332 3.04666600000002 0.99259972963124 0.26849247166618 0.244984
141 1644.669835 160.479983 62067 11.2799989999999 3.123333 0.99406853652548 0.27524887762772 0.248268
142 1656.099834 163.529983 62904 11.4299990000002 3.04999999999998 1.00728753419375 0.26878628592101 0.251616
143 1667.646499 166.619983 63734 11.5466649999998 3.09 1.01756891807348 0.27231135196588 0.254936
144 1679.039832 169.833316 64576 11.393333 3.21333300000001 1.00405628240371 0.28318027622867 0.258304
145 1690.333164 173.156649 65416 11.293332 3.32333299999999 0.99524352916489 0.29287420785204 0.261664
146 1701.616496 176.373315 66271 11.2833320000002 3.216666 0.9943622626537 0.28347400235685 0.265084
147 1713.006495 179.679982 67116 11.389999 3.306667 1.00376246814887 0.29140548908445 0.268464
148 1724.419827 183.206648 67968 11.4133319999999 3.52666600000001 1.00581872729948 0.31079326420456 0.271872
149 1735.796493 186.556648 68832 11.3766660000001 3.34999999999999 1.00258747550948 0.29522428125751 0.275328
150 1747.123158 189.936647 69691 11.326665 3.379999 0.99818105482674 0.2978679926645 0.278764
151 1758.393157 193.466647 70568 11.2699989999999 3.53 0.99318727001426 0.3110870784594 0.282272
152 1769.716489 197.123313 71441 11.3233319999999 3.656666 0.99788732869854 0.32224972885038 0.285764
153 1781.126488 200.633313 72336 11.4099990000002 3.50999999999999 1.00552500117132 0.30932454543697 0.289344
154 1792.52982 204.269979 73200 11.4033319999999 3.63666600000002 1.00493746078826 0.32048719582795 0.2928
155 1803.909819 208.079979 74091 11.379999 3.81 1.00288120163765 0.33576254077346 0.296364
156 1815.166485 211.726645 74991 11.256666 3.64666599999998 0.99201227737487 0.32136846233916 0.299964
157 1826.449817 215.463311 75876 11.283332 3.73666600000001 0.99436226265368 0.32929986094011 0.303504
158 1837.863149 219.439978 76772 11.4133320000001 3.97666699999999 1.0058187272995 0.35045034533595 0.307088
159 1849.246481 223.216644 77683 11.3833319999999 3.77666600000001 1.00317492776583 0.33282492698497 0.310732
160 1860.64648 227.08331 78604 11.3999990000002 3.86666600000001 1.00464373466011 0.34075632558592 0.314416
161 1871.953146 231.219976 79511 11.306666 4.13666599999999 0.99641860993095 0.36455052138876 0.318044
162 1883.249811 235.143309 80447 11.2966649999998 3.92333299999999 0.99553725529307 0.34575019852503 0.321788
163 1894.623143 239.146642 81349 11.3733320000001 4.00333300000003 1.00229366125464 0.35280033061477 0.325396
164 1906.029809 243.379975 82292 11.4066659999999 4.23333299999999 1.0052312750431 0.37306946037274 0.329168
165 1917.433141 247.433308 83222 11.4033320000001 4.05333300000001 1.00493746078828 0.35720666317085 0.332888
166 1928.726473 251.569974 84162 11.293332 4.13666599999999 0.99524352916489 0.36455052138876 0.336648
167 1939.996472 255.986641 85107 11.2699990000001 4.41666699999999 0.99318727001428 0.38922607182948 0.340428
168 1951.329804 260.189973 86050 11.3333319999999 4.20333200000002 0.99876859520975 0.37042557271244 0.3442
169 1962.769803 264.50664 87003 11.4399989999999 4.316667 1.00816880070495 0.38041340671731 0.348012
170 1974.176469 269.059973 87943 11.4066660000001 4.55333300000001 1.00523127504312 0.40126998873167 0.351772
171 1985.523134 273.403305 88939 11.346665 4.34333199999998 0.99994358784917 0.38276330386947 0.355756
172 1996.783133 277.886638 89895 11.2599989999999 4.48333300000002 0.99230600350305 0.39510112315315 0.35958
173 2008.096465 282.603305 90853 11.3133320000002 4.71666699999997 0.99700606218734 0.41566406716597 0.363412
174 2019.503131 287.073304 91839 11.4066659999999 4.46999900000003 1.0052312750431 0.3939260423871 0.367356
175 2030.906463 291.75997 92827 11.4033320000001 4.686666 1.00493746078828 0.41302017950567 0.371308
176 2042.293129 296.563303 93798 11.3866659999999 4.80333300000001 1.00346874202067 0.42330165151208 0.375192
177 2053.593127 301.229969 94805 11.2999980000002 4.66666599999996 0.99583098142129 0.41125764648323 0.37922
178 2064.869793 306.236636 95787 11.2766659999998 5.00666699999999 0.99377481039728 0.44122079599125 0.383148
179 2076.256459 310.966635 96815 11.3866660000003 4.72999900000002 1.00346874202071 0.41683897167873 0.38726
180 2087.666457 315.856635 97834 11.4099979999996 4.88999999999999 1.00552491304462 0.43093932398484 0.391336
181 2099.08979 320.959967 98846 11.4233330000002 5.10333200000002 1.00670008193738 0.44973955872192 0.395384
182 2110.396455 325.866634 99883 11.3066650000001 4.90666699999997 0.99641852180431 0.43240813087908 0.399532
183 2121.659787 331.149966 100918 11.263332 5.28333200000003 0.99259972963124 0.46560235592382 0.403672
184 2133.016453 336.146633 101973 11.3566660000001 4.996667 1.00082494248705 0.44033952948003 0.407892
185 2144.446452 341.296632 103007 11.429999 5.14999899999998 1.00728753419373 0.45385216514981 0.412028
186 2155.879784 346.713298 104060 11.4333320000001 5.41666600000002 1.00758126032193 0.47735263482447 0.41624
187 2167.203116 351.886631 105119 11.3233319999999 5.17333300000001 0.99788732869854 0.45590851242709 0.420476
188 2178.463115 357.469964 106189 11.2599989999999 5.58333299999998 0.99230600350305 0.49204043938696 0.424756
189 2189.793114 362.733297 107247 11.329999 5.26333299999999 0.99847486908158 0.46383991102803 0.428988
190 2201.213113 368.196629 108327 11.4199989999997 5.46333199999998 1.0064062676825 0.48146515312571 0.433308
191 2212.599778 373.809962 109414 11.386665 5.61333300000001 1.00346865389403 0.49468423892061 0.437656
192 2223.989777 379.299962 110498 11.389999 5.49000000000001 1.00376246814887 0.48381531465782 0.441992
193 2235.236443 385.143294 111616 11.246666 5.84333200000003 0.99113101086365 0.51495328055194 0.446464
194 2246.526442 390.713294 112675 11.2899990000001 5.56999999999999 0.99494980303671 0.49086544674756 0.4507
195 2257.913107 396.723293 113785 11.386665 6.00999899999999 1.00346865389403 0.52964108511443 0.45514
196 2269.296439 402.369959 114898 11.3833320000003 5.64666599999998 1.00317492776587 0.49762176458245 0.459592
197 2280.683105 408.259959 116010 11.3866659999999 5.88999999999999 1.00346874202067 0.51906597510648 0.46404
198 2291.983104 414.296625 117130 11.2999989999998 6.03666600000003 0.99583106954791 0.53199115851989 0.46852
199 2303.236436 420.246624 118268 11.2533320000002 5.94999899999999 0.99171846312005 0.52435348604713 0.473072
200 2314.613101 426.48329 119425 11.3766649999998 6.23666600000001 1.0025873873828 0.54961648874422 0.4777
201 2326.036434 432.506623 120555 11.4233330000002 6.02333299999998 1.00670008193738 0.53081616588048 0.48222
202 2337.456432 438.856622 121726 11.4199979999999 6.34999900000003 1.00640617955586 0.55960414649579 0.486904
203 2348.766431 444.956622 122884 11.3099990000001 6.09999999999997 0.99671233605914 0.53757257184202 0.491536
204 2360.03643 451.469954 124050 11.2699990000001 6.51333199999999 0.99318727001428 0.57399813680344 0.4962
205 2371.366429 457.669954 125257 11.329999 6.20000000000005 0.99847486908158 0.5463852369542 0.501028
206 2382.789761 464.389953 126408 11.4233319999998 6.71999899999997 1.0066999938107 0.59221100741079 0.505632
207 2394.23976 470.703286 127618 11.4499989999999 6.313333 1.00905006721616 0.55637289470576 0.510472
208 2405.599759 477.593285 128805 11.3599990000002 6.88999899999999 1.00111866861524 0.60719253810147 0.51522
209 2416.846424 484.013284 130024 11.2466649999997 6.41999900000002 0.99113092273697 0.5657730120743 0.520096
210 2428.116423 491.20995 131203 11.2699990000001 7.19666599999999 0.99318727001428 0.63421807382099 0.524812
211 2439.539756 497.74995 132436 11.4233330000002 6.54000000000002 1.00670008193738 0.57634829833555 0.529744
212 2451.109754 504.606616 133668 11.5699979999999 6.85666599999996 1.01962517722411 0.60425501243963 0.534672
213 2462.50642 511.263282 134866 11.3966660000001 6.65666600000003 1.00435000853191 0.58662968221531 0.539464
214 2473.799752 518.416614 136109 11.2933319999997 7.15333199999998 0.99524352916487 0.63039919352129 0.544436
215 2485.093084 525.20328 137345 11.2933320000002 6.78666599999997 0.99524352916491 0.59808614686112 0.54938
216 2496.476417 532.659946 138587 11.3833329999998 7.45666600000004 1.00317501589247 0.65713100311263 0.554348
217 2507.909749 539.579946 139823 11.4333320000001 6.91999999999996 1.00758126032193 0.60983642576177 0.559292
218 2519.289748 547.129945 141085 11.3799990000002 7.54999900000007 1.00288120163767 0.66535612784177 0.56434
219 2530.586413 554.216611 142334 11.2966649999998 7.08666599999992 0.99553725529307 0.62452414219761 0.569336
220 2541.866412 561.853277 143598 11.2799989999999 7.6366660000001 0.99406853652548 0.67299380031453 0.574392
221 2553.233078 569.089943 144874 11.3666660000004 7.2366659999999 1.00170620899828 0.63774313986585 0.579496
222 2564.613076 576.823275 146130 11.3799979999999 7.73333200000002 1.00288111351099 0.68151265117185 0.58452
223 2576.013075 584.229941 147400 11.3999989999998 7.40666600000009 1.00464373466007 0.65272467055655 0.5896
224 2587.329741 592.11994 148699 11.3166660000002 7.88999899999999 0.99729987644218 0.69531918922312 0.594796
225 2598.59974 599.713273 149981 11.2699990000001 7.59333299999992 0.99318727001428 0.66917500814146 0.599924
226 2609.903072 607.623272 151280 11.303332 7.90999900000008 0.99612479567611 0.69708172224556 0.60512
227 2621.329737 615.396605 152576 11.426665 7.77333299999998 1.00699371993889 0.68503780534336 0.610304
228 2632.72307 623.406604 153885 11.393333 8.00999899999999 1.00405628240371 0.70589438735771 0.61554
229 2644.106402 631.716603 155182 11.3833319999999 8.30999899999995 1.00317492776583 0.7323323826942 0.620728
230 2655.406401 639.506602 156518 11.2999990000003 7.78999900000008 0.99583106954795 0.68650652411096 0.626072
231 2666.683066 648.039935 157842 11.2766649999999 8.53333299999997 0.99377472227064 0.75201406019581 0.631368
232 2678.099732 656.046601 159144 11.4166660000001 8.006666 1.00611254155434 0.70560066122953 0.636576
233 2689.499731 664.8366 160493 11.3999989999998 8.78999899999997 1.00464373466007 0.77463317523259 0.641972
234 2700.913063 673.073266 161812 11.4133320000001 8.23666600000001 1.0058187272995 0.72586979098751 0.647248
235 2712.226395 681.269931 163160 11.3133320000002 8.19666500000005 0.99700606218734 0.72234463681599 0.65264
236 2723.516394 690.03993 164516 11.2899990000001 8.76999899999998 0.99494980303671 0.77287064221016 0.658064
237 2734.899726 698.30993 165848 11.3833319999999 8.26999999999998 1.00317492776583 0.72880740477599 0.663392
238 2746.339725 707.373262 167229 11.4399989999997 9.06333199999995 1.00816880070493 0.79872109716362 0.668916
239 2757.73639 715.899928 168566 11.3966650000002 8.52666600000009 1.00434992040527 0.75142651981279 0.674264
240 2769.079723 724.849927 169960 11.3433329999998 8.94999899999993 0.99964994984761 0.78873343941205 0.67984
241 2780.346388 733.693259 171289 11.2666650000001 8.84333200000003 0.99289345575944 0.77933323391687 0.685156
242 2791.67972 742.536592 172704 11.3333320000002 8.84333300000003 0.99876859520977 0.77933332204352 0.690816
243 2803.073053 751.976591 174068 11.393333 9.43999899999994 1.00405628240371 0.83191549846166 0.696272
244 2814.469718 760.86659 175455 11.3966649999998 8.88999899999999 1.00434992040523 0.78344584034476 0.70182
245 2825.816384 770.906589 176860 11.3466660000004 10.0399990000001 0.99994367597585 0.88479148913466 0.70744
246 2837.059716 780.076588 178250 11.243332 9.16999899999996 0.99083719660881 0.80812130265882 0.713
247 2848.376381 789.013254 179670 11.3166649999998 8.93666599999995 0.9972997883155 0.78755844677265 0.71868
248 2859.78638 798.27992 181048 11.409999 9.26666599999999 1.0055250011713 0.8166402416428 0.724192
249 2871.176379 807.506585 181839 11.389999 9.22666500000003 1.00376246814887 0.81311508747128 0.727356
250 2882.569711 816.736584 181933 11.3933320000001 9.22999900000002 1.00405619427707 0.81340890172612 0.727732
251 2893.84971 826.289917 182127 11.2799989999999 9.55333299999995 0.99406853652548 0.84190324433988 0.728508
252 2905.113042 835.433249 182316 11.263332 9.1433320000001 0.99259972963124 0.80577122925337 0.729264
253 2916.529708 844.869915 182439 11.4166660000001 9.43666599999995 1.00611254155434 0.83162177233347 0.729756
254 2927.96304 854.256581 182561 11.4333320000001 9.38666599999999 1.00758126032193 0.82721543977739 0.730244
255 2939.349706 863.349913 182647 11.3866659999999 9.09333200000003 1.00346874202067 0.80136489669728 0.730588
256 2950.666371 872.859912 182705 11.3166649999998 9.50999899999999 0.9972997883155 0.83808436404018 0.73082
257 2961.953037 882.106578 182739 11.2866660000004 9.246666 0.99465607690856 0.81487770862037 0.730956
258 2973.339702 891.233244 182767 11.386665 9.126666 1.00346865389403 0.80430251048577 0.731068
259 2984.729701 900.653243 182743 11.389999 9.41999899999996 1.00376246814887 0.83015296543923 0.730972
260 2996.103033 909.806575 182696 11.3733319999997 9.15333199999998 1.0022936612546 0.80665249576458 0.730784
261 3007.406365 919.253241 182653 11.303332 9.44666600000005 0.99612479567611 0.8325030388447 0.730612
262 3018.683031 928.786573 182548 11.2766660000002 9.53333199999997 0.99377481039732 0.8401406231908 0.730192
263 3030.036363 937.843239 182430 11.3533320000001 9.05666600000006 1.00053112823221 0.79813364490726 0.72972
264 3041.426362 947.213238 182313 11.389999 9.36999900000001 1.00376246814887 0.82574663288315 0.729252
265 3052.843028 956.389904 182130 11.4166659999996 9.17666599999995 1.0061125415543 0.80870884304185 0.72852
266 3064.173026 965.46657 181937 11.3299980000002 9.07666600000005 0.99847478095494 0.79989617792969 0.727748
267 3075.446359 974.813235 181741 11.2733330000001 9.34666499999992 0.99348108426912 0.82369028560587 0.726964
268 3086.756357 983.863234 181496 11.3099980000002 9.04999900000007 0.9967122479325 0.79754610452423 0.725984
269 3098.153023 992.973234 181249 11.3966659999996 9.11000000000001 1.00435000853187 0.80283379171818 0.724996
270 3109.559689 1002.173233 180973 11.4066660000003 9.19999899999993 1.00523127504314 0.81076510219247 0.723892
271 3120.956354 1011.093232 180680 11.3966649999998 8.91999899999996 1.00434992040523 0.78608963987841 0.72272
272 3132.219686 1020.566564 180359 11.263332 9.47333200000003 0.99259972963124 0.83485302412351 0.721436
273 3143.479685 1029.576563 180037 11.2599989999999 9.00999900000011 0.99230600350305 0.79402103847937 0.720148
274 3154.879684 1039.473229 179689 11.3999990000002 9.89666599999987 1.00464373466011 0.87216003184942 0.718756
275 3166.303016 1048.569895 179318 11.4233319999998 9.09666600000014 1.0066999938107 0.80165871095213 0.717272
276 3177.709682 1057.42656 178951 11.4066660000003 8.85666500000002 1.00523127504314 0.78050822655627 0.715804
277 3188.996347 1066.429893 178543 11.2866649999996 9.00333299999988 0.99465598878183 0.79343358622297 0.714172
278 3200.273013 1075.326559 178139 11.2766660000002 8.8966660000001 0.99377481039732 0.7840333807278 0.712556
279 3211.626345 1084.189891 177686 11.3533320000001 8.8633319999999 1.00053112823221 0.78109576693929 0.710744
280 3223.026344 1093.146557 177244 11.3999989999998 8.95666600000004 1.00464373466007 0.78932097979509 0.708976
281 3234.423009 1101.843223 176789 11.3966650000002 8.69666600000005 1.00434992040527 0.76640805050347 0.707156
282 3245.713008 1110.749888 176315 11.2899990000001 8.90666499999998 0.99494980303671 0.78491455911235 0.70526
283 3256.979674 1119.529888 175895 11.266666 8.77999999999997 0.99289354388608 0.77375199684803 0.70358
284 3268.339673 1128.239887 175400 11.3599989999998 8.70999899999993 1.0011186686152 0.76758304314286 0.7016
285 3279.749672 1137.083219 174965 11.409999 8.84333200000015 1.0055250011713 0.77933323391688 0.69986
286 3291.15967 1145.659885 174494 11.4099980000001 8.57666599999993 1.00552491304466 0.75583285236886 0.697976
287 3302.499669 1154.449884 174037 11.3399989999998 8.78999900000008 0.99935613559277 0.7746331752326 0.696148
288 3313.773001 1163.073217 173560 11.2733320000002 8.623333 0.99348099614248 0.75994545879676 0.69424
289 3325.113 1171.693216 173110 11.3399989999998 8.61999899999978 0.99935613559277 0.7596516445419 0.69244
290 3336.516333 1180.379881 172640 11.4033330000002 8.68666500000018 1.00493754891494 0.76552669586561 0.69056
291 3347.926331 1188.843214 172155 11.4099980000001 8.46333299999992 1.00552491304466 0.74584519461729 0.68862
292 3359.319664 1197.516546 171699 11.393333 8.67333200000007 1.00405628240371 0.76435170322619 0.686796
293 3370.586329 1205.946546 171218 11.2666650000001 8.42999999999984 0.99289345575944 0.74290766895544 0.684872
294 3381.859661 1214.503211 170755 11.2733319999998 8.55666500000007 0.99348099614244 0.75407023121979 0.68302
295 3393.286327 1222.996544 170274 11.4266659999998 8.49333300000012 1.00699380806553 0.74848899415095 0.681096
296 3404.702992 1231.419876 169808 11.4166650000002 8.42333199999985 1.0061124534277 0.74232004044576 0.679232
297 3416.092991 1239.976542 169325 11.389999 8.55666600000018 1.00376246814887 0.75407031934645 0.6773
298 3427.40299 1248.229875 168847 11.3099990000001 8.25333299999988 0.99671233605914 0.72733859788174 0.675388
299 3438.682989 1256.643207 168382 11.2799989999999 8.41333200000008 0.99406853652548 0.74143877393457 0.673528
300 3450.066321 1264.84654 167884 11.3833319999999 8.20333299999993 1.00317492776583 0.72293226532566 0.671536
301 3461.479653 1273.129872 167404 11.4133320000001 8.28333199999997 1.0058187272995 0.72998230928875 0.669616
302 3472.866319 1281.379871 166928 11.3866660000003 8.24999900000012 1.00346874202071 0.72704478362692 0.667712
303 3484.209651 1289.549871 166436 11.3433319999999 8.16999999999985 0.99964986172097 0.71999473966382 0.665744
304 3495.47965 1297.843203 165965 11.2699990000001 8.29333199999996 0.99318727001428 0.73086357579996 0.66386
305 3506.846315 1305.863202 165483 11.3666649999996 8.0199990000001 1.00170612087156 0.70677565386894 0.661932
306 3518.252981 1314.126535 164984 11.4066660000003 8.2633330000001 1.00523127504314 0.72821986439297 0.659936
307 3529.64298 1322.136534 164498 11.389999 8.00999899999988 1.00376246814887 0.7058943873577 0.657992
308 3540.969645 1330.279866 164019 11.326665 8.1433320000001 0.99818105482674 0.71764457813173 0.656076
309 3552.246311 1338.303199 163530 11.2766659999998 8.02333299999987 0.99377481039728 0.70706946812376 0.65412
310 3563.58631 1346.369865 163027 11.3399990000003 8.06666599999994 0.99935613559281 0.71088826029682 0.652108
311 3575.016309 1354.423197 162542 11.429999 8.05333200000018 1.00728753419373 0.70971317953079 0.650168
312 3586.426308 1362.349863 162052 11.409999 7.92666599999984 1.0055250011713 0.69855052913978 0.648208
313 3597.762973 1370.433196 161533 11.3366649999998 8.08333300000004 0.99906232133793 0.71235706719107 0.646132
314 3609.029639 1378.256528 161069 11.266666 7.82333199999994 0.99289354388608 0.68944404977279 0.644276
315 3620.306304 1386.293194 160547 11.2766650000003 8.0366660000002 0.99377472227068 0.70824446076319 0.642188
316 3631.72297 1394.083193 160064 11.4166659999996 7.78999899999985 1.0061125415543 0.68650652411094 0.640256
317 3643.116302 1402.059859 159547 11.3933320000001 7.97666600000002 1.00405619427707 0.70295686169588 0.638188
318 3654.509634 1409.829859 159052 11.3933320000001 7.76999999999998 1.00405619427707 0.68474407921517 0.636208
319 3665.7863 1417.693191 158538 11.2766660000002 7.86333200000013 0.99377481039732 0.69296911581767 0.634152
320 3677.066298 1425.459857 158047 11.279998 7.76666599999999 0.99406844839884 0.68445026496033 0.632188
321 3688.472964 1433.239856 157536 11.4066659999999 7.77999899999986 1.0052312750431 0.68562525759972 0.630144
322 3699.886296 1440.993189 157027 11.4133320000001 7.75333300000011 1.0058187272995 0.68327527232094 0.628108
323 3711.272962 1448.686521 156537 11.3866659999999 7.69333200000005 1.00346874202067 0.67798758512698 0.626148
324 3722.586294 1456.433187 156018 11.3133320000002 7.746666 0.99700606218734 0.6826877319379 0.624072
325 3733.856293 1464.029853 155513 11.2699989999996 7.59666599999991 0.99318727001424 0.66946873426965 0.622052
326 3745.216292 1471.766519 154991 11.3599990000002 7.73666600000001 1.00111866861524 0.68180646542668 0.619964
327 3756.616291 1479.303185 154488 11.3999989999998 7.53666599999997 1.00464373466007 0.66418113520235 0.617952
328 3768.032956 1487.009851 153979 11.4166650000002 7.70666600000004 1.0061124534277 0.67916266589304 0.615916
329 3779.339622 1494.46985 153446 11.306666 7.45999899999993 0.99641860993095 0.6574247292408 0.613784
330 3790.626287 1502.126516 152963 11.2866650000001 7.65666600000009 0.99465598878187 0.67475633333696 0.611852
331 3801.959619 1509.526515 152400 11.3333320000002 7.39999899999998 0.99876859520977 0.65213713017351 0.6096
332 3813.369618 1517.156514 151909 11.409999 7.629999 1.0055250011713 0.67240625993149 0.607636
333 3824.766284 1524.50318 151356 11.3966659999996 7.34666599999991 1.00435000853187 0.64743707148923 0.605424
334 3836.096283 1532.079846 150852 11.329999 7.57666600000016 0.99847486908158 0.66770620124723 0.603408
335 3847.369615 1539.406512 150308 11.2733320000002 7.32666599999993 0.99348099614248 0.6456745384668 0.601232
336 3858.712947 1546.876511 149788 11.3433319999999 7.46999899999992 0.99964986172097 0.65830599575202 0.599152
337 3870.126279 1554.143177 149255 11.4133320000001 7.26666599999999 1.0058187272995 0.64038693939951 0.59702
338 3881.539611 1561.569843 148724 11.4133320000001 7.42666600000007 1.0058187272995 0.65448720357898 0.594896
339 3892.902944 1568.789843 148194 11.3633329999998 7.22000000000003 1.00141248287004 0.63627442109827 0.592776
340 3904.149609 1576.159842 147649 11.2466650000001 7.36999900000001 0.99113092273701 0.64949333063986 0.590596
341 3915.439608 1583.336508 147126 11.2899990000001 7.17666600000007 0.99494980303671 0.63245554079857 0.588504
342 3926.836273 1590.65984 146579 11.3966649999998 7.32333199999994 1.00434992040523 0.64538072421196 0.586316
343 3938.239606 1597.78984 146053 11.4033330000002 7.12999999999988 1.00493754891494 0.62834302249731 0.584212
344 3949.622938 1605.053172 145508 11.3833319999999 7.26333199999999 1.00317492776583 0.64009312514467 0.582032
345 3960.929603 1612.133172 144963 11.3066650000001 7.08000000000015 0.99641852180431 0.62393668994125 0.579852
346 3972.199602 1619.356504 144433 11.2699990000001 7.22333200000003 0.99318727001428 0.63656805909981 0.577732
347 3983.572934 1626.369837 143874 11.3733319999997 7.01333299999988 1.0022936612546 0.6180615504909 0.575496
348 3994.9896 1633.539836 143324 11.4166660000001 7.16999899999996 1.00611254155434 0.63186800041553 0.573296
349 4006.366266 1640.486502 142791 11.3766660000001 6.94666600000005 1.00258747550948 0.61218641104059 0.571164
350 4017.666264 1647.636501 142222 11.299998 7.14999899999998 0.99583098142127 0.6301054673931 0.568888
351 4028.929597 1654.519834 141680 11.2633329999999 6.88333299999999 0.99259981775789 0.6066050858451 0.56672
352 4040.292929 1661.623167 141134 11.3633320000004 7.10333300000002 1.00141239474344 0.62599294909186 0.564536
353 4051.689594 1668.449833 140580 11.3966649999998 6.82666599999993 1.00434992040523 0.60161121290598 0.56232
354 4063.08626 1675.469832 140003 11.3966660000001 7.0199990000001 1.00435000853191 0.6186490027473 0.560012
355 4074.399592 1682.259831 139471 11.3133320000002 6.78999900000008 0.99700606218734 0.59837987298932 0.557884
356 4085.666258 1689.239831 138886 11.266666 6.98000000000002 0.99289354388608 0.61512402482907 0.555544
357 4096.982923 1695.97983 138339 11.3166649999994 6.7399989999999 0.99729978831546 0.59397354043322 0.553356
358 4108.406255 1702.849829 137768 11.4233320000003 6.86999900000001 1.00669999381074 0.60543000507904 0.551072
359 4119.832921 1709.593162 137194 11.4266660000003 6.74333299999989 1.00699380806557 0.59426735468806 0.548776
360 4131.179586 1716.359828 136646 11.346665 6.76666600000021 0.99994358784917 0.59632361383871 0.546584
361 4142.426252 1723.069827 136083 11.246666 6.70999899999993 0.99113101086365 0.59132974089957 0.544332
362 4153.739584 1729.746493 135503 11.3133319999997 6.67666600000007 0.9970060621873 0.58839221523775 0.542012
363 4165.169583 1736.426493 134956 11.429999 6.67999999999984 1.00728753419373 0.58868602949257 0.539824
364 4176.612915 1742.993159 134358 11.4433319999998 6.56666600000017 1.00846252683313 0.57869828361437 0.537432
365 4187.926247 1749.679825 133797 11.3133320000006 6.68666599999983 0.99700606218738 0.58927348174894 0.535188
366 4199.12958 1756.156491 133225 11.2033329999995 6.47666600000002 0.98731221869055 0.57076688501341 0.5329
367 4210.372912 1762.833157 132641 11.243332 6.67666600000007 0.99083719660881 0.58839221523775 0.530564
368 4221.729577 1769.246489 132083 11.3566650000002 6.41333200000008 1.0008248543604 0.56518547169128 0.528332
369 4233.066243 1775.853155 131474 11.3366660000002 6.6066659999999 0.99906240946461 0.58222334965922 0.525896
370 4244.419575 1782.249821 130922 11.3533319999997 6.3966660000001 1.00053112823217 0.56371675292369 0.523688
371 4255.652907 1788.716487 130308 11.2333319999998 6.4666659999998 0.98995593009758 0.56988561850218 0.521232
372 4266.852906 1795.123153 129740 11.1999990000004 6.40666600000009 0.98701840443579 0.5645980194349 0.51896
373 4278.186238 1801.469819 129139 11.3333320000002 6.34666599999991 0.99876859520977 0.55931042036759 0.516556
374 4289.526237 1807.876485 128573 11.3399989999998 6.40666600000009 0.99935613559277 0.5645980194349 0.514292
375 4300.852903 1814.109818 127984 11.3266659999999 6.2333329999999 0.99818114295338 0.54932276261602 0.511936
376 4312.102902 1820.516484 127382 11.2499989999997 6.40666600000009 0.99142473699181 0.5645980194349 0.509528
377 4323.319567 1826.69315 126809 11.2166649999999 6.17666600000007 0.98848712320335 0.54432888967692 0.507236
378 4334.626233 1833.016483 126180 11.3066660000004 6.32333300000005 0.99641860993099 0.55725416121698 0.50472
379 4345.966232 1839.189816 125613 11.3399989999998 6.17333299999996 0.99935613559277 0.54403516354873 0.502452
380 4357.332897 1845.359815 125010 11.3666650000005 6.16999899999996 1.00170612087164 0.54374134929389 0.50004
381 4368.576229 1851.556481 124400 11.243332 6.19666600000005 0.99083719660881 0.54609142269936 0.4976
382 4379.776228 1857.593147 123815 11.1999989999995 6.03666599999997 0.98701840443571 0.53199115851989 0.49526
383 4391.042894 1863.793146 123197 11.2666660000004 6.19999899999993 0.99289354388612 0.54638514882753 0.492788
384 4402.396226 1869.756479 122609 11.3533319999997 5.96333299999992 1.00053112823217 0.52552856681318 0.490436
385 4413.752891 1875.853145 121987 11.3566650000002 6.09666600000014 1.0008248543604 0.5372787575872 0.487948
386 4425.03289 1881.846478 121391 11.2799990000003 5.99333299999989 0.99406853652552 0.52817236634682 0.485564
387 4436.236223 1887.779811 120760 11.2033329999995 5.93333300000018 0.98731221869055 0.52288476727955 0.48304
388 4447.516221 1893.793143 120158 11.279998 6.01333199999999 0.99406844839884 0.52993481124262 0.480632
389 4458.882887 1899.613143 119537 11.3666659999999 5.81999999999994 1.00170620899824 0.51289710952796 0.478148
390 4470.226219 1905.616476 118915 11.3433320000004 6.00333299999988 0.99964986172101 0.52905363285804 0.47566
391 4481.556218 1911.409808 118311 11.3299989999996 5.79333200000019 0.99847486908154 0.51054694799587 0.473244
392 4492.742884 1917.213141 117652 11.1866660000005 5.80333299999984 0.9858434117964 0.51142830263371 0.470608
393 4503.962882 1923.066474 117050 11.2199979999996 5.85333300000002 0.9887808493315 0.51583463518981 0.4682
394 4515.319548 1928.72314 116415 11.3566660000006 5.65666600000009 1.00082494248708 0.49850303109367 0.46566
395 4526.66288 1934.576473 115796 11.3433319999995 5.85333300000002 0.99964986172093 0.51583463518981 0.463184
396 4537.982879 1940.223139 115164 11.3199990000003 5.64666599999987 0.99759360257038 0.49762176458244 0.460656
397 4549.202878 1945.859805 114541 11.2199989999999 5.6366660000001 0.98878093745818 0.49674049807124 0.458164
398 4560.42621 1951.549804 113891 11.2233319999996 5.68999899999994 0.98907466358634 0.5014405567555 0.455564
399 4571.802876 1957.073137 113263 11.3766660000001 5.52333300000009 1.00258747550948 0.48675284031967 0.453052
400 4583.172875 1962.739803 112606 11.3699990000005 5.66666599999985 1.00199993512648 0.49938429760487 0.450424
401 4594.512873 1968.253136 111977 11.3399979999995 5.5133330000001 0.99935604746609 0.48587157380845 0.447908
402 4605.736206 1973.703135 111326 11.2233329999999 5.44999899999993 0.98907475171302 0.4802901604863 0.445304
403 4616.956204 1979.283135 110693 11.2199980000005 5.57999999999993 0.98878084933158 0.49174671325877 0.442772
404 4628.29287 1984.673134 110038 11.3366660000002 5.38999899999999 0.99906240946461 0.47500256141901 0.440152
405 4639.646202 1990.113134 109371 11.3533319999997 5.44000000000005 1.00053112823217 0.47940898210175 0.437484
406 4650.996201 1995.536467 108727 11.349999 5.42333299999996 1.00023740210401 0.47794017520749 0.434908
407 4662.2462 2000.786466 108073 11.2499989999997 5.24999900000012 0.99142473699181 0.46266483026199 0.432292
408 4673.469532 2006.223132 107429 11.2233320000005 5.43666600000006 0.98907466358642 0.47911516784691 0.429716
409 4684.799531 2011.483132 106745 11.3299989999996 5.25999999999999 0.99847486908154 0.46354618489985 0.42698
410 4696.156197 2016.679798 106112 11.3566660000006 5.19666599999982 1.00082494248708 0.45796477157769 0.424448
411 4707.492862 2022.006464 105423 11.3366649999998 5.32666600000016 0.99906232133793 0.46942123622354 0.421692
412 4718.759528 2027.136463 104770 11.2666659999995 5.129999 0.99289354388604 0.45208963212738 0.41908
413 4729.96286 2032.276463 104104 11.203332 5.13999999999987 0.98731213056395 0.45297098676524 0.416416
414 4741.242859 2037.469796 103419 11.2799990000003 5.19333300000017 0.99406853652552 0.45767104544953 0.413676
415 4752.606191 2042.493129 102773 11.3633319999999 5.02333299999987 1.0014123947434 0.44268951475883 0.411092
416 4763.942856 2047.586461 102076 11.3366649999998 5.09333200000015 0.99906232133793 0.44885829221072 0.408304
417 4775.216189 2052.653128 101409 11.2733330000001 5.06666699999982 0.99348108426912 0.44650839505853 0.405636
418 4786.416188 2057.56646 100721 11.1999990000004 4.91333200000008 0.98701840443579 0.43299549500882 0.402884
419 4797.672853 2062.593127 100035 11.2566649999999 5.02666700000009 0.99201218924821 0.44298332901369 0.40014
420 4809.052852 2067.539793 99350 11.3799989999998 4.94666599999982 1.00288120163763 0.43593310879728 0.3974
421 4820.402851 2072.343126 98669 11.349999 4.80333300000029 1.00023740210401 0.4233016515121 0.394676
422 4831.71285 2077.289792 97997 11.3099990000001 4.94666599999982 0.99671233605914 0.43593310879728 0.391988
423 4842.902849 2082.133125 97270 11.1899990000002 4.8433329999998 0.98613713792456 0.42682671755693 0.38908
424 4854.166181 2086.829791 96602 11.2633319999995 4.69666600000028 0.9925997296312 0.41390144601691 0.386408
425 4865.549513 2091.686457 95899 11.3833320000003 4.85666599999968 1.00317492776587 0.42800171019632 0.383596
426 4876.912845 2096.413123 95214 11.3633319999999 4.72666600000002 1.0014123947434 0.41654524555054 0.380856
427 4888.249511 2101.019789 94501 11.3366660000002 4.60666600000013 0.99906240946461 0.40597004741595 0.378004
428 4899.43951 2105.749789 93795 11.1899990000002 4.73000000000002 0.98613713792456 0.41683905980538 0.37518
429 4910.659508 2110.416455 93105 11.2199979999996 4.66666600000008 0.9887808493315 0.41125764648324 0.37242
430 4922.046174 2114.906455 92368 11.3866660000003 4.48999999999978 1.00346874202071 0.39568866353616 0.369472
431 4933.392839 2119.486454 91695 11.346665 4.57999900000004 0.99994358784917 0.40361997401048 0.36678
432 4944.732838 2124.036454 90953 11.3399989999998 4.55000000000018 0.99935613559277 0.4009762626035 0.363812
433 4955.952837 2128.429787 90261 11.2199989999999 4.39333299999998 0.98878093745818 0.3871697245522 0.361044
434 4967.192836 2132.869786 89521 11.2399990000004 4.43999900000017 0.99054347048066 0.39128224285346 0.358084
435 4978.559502 2137.329786 88835 11.3666659999999 4.45999999999958 1.00170620899824 0.39304486400249 0.35534
436 4989.906167 2141.633119 88094 11.346665 4.30333300000029 0.99994358784917 0.37923832595128 0.352376
437 5001.246166 2145.913118 87370 11.3399989999998 4.27999899999986 0.99935613559277 0.37718197867397 0.34948
438 5012.486165 2150.319784 86664 11.2399990000004 4.40666599999986 0.99054347048066 0.3883447171916 0.346656
439 5023.729497 2154.529784 85915 11.243332 4.21000000000004 0.99083719660881 0.37101320122212 0.34366
440 5035.079496 2158.66645 85200 11.349999 4.13666600000033 1.00023740210401 0.36455052138879 0.3408
441 5046.449495 2162.94645 84468 11.3699989999996 4.27999999999975 1.0019999351264 0.37718206680061 0.337872
442 5057.79616 2167.126449 83740 11.346665 4.17999899999995 0.99994358784917 0.36836931356182 0.33496
443 5069.052826 2171.186449 83001 11.2566660000002 4.05999999999995 0.99201227737489 0.35779420355387 0.332004
444 5080.292825 2175.263115 82266 11.2399990000004 4.07666600000039 0.99054347048066 0.3592629223215 0.329064
445 5091.586157 2179.399782 81511 11.2933319999993 4.13666699999976 0.99524352916483 0.3645506095154 0.326044
446 5102.946156 2183.366448 80781 11.3599990000002 3.96666600000026 1.00111866861524 0.34956899069811 0.323124
447 5114.302821 2187.253114 80017 11.3566650000002 3.88666599999988 1.0008248543604 0.34251885860834 0.320068
448 5125.53282 2191.283114 79277 11.2299990000001 4.02999999999975 0.98966220396942 0.3551504040202 0.317108
449 5136.736152 2195.223113 78518 11.203332 3.93999900000017 0.98731213056395 0.34721891729264 0.314072
450 5148.006151 2199.033113 77783 11.2699989999992 3.80999999999995 0.9931872700142 0.33576254077346 0.311132
451 5159.352817 2202.819779 77020 11.3466660000004 3.78666599999997 0.99994367597585 0.33370619349619 0.30808
452 5170.709482 2206.709779 76264 11.3566650000002 3.88999999999987 1.0008248543604 0.34281267286318 0.305056
453 5181.986148 2210.446445 75521 11.2766659999998 3.73666600000024 0.99377481039728 0.32929986094013 0.302084
454 5193.182814 2214.103111 74724 11.1966659999998 3.65666599999986 0.98672467830755 0.32224972885036 0.298896
455 5204.459479 2217.783111 73973 11.2766650000003 3.68000000000029 0.99377472227068 0.32430607612767 0.295892
456 5215.816145 2221.536444 73209 11.3566659999997 3.75333299999966 1.000824942487 0.33076866783432 0.292836
457 5227.169477 2225.106444 72441 11.3533320000006 3.57000000000016 1.00053112823225 0.31461214450428 0.289764
458 5238.479476 2228.606443 71669 11.3099990000001 3.49999900000012 0.99671233605914 0.30844319079911 0.286676
459 5249.669475 2232.139776 70879 11.1899989999993 3.53333299999986 0.98613713792448 0.31138080458758 0.283516
460 5260.919473 2235.733109 70117 11.2499980000002 3.5933329999998 0.99142464886521 0.31666840365487 0.280468
461 5272.269472 2239.156442 69336 11.349999 3.42333300000018 1.00023740210401 0.30168687296423 0.277344
462 5283.652804 2242.519775 68514 11.3833320000003 3.36333300000024 1.00317492776587 0.29639927389693 0.274056
463 5294.952803 2245.879775 67732 11.2999989999998 3.35999999999967 0.99583106954791 0.29610554776869 0.270928
464 5306.146136 2249.303108 66957 11.1933330000002 3.42333300000018 0.9864309521794 0.30168687296423 0.267828
465 5317.376134 2252.603108 66217 11.2299979999998 3.29999999999973 0.98966211584274 0.2908179487014 0.264868
466 5328.746133 2255.819774 65441 11.3699989999996 3.21666600000026 1.0019999351264 0.28347400235688 0.261764
467 5340.126132 2258.97644 64695 11.3799990000007 3.15666599999986 1.00288120163771 0.27818640328954 0.25878
468 5351.459464 2262.243107 63944 11.3333319999992 3.26666699999987 0.99876859520969 0.28788042303958 0.255776
469 5362.702797 2265.449773 63214 11.2433330000003 3.20666600000004 0.99083728473549 0.28259273584564 0.252856
470 5373.959462 2268.519773 62507 11.2566649999999 3.07000000000016 0.99201218924821 0.27054881894346 0.250028
471 5385.312794 2271.533106 61830 11.3533320000006 3.01333299999988 1.00053112823225 0.26555494600433 0.24732
472 5396.66946 2274.583105 61172 11.3566659999997 3.0499990000003 1.000824942487 0.26878619779439 0.244688
473 5408.002792 2277.669772 60498 11.3333320000002 3.08666700000003 0.99876859520977 0.27201762583769 0.241992
474 5419.222791 2280.649771 59892 11.2199989999999 2.97999899999968 0.98878093745818 0.26261733221582 0.239568
475 5430.436123 2283.549771 59250 11.2133320000003 2.90000000000009 0.98819339707519 0.25556728825277 0.237
476 5441.799455 2286.393104 58639 11.3633319999999 2.84333300000026 1.0014123947434 0.25057341531368 0.234556
477 5453.162788 2289.309771 58035 11.3633329999993 2.91666699999996 1.00141248287 0.25703609514701 0.23214
478 5464.51612 2292.243104 57432 11.3533320000006 2.93333299999995 1.00053112823225 0.2585048139146 0.229728
479 5475.769452 2295.053103 56836 11.2533319999993 2.80999900000006 0.99171846311997 0.24763580152517 0.227344
480 5486.986117 2297.806436 56255 11.2166650000008 2.75333299999966 0.98848712320343 0.24264201671268 0.22502
481 5498.306116 2300.499769 55682 11.3199989999994 2.69333300000017 0.9975936025703 0.23735441764542 0.222728
482 5509.666115 2303.259769 55113 11.3599990000002 2.75999999999976 1.00111866861524 0.24322955709572 0.220452
483 5520.989447 2306.036436 54534 11.3233319999999 2.77666700000009 0.99788732869854 0.24469836398999 0.218136
484 5532.239446 2308.726435 53993 11.2499989999997 2.68999900000017 0.99142473699181 0.23706060339059 0.215972
485 5543.449445 2311.336435 53432 11.2099990000006 2.61000000000013 0.98789967094703 0.2300105594275 0.213728
486 5554.752777 2313.899768 52878 11.3033319999995 2.56333300000006 0.99612479567607 0.2258979529996 0.211512
487 5566.109443 2316.473101 52345 11.3566660000006 2.57333299999982 1.00082494248708 0.2267792195108 0.20938
488 5577.439442 2319.106434 51811 11.3299989999996 2.63333299999977 0.99847486908154 0.23206681857809 0.207244
489 5588.679441 2321.709767 51288 11.2399990000004 2.60333300000002 0.99054347048066 0.22942301904446 0.205152
490 5599.86944 2324.1931 50755 11.1899990000002 2.48333300000013 0.98613713792456 0.21884782090988 0.20302
491 5611.162772 2326.6431 50245 11.2933319999993 2.44999999999982 0.99524352916483 0.21591029524801 0.20098
492 5622.522771 2329.046433 49727 11.3599990000002 2.4033330000002 1.00111866861524 0.21179768882015 0.198908
493 5633.852769 2331.519766 49227 11.3299980000002 2.47333299999991 0.99847478095494 0.21796655439864 0.196908
494 5645.082768 2333.999766 48741 11.2299990000001 2.48000000000002 0.98966220396942 0.21855409478168 0.194964
495 5656.276101 2336.419766 48232 11.1933330000002 2.42000000000007 0.9864309521794 0.21326649571438 0.192928
496 5667.572766 2338.753099 47742 11.2966649999998 2.33333300000004 0.99553725529307 0.20562882324162 0.190968
497 5678.919432 2341.049765 47247 11.3466659999995 2.29666600000019 0.99994367597577 0.20239748332496 0.188988
498 5690.246097 2343.303099 46772 11.3266650000005 2.253334 0.99818105482678 0.19857877927854 0.187088
499 5701.489429 2345.626432 46276 11.243332 2.32333299999982 0.99083719660881 0.20474755673039 0.185104
500 5712.679428 2347.959765 45805 11.1899990000002 2.33333300000004 0.98613713792456 0.20562882324162 0.18322
501 5723.94276 2350.246431 45332 11.2633319999995 2.28666599999997 0.9925997296312 0.20151621681372 0.181328
502 5735.269426 2352.439764 44842 11.3266659999999 2.19333300000017 0.99818114295338 0.1932910920846 0.179368
503 5746.632758 2354.599764 44382 11.3633319999999 2.15999999999985 1.0014123947434 0.19035356642274 0.177528
504 5757.94609 2356.72643 43899 11.3133320000006 2.12666600000011 0.99700606218738 0.18741595263427 0.175596
505 5769.142756 2358.869764 43439 11.1966659999998 2.14333399999987 0.98672467830755 0.18888484765515 0.173756
506 5780.382755 2361.05643 42977 11.2399989999994 2.18666600000006 0.99054347048058 0.19270355170157 0.171908
507 5791.716087 2363.233097 42522 11.3333320000002 2.17666699999972 0.99876859520977 0.19182237331697 0.170088
508 5803.062753 2365.303096 42067 11.3466660000004 2.06999900000028 0.99994367597585 0.18242207969518 0.168268
509 5814.356085 2367.336429 41609 11.2933320000002 2.03333299999986 0.99524352916491 0.17919082790511 0.166436
510 5825.536084 2369.336429 41162 11.179999 2 0.98525587141332 0.17625330224329 0.164648
511 5836.772749 2371.296429 40704 11.2366649999994 1.96000000000004 0.99024965622574 0.17272823619842 0.162816
512 5848.126081 2373.299762 40258 11.3533320000006 2.00333300000011 1.00053112823225 0.17654702837149 0.161032
513 5859.449414 2375.323095 39820 11.3233329999994 2.02333300000009 0.99788741682514 0.17830956139392 0.15928
514 5870.779412 2377.343095 39384 11.3299980000002 2.01999999999998 0.99847478095494 0.17801583526572 0.157536
515 5881.956078 2379.263095 38938 11.1766660000003 1.91999999999962 0.98496214528516 0.16920317015352 0.155752
516 5893.182744 2381.143095 38513 11.2266659999996 1.88000000000011 0.98936847784118 0.1656781041087 0.154052
517 5904.536076 2382.996428 38074 11.3533320000006 1.85333300000002 1.00053112823225 0.16332803070323 0.152296
518 5915.902741 2384.813094 37644 11.3666649999996 1.81666600000017 1.00170612087156 0.16009669078657 0.150576
519 5927.236073 2386.629761 37218 11.3333320000002 1.81666700000005 0.99876859520977 0.16009677891321 0.148872
520 5938.456072 2388.503094 36805 11.2199989999999 1.873333 0.98878093745818 0.16509056372566 0.14722
521 5949.672738 2390.356427 36376 11.2166660000003 1.85333300000002 0.98848721133003 0.16332803070323 0.145504
522 5961.019403 2392.183094 35950 11.346665 1.82666699999982 0.99994358784917 0.1609780454244 0.1438
523 5972.369402 2393.916427 35536 11.349999 1.73333300000013 1.00023740210401 0.15275283256864 0.142144
524 5983.689401 2395.62976 35121 11.3199989999994 1.71333299999969 0.9975936025703 0.15099029954617 0.140484
525 5994.8994 2397.316426 34708 11.2099990000006 1.68666600000006 0.98789967094703 0.14864022614074 0.138832
526 6006.122732 2398.973093 34288 11.2233319999996 1.6566670000002 0.98907466358634 0.14599651473376 0.137152
527 6017.519398 2400.626426 33888 11.3966660000006 1.65333299999975 1.00435000853195 0.14570270047888 0.135552
528 6028.876063 2402.323093 33467 11.3566649999993 1.69666700000016 1.00082485436032 0.14952158077862 0.133868
529 6040.216062 2404.009759 33073 11.3399990000007 1.68666600000006 0.99935613559285 0.14864022614074 0.132292
530 6051.459394 2405.689759 32669 11.243332 1.67999999999984 0.99083719660881 0.14805277388435 0.130676
531 6062.669393 2407.276425 32261 11.2099989999997 1.58666600000015 0.98789967094695 0.13982756102859 0.129044
532 6074.022725 2408.839759 31872 11.3533319999997 1.56333399999994 1.00053112823217 0.1377713900046 0.127488
533 6085.366058 2410.369758 31475 11.3433329999998 1.52999899999986 0.99964994984761 0.13483368808945 0.1259
534 6096.702723 2411.879758 31063 11.3366650000007 1.51000000000022 0.99906232133801 0.1330712431937 0.124252
535 6107.902722 2413.363091 30695 11.1999989999995 1.48333300000013 0.98701840443571 0.13072116978823 0.12278
536 6119.116054 2414.853091 30296 11.2133320000003 1.48999999999978 0.98819339707519 0.13130871017123 0.121184
537 6130.44272 2416.376425 29899 11.3266659999999 1.52333399999998 0.99818114295338 0.13424632395974 0.119596
538 6141.786052 2417.889758 29533 11.3433320000004 1.51333299999988 0.99964986172101 0.13336496932186 0.118132
539 6153.102718 2419.383091 29136 11.3166659999997 1.49333300000035 0.99729987644214 0.13160243629947 0.116544
540 6164.34605 2420.816424 28766 11.243332 1.43333299999995 0.99083719660881 0.12631483723213 0.115064
541 6175.562715 2422.209757 28382 11.2166649999999 1.39333299999998 0.98848712320335 0.12278977118727 0.113528
542 6186.879381 2423.579757 27998 11.3166659999997 1.36999999999989 0.99729987644214 0.12073351203664 0.111992
543 6198.236046 2424.926424 27626 11.3566650000002 1.34666700000025 1.0008248543604 0.11867725288605 0.110504
544 6209.596045 2426.249757 27255 11.3599990000002 1.32333299999982 1.00111866861524 0.11662090560874 0.10902
545 6220.846044 2427.549757 26869 11.2499989999997 1.30000000000018 0.99142473699181 0.11456464645815 0.107476
546 6232.05271 2428.856423 26508 11.206666 1.30666599999995 0.98760594481879 0.11515209871451 0.106032
547 6243.359375 2430.189756 26132 11.3066650000001 1.33333300000004 0.99641852180431 0.11750217211998 0.104528
548 6254.716041 2431.506423 25765 11.3566659999997 1.3166669999996 1.000824942487 0.11603345335235 0.10306
549 6266.03604 2432.809756 25400 11.3199990000003 1.30333300000029 0.99759360257038 0.11485837258635 0.1016
550 6277.292705 2434.106423 25031 11.2566649999999 1.29666700000007 0.99201218924821 0.11427092032995 0.100124
551 6288.506037 2435.319756 24674 11.2133320000003 1.21333299999969 0.98819339707519 0.10692697398535 0.098696
552 6299.806036 2436.516423 24318 11.2999989999998 1.19666700000016 0.99583106954791 0.1054582552178 0.097272
553 6311.139368 2437.689756 23954 11.3333320000002 1.17333300000018 0.99876859520977 0.10340190794053 0.095816
554 6322.476034 2438.843089 23595 11.3366660000002 1.15333299999975 0.99906240946461 0.10163937491806 0.09438
555 6333.749366 2439.976422 23242 11.2733319999998 1.13333300000022 0.99348099614244 0.09987684189567 0.092968
556 6344.952698 2441.089755 22888 11.203332 1.11333299999978 0.98731213056395 0.09811430887319 0.091552
557 6356.249364 2442.186422 22537 11.2966660000002 1.09666700000025 0.99553734341975 0.09664559010564 0.090148
558 6367.596029 2443.309755 22189 11.346665 1.123333 0.99994358784917 0.09899557538443 0.088756
559 6378.929362 2444.433088 21836 11.3333329999996 1.123333 0.99876868333638 0.09899557538443 0.087344
560 6390.202694 2445.539755 21502 11.2733319999998 1.10666699999956 0.99348099614244 0.0975268566168 0.086008
561 6401.399359 2446.629755 21141 11.1966650000004 1.09000000000015 0.98672459018095 0.0960580497226 0.084564
562 6412.672692 2447.706421 20796 11.2733330000001 1.07666599999993 0.99348108426912 0.09488296895653 0.083184
563 6424.02269 2448.733088 20458 11.3499979999997 1.02666700000009 1.00023731397733 0.09047672452711 0.081832
564 6435.352689 2449.733088 20115 11.3299990000005 1 0.99847486908162 0.08812665112164 0.08046
565 6446.602688 2450.709754 19769 11.2499989999997 0.97666600000002 0.99142473699181 0.08607030384437 0.079076
566 6457.81602 2451.666421 19440 11.2133320000003 0.95666699999992 0.98819339707519 0.08430785894858 0.07776
567 6469.089353 2452.606421 19115 11.2733330000001 0.94000000000005 0.99348108426912 0.08283905205435 0.07646
568 6480.442685 2453.529754 18774 11.3533319999997 0.92333300000018 1.00053112823217 0.08137024516012 0.075096
569 6491.806017 2454.433087 18463 11.3633319999999 0.90333299999975 1.0014123947434 0.07960771213765 0.073852
570 6503.099349 2455.319754 18135 11.2933320000002 0.88666700000022 0.99524352916491 0.07813899337009 0.07254
571 6514.296015 2456.189754 17826 11.1966659999998 0.86999999999989 0.98672467830755 0.07667018647582 0.071304
572 6525.556014 2457.073087 17506 11.2599989999999 0.88333300000022 0.99230600350305 0.07784517911525 0.070024
573 6536.896012 2457.959754 17205 11.3399980000004 0.88666699999976 0.99935604746617 0.07813899337005 0.06882
574 6548.249345 2458.829754 16891 11.353333 0.86999999999989 1.00053121635885 0.07667018647582 0.067564
575 6559.53601 2459.689754 16595 11.2866649999996 0.86000000000013 0.99465598878183 0.07578891996462 0.06638
576 6570.739342 2460.533087 16285 11.203332 0.8433329999998 0.98731213056395 0.07432011307035 0.06514
577 6581.972675 2461.363087 15995 11.2333330000001 0.83000000000038 0.98995601822426 0.073145120431 0.06398
578 6593.326007 2462.189753 15703 11.3533319999997 0.82666599999993 1.00053112823217 0.07285130617612 0.062812
579 6604.676006 2462.953087 15410 11.349999 0.76333399999976 1.00023740210401 0.06727006910727 0.06164
580 6615.996005 2463.709753 15115 11.3199990000003 0.75666600000022 0.99759360257038 0.06668244059763 0.06046
581 6627.17267 2464.449753 14838 11.176665 0.73999999999978 0.98496205715848 0.06521372183 0.059352
582 6638.396002 2465.173086 14550 11.2233320000005 0.72333299999991 0.98907466358642 0.06374491493576 0.0582
583 6649.756001 2465.87642 14268 11.3599989999993 0.70333400000027 1.00111866861516 0.06198247004001 0.057072
584 6661.106 2466.569753 13987 11.349999 0.69333300000017 1.00023740210401 0.06110111540214 0.055948
585 6672.445999 2467.249753 13721 11.3399989999998 0.67999999999984 0.99935613559277 0.0599261227627 0.054884
586 6683.635998 2467.919753 13431 11.1899990000002 0.67000000000007 0.98613713792456 0.05904485625151 0.053724
587 6694.86933 2468.569753 13163 11.2333320000007 0.65000000000009 0.98995593009766 0.05728232322908 0.052652
588 6706.192662 2469.203086 12895 11.3233319999999 0.63333299999977 0.99788732869854 0.0558135163348 0.05158
589 6717.532661 2469.829753 12631 11.3399989999998 0.626667 0.99935613559277 0.05522606407845 0.050524
590 6728.855993 2470.439752 12366 11.3233319999999 0.60999900000024 0.99788732869854 0.05375716905757 0.049464
591 6740.035992 2471.059752 12104 11.179999 0.61999999999989 0.98525587141332 0.05463852369541 0.048416
592 6751.242658 2471.676419 11850 11.206666 0.61666699999978 0.98760594481879 0.05434479756721 0.0474
593 6762.592657 2472.283086 11593 11.349999 0.60666700000002 1.00023740210401 0.05346353105602 0.046372
594 6773.935989 2472.876419 11340 11.3433319999995 0.59333300000026 0.99964986172093 0.05228845028998 0.04536
595 6785.259321 2473.459752 11091 11.3233320000008 0.58333300000004 0.99788732869862 0.05140718377875 0.044364
596 6796.442653 2474.029752 10833 11.1833319999996 0.56999999999971 0.98554959754148 0.05023219113931 0.043332
597 6807.645985 2474.583085 10596 11.203332 0.55333300000029 0.98731213056395 0.04876338424512 0.042384
598 6819.019318 2475.126419 10354 11.3733329999995 0.54333399999996 1.00229374938124 0.04788220586052 0.041416
599 6830.39265 2475.659752 10124 11.3733320000001 0.53333299999986 1.00229366125464 0.04700085122265 0.040496
600 6841.709315 2476.186419 9876 11.3166650000003 0.52666700000009 0.99729978831554 0.04641339896629 0.039504
601 6852.922648 2476.679752 9653 11.2133329999997 0.49333299999989 0.98819348520179 0.04347578517778 0.038612
602 6864.12598 2477.153085 9416 11.203332 0.47333299999991 0.98731213056395 0.04171325215535 0.037664
603 6875.469312 2477.619752 9178 11.3433320000004 0.46666700000014 0.99964986172101 0.041125799899 0.036712
604 6886.809311 2478.073085 8961 11.3399989999998 0.45333299999993 0.99935613559277 0.03995071913292 0.035844
605 6898.142643 2478.519752 8730 11.3333320000002 0.44666700000016 0.99876859520977 0.03936326687657 0.03492
606 6909.339309 2478.949752 8515 11.1966659999998 0.42999999999984 0.98672467830755 0.03789445998229 0.03406
607 6920.552641 2479.369752 8288 11.2133320000003 0.42000000000007 0.98819339707519 0.0370131934711 0.033152
608 6931.91264 2479.779752 8073 11.3599989999993 0.40999999999985 1.00111866861516 0.03613192695986 0.032292
609 6943.272639 2480.176418 7852 11.3599990000002 0.3966660000001 1.00111866861524 0.03495684619383 0.031408
610 6954.605971 2480.563085 7650 11.3333320000002 0.38666699999976 0.99876859520977 0.03407566780923 0.0306
611 6965.79597 2480.939751 7441 11.1899990000002 0.37666600000011 0.98613713792456 0.0331943131714 0.029764
612 6977.022635 2481.309751 7226 11.2266650000001 0.36999999999989 0.98936838971458 0.032606860915 0.028904
613 6988.369301 2481.666418 7031 11.3466659999995 0.35666700000002 0.99994367597577 0.0314318682756 0.028124
614 6999.7093 2482.016418 6821 11.3399990000007 0.35000000000036 0.99935613559285 0.03084432789261 0.027284
615 7011.052632 2482.353085 6634 11.3433319999995 0.33666700000003 0.99964986172093 0.02966933525317 0.026536
616 7022.259297 2482.679751 6425 11.2066649999997 0.32666599999993 0.98760585669211 0.0287879806153 0.0257
617 7033.479296 2482.996418 6242 11.2199990000008 0.31666700000005 0.98878093745826 0.02790680223074 0.024968
618 7044.829295 2483.303085 6043 11.3499989999991 0.30666699999983 1.00023740210393 0.02702553571951 0.024172
619 7056.169294 2483.603084 5849 11.3399990000007 0.29999899999984 0.99935613559285 0.02643790720983 0.023396
620 7067.505959 2483.893084 5673 11.3366649999998 0.28999999999996 0.99906232133793 0.02555672882527 0.022692
621 7078.735958 2484.173084 5478 11.2299990000001 0.2800000000002 0.98966220396942 0.02467546231408 0.021912
622 7089.955957 2484.443084 5287 11.2199989999999 0.26999999999998 0.98878093745818 0.02379419580284 0.021148
623 7101.302623 2484.706418 5091 11.3466659999995 0.26333400000021 0.99994367597577 0.02320674354649 0.020364
624 7112.645955 2484.969751 4946 11.3433320000004 0.26333299999988 0.99964986172101 0.0232066554198 0.019784
625 7123.965954 2485.223084 4821 11.3199990000003 0.25333300000011 0.99759360257038 0.02232538890861 0.019284
626 7135.175953 2485.473084 4693 11.2099989999997 0.25 0.98789967094695 0.02203166278041 0.018772
627 7146.382618 2485.713084 4582 11.2066649999997 0.23999999999978 0.98760585669211 0.02115039626918 0.018328
628 7157.712617 2485.949751 4475 11.3299990000005 0.23666700000012 0.99847486908162 0.02085667014102 0.0179
629 7169.072616 2486.179751 4367 11.3599990000002 0.23000000000002 1.00111866861524 0.02026912975798 0.017468
630 7180.425948 2486.403084 4265 11.3533319999997 0.22333299999991 1.00053112823217 0.01968158937494 0.01706
631 7191.662614 2486.619751 4190 11.2366659999998 0.21666700000014 0.99024974435242 0.01909413711859 0.01676
632 7202.869279 2486.829751 4131 11.2066649999997 0.21000000000004 0.98760585669211 0.01850659673555 0.016524
633 7214.202611 2487.039751 4074 11.3333320000002 0.20999999999958 0.99876859520977 0.01850659673551 0.016296
634 7225.559277 2487.246417 4031 11.3566660000006 0.20666600000004 1.00082494248708 0.01821278248071 0.016124
635 7236.879276 2487.449751 3991 11.3199989999994 0.20333400000027 0.9975936025703 0.01791914447919 0.015964
636 7248.139275 2487.649751 3949 11.2599990000008 0.19999999999982 0.99230600350313 0.01762533022431 0.015796
637 7259.35594 2487.849751 3930 11.2166649999999 0.20000000000027 0.98848712320335 0.01762533022435 0.01572
638 7270.649272 2488.046417 3905 11.2933319999993 0.19666599999982 0.99524352916483 0.01733151596947 0.01562
639 7282.009271 2488.243084 3885 11.3599990000002 0.19666700000016 1.00111866861524 0.01733160409615 0.01554
640 7293.355937 2488.439751 3862 11.3466660000004 0.19666699999971 0.99994367597585 0.01733160409611 0.015448
641 7304.615936 2488.633084 3843 11.2599989999999 0.19333300000017 0.99230600350305 0.01703778984132 0.015372
642 7315.822601 2488.826417 3821 11.2066649999997 0.19333300000017 0.98760585669211 0.01703778984132 0.015284
643 7327.145933 2489.016417 3804 11.3233319999999 0.1899999999996 0.99788732869854 0.01674406371308 0.015216
644 7338.475932 2489.209751 3781 11.3299990000005 0.19333400000005 0.99847486908162 0.01703787796796 0.015124
645 7349.792598 2489.399751 3758 11.3166659999997 0.19000000000005 0.99729987644214 0.01674406371312 0.015032
646 7361.07593 2489.589751 3743 11.283332 0.19000000000005 0.99436226265368 0.01674406371312 0.014972
647 7372.282596 2489.779751 3718 11.206666 0.19000000000005 0.98760594481879 0.01674406371312 0.014872
648 7383.559261 2489.969751 3703 11.2766650000003 0.19000000000005 0.99377472227068 0.01674406371312 0.014812
649 7394.915927 2490.156417 3675 11.3566659999997 0.18666600000006 1.000824942487 0.01645024945828 0.0147
650 7406.225926 2490.343084 3660 11.3099990000001 0.18666699999994 0.99671233605914 0.01645033758492 0.01464
651 7417.499258 2490.526417 3636 11.2733319999998 0.18333299999995 0.99348099614244 0.01615652333008 0.014544
652 7428.689257 2490.69975 3624 11.1899990000002 0.17333300000018 0.98613713792456 0.01527525681888 0.014496
653 7439.985922 2490.873084 3601 11.2966649999998 0.17333399999961 0.99553725529307 0.01527534494548 0.014404
654 7451.345921 2491.046417 3581 11.3599990000002 0.17333300000018 1.00111866861524 0.01527525681888 0.014324
655 7462.672587 2491.216417 3559 11.3266659999999 0.17000000000007 0.99818114295338 0.01498153069069 0.014236
656 7473.915919 2491.38975 3535 11.243332 0.17333299999973 0.99083719660881 0.01527525681884 0.01414
657 7485.105918 2491.55975 3520 11.1899990000002 0.17000000000007 0.98613713792456 0.01498153069069 0.01408
658 7496.38925 2491.72975 3494 11.283332 0.17000000000007 0.99436226265368 0.01498153069069 0.013976
659 7507.762582 2491.896417 3482 11.3733320000001 0.16666699999996 1.00229366125464 0.01468780456249 0.013928
660 7519.079248 2492.066417 3456 11.3166659999997 0.17000000000007 0.99729987644214 0.01498153069069 0.013824
661 7530.325913 2492.233084 3441 11.2466649999997 0.16666699999996 0.99113092273697 0.01468780456249 0.013764
662 7541.539245 2492.39975 3417 11.2133320000003 0.16666600000008 0.98819339707519 0.01468771643585 0.013668
663 7552.792578 2492.566417 3402 11.2533329999997 0.16666699999996 0.99171855124665 0.01468780456249 0.013608
664 7564.12591 2492.72975 3383 11.3333320000002 0.16333299999997 0.99876859520977 0.01439399030765 0.013532
665 7575.469242 2492.893084 3364 11.3433320000004 0.16333399999985 0.99964986172101 0.01439407843429 0.013456
666 7586.735907 2493.056417 3345 11.2666650000001 0.16333299999997 0.99289345575944 0.01439399030765 0.01338
667 7597.942573 2493.216417 3320 11.206666 0.16000000000031 0.98760594481879 0.01410026417949 0.01328
668 7609.205905 2493.373083 3306 11.2633319999995 0.15666599999986 0.9925997296312 0.01380644992461 0.013224
669 7620.535904 2493.533083 3283 11.3299990000005 0.15999999999985 0.99847486908162 0.01410026417945 0.013132
670 7631.899236 2493.68975 3264 11.3633319999999 0.1566670000002 1.0014123947434 0.01380653805129 0.013056
671 7643.199235 2493.846417 3243 11.2999989999998 0.1566670000002 0.99583106954791 0.01380653805129 0.012972
672 7654.395901 2494.003083 3227 11.1966659999998 0.15666599999986 0.98672467830755 0.01380644992461 0.012908
673 7665.682566 2494.156417 3205 11.2866650000005 0.15333400000009 0.99465598878191 0.01351281192309 0.01282
674 7677.029232 2494.30975 3192 11.3466659999995 0.15333299999975 0.99994367597577 0.01351272379641 0.012768
675 7688.382564 2494.463083 3170 11.3533319999997 0.1533330000002 1.00053112823217 0.01351272379645 0.01268
676 7699.665896 2494.616417 3145 11.2833320000009 0.15333400000009 0.99436226265376 0.01351281192309 0.01258
677 7710.845895 2494.766417 3136 11.179999 0.14999999999964 0.98525587141332 0.01321899766821 0.012544
678 7722.095894 2494.916417 3110 11.2499989999997 0.15000000000009 0.99142473699181 0.01321899766825 0.01244
679 7733.425893 2495.066417 3096 11.3299989999996 0.15000000000009 0.99847486908154 0.01321899766825 0.012384
680 7744.759225 2495.213083 3072 11.3333320000002 0.1466660000001 0.99876859520977 0.01292518341342 0.012288
681 7756.072557 2495.35975 3059 11.3133320000006 0.14666699999998 0.99700606218738 0.01292527154006 0.012236
682 7767.259223 2495.50975 3037 11.1866659999996 0.15000000000009 0.98584341179632 0.01321899766825 0.012148
683 7778.519222 2495.653083 3024 11.2599989999999 0.14333299999998 0.99230600350305 0.01263145728522 0.012096
684 7789.865887 2495.79975 3001 11.346665 0.14666699999998 0.99994358784917 0.01292527154006 0.012004
685 7801.209219 2495.943083 2983 11.3433320000004 0.14333299999998 0.99964986172101 0.01263145728522 0.011932
686 7812.535885 2496.086417 2966 11.3266659999999 0.14333399999987 0.99818114295338 0.01263154541186 0.011864
687 7823.719217 2496.226417 2943 11.1833319999996 0.13999999999987 0.98554959754148 0.01233773115702 0.011772
688 7834.922549 2496.36975 2930 11.203332 0.14333299999998 0.98731213056395 0.01263145728522 0.01172
689 7846.295882 2496.50975 2905 11.3733330000005 0.14000000000033 1.00229374938132 0.01233773115706 0.01162
690 7857.622547 2496.646417 2893 11.3266649999996 0.13666699999976 0.9981810548267 0.01204400502882 0.011572
691 7868.922546 2496.786416 2871 11.2999989999998 0.13999899999999 0.99583106954791 0.01233764303038 0.011484
692 7880.082545 2496.923083 2855 11.1599990000004 0.13666700000022 0.98349333839093 0.01204400502886 0.01142
693 7891.292544 2497.05975 2836 11.2099989999997 0.13666699999976 0.98789967094695 0.01204400502882 0.011344
694 7902.655876 2497.193083 2821 11.3633319999999 0.13333300000022 1.0014123947434 0.01175019077402 0.011284
695 7914.015875 2497.32975 2803 11.3599990000002 0.13666699999976 1.00111866861524 0.01204400502882 0.011212
696 7925.315874 2497.463083 2786 11.2999989999998 0.13333300000022 0.99583106954791 0.01175019077402 0.011144
697 7936.502539 2497.593083 2768 11.1866650000002 0.13000000000011 0.98584332366972 0.01145646464582 0.011072
698 7947.692538 2497.726416 2749 11.1899990000002 0.13333299999977 0.98613713792456 0.01175019077398 0.010996
699 7959.012537 2497.856416 2737 11.3199989999994 0.13000000000011 0.9975936025703 0.01145646464582 0.010948
700 7970.362536 2497.98975 2708 11.349999 0.1333340000001 1.00023740210401 0.01175027890066 0.010832
701 7981.655868 2498.116416 2696 11.2933320000002 0.12666599999966 0.99524352916491 0.01116265039094 0.010784
702 7992.835867 2498.246416 2674 11.179999 0.13000000000011 0.98525587141332 0.01145646464582 0.010696
703 8004.025866 2498.373083 2659 11.1899990000002 0.126667 0.98613713792456 0.01116273851763 0.010636
704 8015.362531 2498.49975 2643 11.3366649999998 0.126667 0.99906232133793 0.01116273851763 0.010572
705 8026.675863 2498.626416 2626 11.3133320000006 0.12666600000011 0.99700606218738 0.01116265039098 0.010504
706 8037.979196 2498.74975 2611 11.3033329999998 0.12333399999989 0.99612488380275 0.01086901238943 0.010444
707 8049.159195 2498.883083 2589 11.179999 0.13333300000022 0.98525587141332 0.01175019077402 0.010356
708 8060.359193 2499.013083 2578 11.1999980000001 0.12999999999965 0.98701831630911 0.01145646464578 0.010312
709 8071.715859 2499.143083 2554 11.3566659999997 0.13000000000011 1.000824942487 0.01145646464582 0.010216
710 8083.052525 2499.26975 2541 11.3366660000002 0.126667 0.99906240946461 0.01116273851763 0.010164
711 8094.36919 2499.396416 2520 11.3166650000003 0.12666600000011 0.99729978831554 0.01116265039098 0.01008
712 8105.549189 2499.523083 2507 11.179999 0.126667 0.98525587141332 0.01116273851763 0.010028
713 8116.755854 2499.64975 2492 11.2066649999997 0.126667 0.98760585669211 0.01116273851763 0.009968
714 8128.109187 2499.776416 2474 11.353333 0.12666600000011 1.00053121635885 0.01116265039098 0.009896
715 8139.449186 2499.89975 2455 11.3399989999998 0.12333399999989 0.99935613559277 0.01086901238943 0.00982
716 8150.792518 2500.026416 2436 11.3433320000004 0.12666600000011 0.99964986172101 0.01116265039098 0.009744
717 8161.999183 2500.146416 2422 11.2066649999997 0.11999999999989 0.98760585669211 0.01057519813459 0.009688
718 8173.219182 2500.269749 2403 11.2199989999999 0.123333 0.98878093745818 0.01086892426279 0.009612
719 8184.569181 2500.393083 2388 11.349999 0.12333399999989 1.00023740210401 0.01086901238943 0.009552
720 8195.882513 2500.513083 2368 11.3133320000006 0.11999999999989 0.99700606218738 0.01057519813459 0.009472
721 8207.182512 2500.633083 2358 11.2999989999989 0.12000000000035 0.99583106954783 0.01057519813463 0.009432
722 8218.392511 2500.753083 2337 11.2099990000006 0.11999999999989 0.98789967094703 0.01057519813459 0.009348
723 8229.58251 2500.869749 2321 11.1899990000002 0.1166659999999 0.98613713792456 0.01028138387975 0.009284
724 8240.912509 2500.989749 2306 11.3299989999996 0.11999999999989 0.99847486908154 0.01057519813459 0.009224
725 8252.235841 2501.106416 2291 11.3233319999999 0.11666700000023 0.99788732869854 0.01028147200643 0.009164
726 8263.552506 2501.223083 2276 11.3166650000003 0.11666699999978 0.99729978831554 0.01028147200639 0.009104
727 8274.759172 2501.336416 2256 11.206666 0.11333300000024 0.98760594481879 0.00998765775159 0.009024
728 8285.952504 2501.453083 2245 11.1933320000007 0.11666699999978 0.9864308640528 0.01028147200639 0.00898
729 8297.302503 2501.566416 2225 11.349999 0.11333300000024 1.00023740210401 0.00998765775159 0.0089
730 8308.642502 2501.679749 2212 11.3399989999998 0.11333299999978 0.99935613559277 0.00998765775155 0.008848
731 8319.949168 2501.793083 2192 11.3066659999986 0.11333400000012 0.99641860993083 0.00998774587823 0.008768
732 8331.169166 2501.903083 2176 11.2199980000005 0.11000000000013 0.98878084933158 0.00969393162339 0.008704
733 8342.385832 2502.013083 2160 11.2166660000003 0.10999999999967 0.98848721133003 0.00969393162335 0.00864
734 8353.705831 2502.123083 2144 11.3199989999994 0.11000000000013 0.9975936025703 0.00969393162339 0.008576
735 8365.032496 2502.233083 2132 11.3266650000005 0.11000000000013 0.99818105482678 0.00969393162339 0.008528
736 8376.389162 2502.339749 2115 11.3566659999997 0.10666600000013 1.000824942487 0.00940011736855 0.00846
737 8387.625827 2502.446416 2102 11.2366650000004 0.10666700000002 0.99024965622582 0.00940020549519 0.008408
738 8398.845826 2502.556416 2084 11.2199990000008 0.10999999999967 0.98878093745826 0.00969393162335 0.008336
739 8410.175825 2502.659749 2066 11.3299989999996 0.10333300000002 0.99847486908154 0.00910639124035 0.008264
740 8421.519157 2502.766416 2052 11.3433320000004 0.10666700000002 0.99964986172101 0.00940020549519 0.008208
741 8432.829156 2502.869749 2038 11.3099989999992 0.10333300000002 0.99671233605906 0.00910639124035 0.008152
742 8444.042488 2502.973083 2023 11.2133319999994 0.1033339999999 0.98819339707511 0.009106479367 0.008092
743 8455.215821 2503.076416 2010 11.1733330000006 0.10333300000002 0.98466841915701 0.00910639124035 0.00804
744 8466.482486 2503.176416 1992 11.266665000001 0.09999999999991 0.99289345575952 0.00881266511216 0.007968
745 8477.795818 2503.279749 1976 11.3133319999997 0.10333300000002 0.9970060621873 0.00910639124035 0.007904
746 8489.069151 2503.379749 1963 11.2733329999992 0.10000000000036 0.99348108426904 0.0088126651122 0.007852
747 8500.312483 2503.479749 1943 11.243332 0.09999999999991 0.99083719660881 0.00881266511216 0.007772
748 8511.492482 2503.576416 1929 11.179999 0.0966669999998 0.98525587141332 0.00851893898396 0.007716
749 8522.795814 2503.673082 1915 11.3033319999995 0.09666599999991 0.99612479567607 0.00851885085732 0.00766
750 8534.142479 2503.773082 1901 11.3466650000009 0.10000000000036 0.99994358784925 0.0088126651122 0.007604
751 8545.472478 2503.873082 1889 11.3299989999996 0.09999999999991 0.99847486908154 0.00881266511216 0.007556
752 8556.739144 2503.969749 1875 11.2666659999995 0.0966669999998 0.99289354388604 0.00851893898396 0.0075
753 8567.955809 2504.066416 1859 11.2166649999999 0.09666700000025 0.98848712320335 0.008518938984 0.007436
754 8579.279142 2504.163082 1841 11.3233330000003 0.09666599999991 0.99788741682522 0.00851885085732 0.007364
755 8590.62914 2504.256416 1829 11.3499979999997 0.09333400000014 1.00023731397733 0.0082252128558 0.007316
756 8601.995806 2504.353082 1812 11.3666660000017 0.09666599999991 1.0017062089984 0.00851885085732 0.007248
757 8613.265805 2504.443082 1803 11.2699989999983 0.08999999999969 0.99318727001412 0.00793139860092 0.007212
758 8624.475804 2504.533082 1784 11.2099990000006 0.09000000000015 0.98789967094703 0.00793139860096 0.007136
759 8635.762469 2504.616416 1772 11.2866649999996 0.08333399999992 0.99465598878183 0.00734394634456 0.007088
760 8647.092468 2504.703082 1758 11.3299990000014 0.08666600000015 0.9984748690817 0.00763758434612 0.007032
761 8658.439134 2504.789749 1742 11.3466659999995 0.08666700000003 0.99994367597577 0.00763767247276 0.006968
762 8669.699133 2504.873082 1728 11.2599989999999 0.08333300000004 0.99230600350305 0.00734385821792 0.006912
763 8680.899131 2504.959749 1711 11.1999980000001 0.08666700000003 0.98701831630911 0.00763767247276 0.006844
764 8692.20913 2505.043082 1698 11.3099989999992 0.08333300000004 0.99671233605906 0.00734385821792 0.006792
765 8703.542462 2505.126416 1683 11.3333320000002 0.08333399999992 0.99876859520977 0.00734394634456 0.006732
766 8714.872461 2505.209749 1673 11.3299990000014 0.08333300000004 0.9984748690817 0.00734385821792 0.006692
767 8726.125794 2505.289749 1660 11.2533329999987 0.07999999999993 0.99171855124657 0.00705013208973 0.00664
768 8737.312459 2505.373082 1643 11.1866650000011 0.08333300000004 0.9858433236698 0.00734385821792 0.006572
769 8748.559125 2505.453082 1630 11.2466659999991 0.07999999999993 0.99113101086357 0.00705013208973 0.00652
770 8759.912457 2505.533082 1615 11.3533320000006 0.07999999999993 1.00053112823225 0.00705013208973 0.00646
771 8771.219122 2505.613082 1603 11.3066650000001 0.07999999999993 0.99641852180431 0.00705013208973 0.006412
772 8782.479121 2505.689749 1591 11.2599989999999 0.07666700000027 0.99230600350305 0.00675640596157 0.006364
773 8793.68912 2505.769749 1577 11.2099989999988 0.07999999999993 0.98789967094687 0.00705013208973 0.006308
774 8804.952452 2505.846416 1563 11.2633320000004 0.07666699999982 0.99259972963129 0.00675640596153 0.006252
775 8816.305785 2505.923082 1549 11.3533330000009 0.07666599999993 1.00053121635893 0.00675631783489 0.006196
776 8827.63245 2505.999749 1535 11.3266649999987 0.07666700000027 0.99818105482662 0.00675640596157 0.00614
777 8838.925782 2506.073082 1519 11.2933320000011 0.07333299999982 0.99524352916499 0.00646259170669 0.006076
778 8850.119114 2506.149749 1507 11.1933319999989 0.07666700000027 0.98643086405264 0.00675640596157 0.006028
779 8861.369113 2506.223082 1492 11.2499990000015 0.07333299999982 0.99142473699197 0.00646259170669 0.005968
780 8872.715779 2506.296416 1480 11.3466659999995 0.07333400000016 0.99994367597577 0.00646267983337 0.00592
781 8884.092444 2506.369749 1468 11.3766649999998 0.07333299999982 1.0025873873828 0.00646259170669 0.005872
782 8895.385777 2506.443082 1460 11.2933329999996 0.07333299999982 0.99524361729151 0.00646259170669 0.00584
783 8906.575776 2506.513082 1441 11.1899990000002 0.07000000000016 0.98613713792456 0.00616886557853 0.005764
784 8917.819108 2506.586416 1432 11.243332 0.07333400000016 0.99083719660881 0.00646267983337 0.005728
785 8929.18244 2506.656416 1414 11.3633320000008 0.06999999999971 1.00141239474348 0.00616886557849 0.005656
786 8940.562439 2506.726415 1403 11.3799989999989 0.06999900000028 1.00288120163755 0.00616877745189 0.005612
787 8951.862438 2506.793082 1393 11.2999990000008 0.06666700000005 0.99583106954799 0.00587513945033 0.005572
788 8963.049103 2506.863082 1378 11.1866649999993 0.06999999999971 0.98584332366964 0.00616886557849 0.005512
789 8974.285769 2506.929749 1368 11.2366660000007 0.06666700000005 0.9902497443525 0.00587513945033 0.005472
790 8985.622434 2506.999749 1353 11.3366650000007 0.07000000000016 0.99906232133801 0.00616886557853 0.005412
791 8996.982433 2507.066415 1343 11.3599989999984 0.06666599999971 1.00111866861508 0.00587505132365 0.005372
792 9008.305765 2507.133082 1328 11.3233319999999 0.06666700000005 0.99788732869854 0.00587513945033 0.005312
793 9019.485764 2507.196415 1317 11.179999 0.06333300000006 0.98525587141332 0.00558132519549 0.005268
794 9030.699096 2507.263082 1302 11.2133320000012 0.06666700000005 0.98819339707527 0.00587513945033 0.005208
795 9042.022429 2507.326415 1288 11.3233330000003 0.06333300000006 0.99788741682522 0.00558132519549 0.005152
796 9053.369094 2507.389749 1280 11.3466649999991 0.06333399999994 0.99994358784909 0.00558141332213 0.00512
797 9064.702426 2507.453082 1263 11.3333320000002 0.06333300000006 0.99876859520977 0.00558132519549 0.005052
798 9075.882425 2507.513082 1256 11.179999 0.05999999999995 0.98525587141332 0.00528759906729 0.005024
799 9087.082424 2507.576415 1241 11.1999990000004 0.06333300000006 0.98701840443579 0.00558132519549 0.004964
800 9098.42909 2507.636415 1230 11.3466659999995 0.05999999999995 0.99994367597577 0.00528759906729 0.00492
801 9109.789089 2507.696415 1220 11.3599990000002 0.05999999999995 1.00111866861524 0.00528759906729 0.00488
802 9121.139087 2507.756415 1210 11.3499979999997 0.05999999999995 1.00023731397733 0.00528759906729 0.00484
803 9132.31242 2507.816415 1198 11.1733330000006 0.05999999999995 0.98466841915701 0.00528759906729 0.004792
804 9143.545752 2507.876415 1185 11.2333319999998 0.0600000000004 0.98995593009758 0.00528759906733 0.00474
805 9154.895751 2507.933082 1171 11.349999 0.05666699999983 1.00023740210401 0.0049938729391 0.004684
806 9166.292416 2507.993082 1159 11.3966650000002 0.05999999999995 1.00434992040527 0.00528759906729 0.004636
807 9177.619082 2508.049749 1145 11.326665999999 0.05666699999983 0.9981811429533 0.0049938729391 0.00458
808 9188.802414 2508.106415 1134 11.1833320000005 0.0566660000004 0.98554959754156 0.00499378481249 0.004536
809 9200.019079 2508.159749 1124 11.2166649999999 0.05333399999972 0.98848712320335 0.0047001468109 0.004496
810 9211.365745 2508.216415 1112 11.3466659999995 0.05666599999995 0.99994367597577 0.00499378481245 0.004448
811 9222.709077 2508.269749 1104 11.3433320000004 0.05333400000018 0.99964986172101 0.00470014681094 0.004416
812 9234.022409 2508.323082 1092 11.3133319999997 0.05333299999984 0.9970060621873 0.00470005868426 0.004368
813 9245.219075 2508.379749 1080 11.1966660000016 0.05666700000029 0.98672467830771 0.00499387293914 0.00432
814 9256.435741 2508.433082 1071 11.2166659999984 0.05333299999984 0.98848721132987 0.00470005868426 0.004284
815 9267.809073 2508.486415 1053 11.373332000001 0.05333299999984 1.00229366125472 0.00470005868426 0.004212
816 9279.142405 2508.536415 1044 11.3333320000002 0.05000000000018 0.99876859520977 0.0044063325561 0.004176
817 9290.462404 2508.589749 1034 11.3199989999994 0.05333400000018 0.9975936025703 0.00470014681094 0.004136
818 9301.649069 2508.639749 1025 11.1866649999993 0.04999999999973 0.98584332366964 0.00440633255606 0.0041
819 9312.869068 2508.689749 1015 11.2199990000008 0.05000000000018 0.98878093745826 0.0044063325561 0.00406
820 9324.2224 2508.739749 1002 11.3533320000006 0.04999999999973 1.00053112823225 0.00440633255606 0.004008
821 9335.579066 2508.789749 992 11.3566659999997 0.05000000000018 1.000824942487 0.0044063325561 0.003968
822 9346.902398 2508.836415 978 11.3233319999999 0.04666600000019 0.99788732869854 0.00411251830126 0.003912
823 9358.102397 2508.886415 973 11.1999990000004 0.04999999999973 0.98701840443579 0.00440633255606 0.003892
824 9369.312396 2508.933082 956 11.2099989999988 0.04666700000007 0.98789967094687 0.0041126064279 0.003824
825 9380.695728 2508.983082 947 11.3833320000012 0.05000000000018 1.00317492776595 0.0044063325561 0.003788
826 9392.032394 2509.029749 936 11.3366659999992 0.04666699999962 0.99906240946453 0.00411260642786 0.003744
827 9403.369059 2509.076415 926 11.3366650000007 0.04666600000019 0.99906232133801 0.00411251830126 0.003704
828 9414.565725 2509.119749 918 11.1966659999998 0.04333399999996 0.98672467830755 0.0038188802997 0.003672
829 9425.779057 2509.166415 906 11.2133319999994 0.04666600000019 0.98819339707511 0.00411251830126 0.003624
830 9437.149056 2509.209749 895 11.3699990000005 0.04333399999996 1.00199993512648 0.0038188802997 0.00358
831 9448.499055 2509.256415 888 11.349999 0.04666599999973 1.00023740210401 0.00411251830122 0.003552
832 9459.829054 2509.299749 879 11.3299989999996 0.04333399999996 0.99847486908154 0.0038188802997 0.003516
833 9471.025719 2509.343082 868 11.1966649999995 0.04333300000008 0.98672459018087 0.00381879217306 0.003472
834 9482.242385 2509.386415 859 11.2166660000003 0.04333300000008 0.98848721133003 0.00381879217306 0.003436
835 9493.56905 2509.429749 846 11.3266650000005 0.04333399999996 0.99818105482678 0.0038188802997 0.003384
836 9504.919049 2509.469749 835 11.349999 0.03999999999996 1.00023740210401 0.00352506604486 0.00334
837 9516.245715 2509.513082 822 11.326665999999 0.04333300000008 0.9981811429533 0.00381879217306 0.003288
838 9527.469047 2509.553082 814 11.2233320000014 0.03999999999996 0.9890746635865 0.00352506604486 0.003256
839 9538.695712 2509.593082 805 11.2266650000001 0.03999999999996 0.98936838971458 0.00352506604486 0.00322
840 9550.019044 2509.633082 795 11.3233319999999 0.03999999999996 0.99788732869854 0.00352506604486 0.00318
841 9561.352377 2509.673082 791 11.3333329999987 0.03999999999996 0.9987686833363 0.00352506604486 0.003164
842 9572.745709 2509.713082 776 11.3933320000015 0.04000000000042 1.00405619427719 0.0035250660449 0.003104
843 9583.972374 2509.753082 770 11.2266650000001 0.03999999999996 0.98936838971458 0.00352506604486 0.00308
844 9595.172373 2509.789749 760 11.1999989999986 0.03666699999985 0.98701840443563 0.00323133991666 0.00304
845 9606.509039 2509.826415 746 11.3366660000011 0.03666599999997 0.99906240946469 0.00323125179002 0.002984
846 9617.845704 2509.866415 739 11.3366649999989 0.03999999999996 0.99906232133785 0.00352506604486 0.002956
847 9629.20237 2509.903082 727 11.3566660000015 0.03666699999985 1.00082494248717 0.00323133991666 0.002908
848 9640.439035 2509.939749 724 11.2366649999985 0.03666700000031 0.99024965622566 0.0032313399167 0.002896
849 9651.662368 2509.973082 713 11.2233329999999 0.03333299999986 0.98907475171302 0.00293752566183 0.002852
850 9662.982367 2510.009748 706 11.3199990000012 0.03666599999997 0.99759360257046 0.00323125179002 0.002824
851 9674.339032 2510.046415 694 11.3566649999993 0.03666699999985 1.00082485436032 0.00323133991666 0.002776
852 9685.662364 2510.079748 684 11.3233319999999 0.03333300000031 0.99788732869854 0.00293752566187 0.002736
853 9696.892363 2510.113082 675 11.229999000001 0.03333399999974 0.9896622039695 0.00293761378847 0.0027
854 9708.095695 2510.146415 662 11.2033319999991 0.03333300000031 0.98731213056387 0.00293752566187 0.002648
855 9719.422361 2510.179748 657 11.3266660000008 0.03333299999986 0.99818114295346 0.00293752566183 0.002628
856 9730.77236 2510.213082 648 11.349999 0.0333340000002 1.00023740210401 0.00293761378851 0.002592
857 9742.102359 2510.246415 640 11.3299989999996 0.03333299999986 0.99847486908154 0.00293752566183 0.00256
858 9753.359024 2510.276415 630 11.256664999999 0.02999999999975 0.99201218924813 0.00264379953363 0.00252
859 9764.56569 2510.309748 622 11.206666 0.03333300000031 0.98760594481879 0.00293752566187 0.002488
860 9775.882355 2510.339748 614 11.3166650000003 0.02999999999975 0.99729978831554 0.00264379953363 0.002456
861 9787.252354 2510.369748 607 11.3699990000005 0.0300000000002 1.00199993512648 0.00264379953367 0.002428
862 9798.592353 2510.399748 597 11.3399989999998 0.02999999999975 0.99935613559277 0.00264379953363 0.002388
863 9809.865685 2510.429748 591 11.2733320000007 0.0300000000002 0.99348099614252 0.00264379953367 0.002364
864 9821.075684 2510.459748 582 11.2099989999988 0.0300000000002 0.98789967094687 0.00264379953367 0.002328
865 9832.38235 2510.489748 573 11.3066660000004 0.02999999999975 0.99641860993099 0.00264379953363 0.002292
866 9843.745682 2510.519748 566 11.3633320000008 0.0300000000002 1.00141239474348 0.00264379953367 0.002264
867 9855.079014 2510.546415 555 11.3333320000002 0.02666699999963 0.99876859520977 0.00235007340543 0.00222
868 9866.339013 2510.576415 548 11.2599989999999 0.0300000000002 0.99230600350305 0.00264379953367 0.002192
869 9877.535678 2510.603082 537 11.1966649999995 0.02666700000009 0.98672459018087 0.00235007340547 0.002148
870 9888.829011 2510.629748 531 11.2933329999996 0.02666599999975 0.99524361729151 0.00234998527879 0.002124
871 9900.172343 2510.656415 524 11.3433320000004 0.02666700000009 0.99964986172101 0.00235007340547 0.002096
872 9911.499008 2510.683082 515 11.3266650000005 0.02666700000009 0.99818105482678 0.00235007340547 0.00206
873 9922.765674 2510.709748 510 11.2666659999995 0.0266660000002 0.99289354388604 0.00234998527883 0.00204
874 9933.952339 2510.733082 498 11.1866649999993 0.02333399999998 0.98584332366964 0.00205634727727 0.001992
875 9945.222338 2510.759748 494 11.2699990000001 0.02666599999975 0.99318727001428 0.00234998527879 0.001976
876 9956.562337 2510.783082 484 11.3399989999998 0.02333399999998 0.99935613559277 0.00205634727727 0.001936
877 9967.875669 2510.809748 476 11.3133319999997 0.0266660000002 0.9970060621873 0.00234998527883 0.001904
878 9979.129002 2510.833082 471 11.2533330000006 0.02333399999998 0.99171855124673 0.00205634727727 0.001884
879 9990.319 2510.856415 462 11.1899979999998 0.02333300000009 0.98613704979788 0.00205625915063 0.001848
880 10001.578999 2510.879748 458 11.2599989999999 0.02333299999964 0.99230600350305 0.00205625915059 0.001832
881 10012.922332 2510.903082 447 11.3433330000007 0.02333399999998 0.99964994984769 0.00205634727727 0.001788
882 10024.228997 2510.926415 440 11.3066650000001 0.02333300000009 0.99641852180431 0.00205625915063 0.00176
883 10035.462329 2510.946415 433 11.2333319999998 0.01999999999998 0.98995593009758 0.00176253302243 0.001732
884 10046.632328 2510.969748 426 11.1699989999997 0.02333300000009 0.98437460490209 0.00205625915063 0.001704
885 10057.872327 2510.989748 418 11.2399989999994 0.01999999999998 0.99054347048058 0.00176253302243 0.001672
886 10069.198993 2511.013082 411 11.3266660000008 0.02333399999998 0.99818114295346 0.00205634727727 0.001644
887 10080.512325 2511.033082 406 11.3133319999997 0.01999999999998 0.9970060621873 0.00176253302243 0.001624
888 10091.755657 2511.053082 397 11.243332 0.01999999999998 0.99083719660881 0.00176253302243 0.001588
889 10102.938989 2511.073082 391 11.1833320000005 0.01999999999998 0.98554959754156 0.00176253302243 0.001564
890 10114.185655 2511.093082 383 11.2466659999991 0.01999999999998 0.99113101086357 0.00176253302243 0.001532
891 10125.508987 2511.113082 379 11.3233319999999 0.01999999999998 0.99788732869854 0.00176253302243 0.001516
892 10136.828986 2511.133082 371 11.3199990000012 0.01999999999998 0.99759360257046 0.00176253302243 0.001484
893 10148.108985 2511.153082 366 11.2799990000003 0.01999999999998 0.99406853652552 0.00176253302243 0.001464
894 10159.288984 2511.169748 359 11.179999 0.01666599999999 0.98525587141332 0.00146871876759 0.001436
895 10170.598982 2511.189748 353 11.3099979999988 0.01999999999998 0.99671224793238 0.00176253302243 0.001412
896 10181.938981 2511.206415 344 11.3399989999998 0.01666700000033 0.99935613559277 0.00146880689427 0.001376
897 10193.312314 2511.223082 338 11.3733330000014 0.01666699999987 1.0022937493814 0.00146880689423 0.001352
898 10204.632312 2511.243082 332 11.319997999999 0.01999999999998 0.99759351444362 0.00176253302243 0.001328
899 10215.828978 2511.259748 323 11.1966659999998 0.01666599999999 0.98672467830755 0.00146871876759 0.001292
900 10227.11231 2511.276415 317 11.2833320000009 0.01666699999987 0.99436226265376 0.00146880689423 0.001268
901 10238.468976 2511.293082 312 11.3566659999997 0.01666700000033 1.000824942487 0.00146880689427 0.001248
902 10249.788975 2511.306415 305 11.3199989999994 0.01333299999988 0.9975936025703 0.00117499263939 0.00122
903 10261.088973 2511.323082 302 11.2999980000004 0.01666699999987 0.99583098142131 0.00146880689423 0.001208
904 10272.265639 2511.339748 293 11.1766659999994 0.01666599999999 0.98496214528508 0.00146871876759 0.001172
905 10283.485638 2511.353082 288 11.2199990000008 0.01333400000021 0.98878093745826 0.00117508076607 0.001152
906 10294.825637 2511.369748 284 11.3399989999998 0.01666599999999 0.99935613559277 0.00146871876759 0.001136
907 10306.175636 2511.383082 280 11.349999 0.01333399999976 1.00023740210401 0.00117508076603 0.00112
908 10317.492301 2511.399748 273 11.3166650000003 0.01666599999999 0.99729978831554 0.00146871876759 0.001092
909 10328.678967 2511.413082 268 11.1866659999996 0.01333400000021 0.98584341179632 0.00117508076607 0.001072
910 10339.902299 2511.426415 260 11.2233319999996 0.01333299999988 0.98907466358634 0.00117499263939 0.00104
911 10351.235631 2511.439748 252 11.3333320000002 0.01333299999988 0.99876859520977 0.00117499263939 0.001008
912 10362.592297 2511.453082 247 11.3566659999997 0.01333400000021 1.000824942487 0.00117508076607 0.000988
913 10373.912295 2511.466415 243 11.3199980000009 0.01333299999988 0.99759351444378 0.00117499263939 0.000972
914 10385.098961 2511.479748 237 11.1866659999996 0.01333300000033 0.98584341179632 0.00117499263943 0.000948
915 10396.312293 2511.493082 233 11.2133320000012 0.01333399999976 0.98819339707527 0.00117508076603 0.000932
916 10407.645625 2511.503082 228 11.3333319999983 0.01000000000022 0.99876859520961 0.00088126651124 0.000912
917 10418.978958 2511.516415 222 11.3333330000005 0.01333299999988 0.99876868333646 0.00117499263939 0.000888
918 10430.33229 2511.526415 216 11.3533320000006 0.00999999999976 1.00053112823225 0.0008812665112 0.000864
919 10441.512289 2511.539748 212 11.179999 0.01333300000033 0.98525587141332 0.00117499263943 0.000848
920 10452.725621 2511.549748 204 11.2133319999994 0.00999999999976 0.98819339707511 0.0008812665112 0.000816
921 10464.068953 2511.559748 201 11.3433320000004 0.01000000000022 0.99964986172101 0.00088126651124 0.000804
922 10475.435619 2511.569748 195 11.3666659999999 0.00999999999976 1.00170620899824 0.0008812665112 0.00078
923 10486.782284 2511.583082 195 11.3466650000009 0.01333400000021 0.99994358784925 0.00117508076607 0.00078
924 10497.982283 2511.593082 189 11.1999989999986 0.00999999999976 0.98701840443563 0.0008812665112 0.000756
925 10509.175615 2511.603082 184 11.1933320000007 0.01000000000022 0.9864308640528 0.00088126651124 0.000736
926 10520.535614 2511.613082 178 11.3599990000002 0.00999999999976 1.00111866861524 0.0008812665112 0.000712
927 10531.855613 2511.619748 173 11.3199989999994 0.00666600000022 0.9975936025703 0.0005874522564 0.000692
928 10543.185612 2511.629748 168 11.3299989999996 0.00999999999976 0.99847486908154 0.0008812665112 0.000672
929 10554.392277 2511.639748 161 11.2066650000015 0.01000000000022 0.98760585669227 0.00088126651124 0.000644
930 10565.612276 2511.649748 157 11.219998999999 0.00999999999976 0.9887809374581 0.0008812665112 0.000628
931 10576.982275 2511.656415 154 11.3699990000005 0.00666700000011 1.00199993512648 0.00058754038304 0.000616
932 10588.312274 2511.666415 149 11.3299989999996 0.01000000000022 0.99847486908154 0.00088126651124 0.000596
933 10599.662273 2511.673082 145 11.349999 0.00666699999965 1.00023740210401 0.000587540383 0.00058
934 10610.878938 2511.679748 140 11.2166649999999 0.00666600000022 0.98848712320335 0.0005874522564 0.00056
935 10622.095604 2511.689748 138 11.2166660000003 0.00999999999976 0.98848721133003 0.0008812665112 0.000552
936 10633.465603 2511.696415 135 11.3699990000005 0.00666700000011 1.00199993512648 0.00058754038304 0.00054
937 10644.805602 2511.703082 131 11.3399989999998 0.00666700000011 0.99935613559277 0.00058754038304 0.000524
938 10656.152267 2511.709748 127 11.3466649999991 0.00666600000022 0.99994358784909 0.0005874522564 0.000508
939 10667.392266 2511.716415 124 11.2399990000013 0.00666699999965 0.99054347048074 0.000587540383 0.000496
940 10678.618932 2511.723082 117 11.2266659999987 0.00666700000011 0.9893684778411 0.00058754038304 0.000468
941 10689.955597 2511.729748 113 11.3366650000007 0.00666600000022 0.99906232133801 0.0005874522564 0.000452
942 10701.298929 2511.736415 109 11.3433320000004 0.00666699999965 0.99964986172101 0.000587540383 0.000436
943 10712.632262 2511.743082 106 11.3333329999987 0.00666700000011 0.9987686833363 0.00058754038304 0.000424
944 10723.83226 2511.749748 102 11.1999980000001 0.00666600000022 0.98701831630911 0.0005874522564 0.000408
945 10735.052259 2511.753082 99 11.2199990000008 0.003334 0.98878093745826 0.00029381425484 0.000396
946 10746.385592 2511.759748 97 11.3333330000005 0.00666599999977 0.99876868333646 0.00058745225636 0.000388
947 10757.748924 2511.766415 92 11.363331999999 0.00666700000011 1.00141239474332 0.00058754038304 0.000368
948 10769.118923 2511.769748 89 11.3699990000005 0.00333300000011 1.00199993512648 0.0002937261282 0.000356
949 10780.338921 2511.776415 83 11.2199980000005 0.00666699999965 0.98878084933158 0.000587540383 0.000332
950 10791.542254 2511.779748 78 11.2033329999995 0.00333300000011 0.98731221869055 0.0002937261282 0.000312
951 10802.898919 2511.786415 78 11.3566649999993 0.00666700000011 1.00082485436032 0.00058754038304 0.000312
952 10814.235585 2511.789748 75 11.3366660000011 0.00333300000011 0.99906240946469 0.0002937261282 0.0003
953 10825.568917 2511.793082 74 11.3333320000002 0.003334 0.99876859520977 0.00029381425484 0.000296
954 10836.818916 2511.796415 71 11.2499989999997 0.00333299999966 0.99142473699181 0.00029372612816 0.000284
955 10848.042248 2511.803082 68 11.2233319999996 0.00666700000011 0.98907466358634 0.00058754038304 0.000272
956 10859.368914 2511.806415 65 11.3266660000008 0.00333300000011 0.99818114295346 0.0002937261282 0.00026
957 10870.715579 2511.809748 61 11.3466649999991 0.00333300000011 0.99994358784909 0.0002937261282 0.000244
958 10882.035578 2511.813082 57 11.3199990000012 0.003334 0.99759360257046 0.00029381425484 0.000228
959 10893.29891 2511.816415 52 11.2633319999986 0.00333299999966 0.99259972963112 0.00029372612816 0.000208
960 10904.515576 2511.819748 49 11.2166660000003 0.00333300000011 0.98848721133003 0.0002937261282 0.000196
961 10915.842241 2511.823082 49 11.3266650000005 0.003334 0.99818105482678 0.00029381425484 0.000196
962 10927.188907 2511.826415 47 11.3466659999995 0.00333300000011 0.99994367597577 0.0002937261282 0.000188
963 10938.505572 2511.829748 45 11.3166650000003 0.00333300000011 0.99729978831554 0.0002937261282 0.00018
964 10949.772238 2511.833082 40 11.2666659999995 0.003334 0.99289354388604 0.00029381425484 0.00016
965 10960.98557 2511.833082 40 11.2133320000012 0 0.98819339707527 0 0.00016
966 10972.298902 2511.836415 38 11.3133319999997 0.00333300000011 0.9970060621873 0.0002937261282 0.000152
967 10983.642234 2511.839748 36 11.3433320000004 0.00333299999966 0.99964986172101 0.00029372612816 0.000144
968 10994.9589 2511.839748 32 11.3166659999988 0 0.99729987644206 0 0.000128
969 11006.195566 2511.843082 30 11.2366660000007 0.003334 0.9902497443525 0.00029381425484 0.00012
970 11017.398898 2511.846415 27 11.2033319999991 0.00333300000011 0.98731213056387 0.0002937261282 0.000108
971 11028.68223 2511.846415 24 11.2833320000009 0 0.99436226265376 0 9.6E-05
972 11040.025562 2511.849748 23 11.3433320000004 0.00333300000011 0.99964986172101 0.0002937261282 9.2E-05
973 11051.368894 2511.849748 21 11.3433319999986 0 0.99964986172085 0 8.4E-05
974 11062.622227 2511.853082 20 11.2533330000006 0.003334 0.99171855124673 0.00029381425484 8E-05
975 11073.828892 2511.853082 19 11.2066649999997 0 0.98760585669211 0 7.6E-05
976 11085.108891 2511.853082 18 11.2799990000003 0 0.99406853652552 0 7.2E-05
977 11096.462223 2511.856415 13 11.3533320000006 0.00333300000011 1.00053112823225 0.0002937261282 5.2E-05
978 11107.785555 2511.856415 10 11.3233319999999 0 0.99788732869854 0 4E-05
979 11119.065554 2511.856415 9 11.2799990000003 0 0.99406853652552 0 3.6E-05
980 11130.28222 2511.859748 8 11.2166659999984 0.00333299999966 0.98848721132987 0.00029372612816 3.2E-05
981 11141.548885 2511.859748 7 11.266665000001 0 0.99289345575952 0 2.8E-05
982 11152.898884 2511.859748 6 11.349999 0 1.00023740210401 0 2.4E-05
983 11164.21555 2511.859748 4 11.3166660000006 0 0.99729987644222 0 1.6E-05
984 11175.455549 2511.859748 2 11.2399989999994 0 0.99054347048058 0 8E-06
985 11186.648881 2511.859748 0 11.1933319999989 0 0.98643086405264 0 0

1144
data/stablePopulation.data Normal file

File diff suppressed because it is too large Load diff

6
data/stablePopulation.sh Executable file
View file

@ -0,0 +1,6 @@
#!/bin/sh
zcat fullStablePopulation.data.gz \
| nl \
| awk 'NR == 0 || NR % 1000 == 0' \
> stablePopulation.data

50
default.nix Normal file
View file

@ -0,0 +1,50 @@
with import <nixpkgs> {};
# My thesis-specific tools and utilities
stdenv.mkDerivation {
name = "thesis-bundle";
buildInputs = [
( texlive.combine {
inherit (texlive)
scheme-basic
collection-langfrench
algorithm2e
biblatex
caption
enumitem
euenc
filehook
jknapltx
listings
logreq
metafont
minitoc
ms
multirow
pgf
pgfplots
placeins
polyglossia
relsize
rsfs
setspace
siunitx
standalone
ucharcat
unicode-math
xcolor
xetex
xetex-def
xkeyval
xstring
zapfding
;} )
biber
(import ./builderbot {})
];
src=null;
shellHook = ''
mkdir -p /tmp/build-thesis
echo "Juste type 'buildthesis' to build the thesis"
'';
}

BIN
figures/BZ-reaction1.png Normal file

Binary file not shown.

After

(image error) Size: 86 KiB

BIN
figures/BZ-reaction2.png Normal file

Binary file not shown.

After

(image error) Size: 88 KiB

BIN
figures/BZ-reaction3.png Normal file

Binary file not shown.

After

(image error) Size: 95 KiB

BIN
figures/BZ-reaction4.png Normal file

Binary file not shown.

After

(image error) Size: 91 KiB

BIN
figures/EscherichiaColi.jpg Normal file

Binary file not shown.

After

(image error) Size: 165 KiB

BIN
figures/assembly01.png Executable file

Binary file not shown.

After

(image error) Size: 3.4 KiB

BIN
figures/assembly02.png Executable file

Binary file not shown.

After

(image error) Size: 2.9 KiB

BIN
figures/assembly03.png Executable file

Binary file not shown.

After

(image error) Size: 3.4 KiB

198
figures/bacteria.tikz Normal file
View file

@ -0,0 +1,198 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\newcounter{bacteria}
\begin{document}
\tikzset{coord/.style={fill,inner sep=0.5mm, circle, black}}
\def \mybact#1#2#3#4#5{
\stepcounter{bacteria};
\coordinate (p#5) at #1; % position vector
\coordinate (d#5) at #2; % direction vector
\coordinate (n#5) at ($ (0,0)!1! 90:(d#5) $); % orthogonal vector
\coordinate (ft#5) at ($ (p#5) + { #3+#4 }*(d#5) + #4*(n#5) $);
\coordinate (fb#5) at ($ (p#5) + { #3+#4 }*(d#5) - #4*(n#5) $);
\coordinate (bt#5) at ($ (p#5) + {-(#3+#4)}*(d#5) + #4*(n#5) $);
\coordinate (bb#5) at ($ (p#5) + {-(#3+#4)}*(d#5) - #4*(n#5) $);
\draw[black,rounded corners=#4cm]
(bt#5) -- (bb#5) -- (fb#5) -- (ft#5) -- cycle;
%
\coordinate (f#5) at ($ (p#5) + #3*(d#5) $);
\coordinate (b#5) at ($ (p#5) - #3*(d#5) $);
% \node[coord,label=$p_{#5}$] at (p#5) {};
\node[coord,label=below:$f_{#5}$] at (f#5) {};
\node[coord,label=$b_{#5}$] at (b#5) {};
%
\coordinate (ff#5) at ($ (p#5) + {2*#3}*(d#5) $);
\coordinate (bb#5) at ($ (p#5) - {2*#3}*(d#5) $);
\draw[very thin] (ff#5) -- (bb#5);
}
\begin{tikzpicture}
%\draw [help lines] (-4,-2) grid (4,2);
\coordinate (p) at (0,0); % position vector
\coordinate (d) at ($ (0,0)!1! 33:(1,0) $); % direction vector
\coordinate (n) at ($ (0,0)!1! 90:(d) $); % orthogonal vector
\coordinate (ft) at ($ (p) + { 2+1 }*(d) + 1*(n) $);
\coordinate (fb) at ($ (p) + { 2+1 }*(d) - 1*(n) $);
\coordinate (bt) at ($ (p) + {-(2+1)}*(d) + 1*(n) $);
\coordinate (bb) at ($ (p) + {-(2+1)}*(d) - 1*(n) $);
\draw[black,rounded corners=1cm]
(bt) -- (bb) -- (fb) -- (ft) -- cycle;
\coordinate (f) at ($ (p) + 2*(d) $);
\coordinate (b) at ($ (p) - 2*(d) $);
%
\node[coord,label=below:$f_{}$] at (f) {};
\node[coord,label=$b_{}$] at (b) {};
%
\draw[|<->|,shorten >=3pt,shorten <=3pt,dashed] (f) to node[below] {$2l$} (b);
\draw[|<->|,shorten >=1pt,shorten <=3pt,dashed] (b) to node[below] {$r$} +(180:1);
\draw[|<->|,shorten >=1pt,shorten <=1pt,dashed] ($(p) + 0.8*(d)$) to node[right] {$r$} +(n);
\clip (-3,-2.5) rectangle (3,2.5);
%\draw[black!50,nearly transparent] (-3,-2.5) rectangle (3,2.5);
\end{tikzpicture}
\begin{tikzpicture}
%\draw [help lines] (-4,-3) grid (4,5);
\mybact{(0 ,3)}{($ (0,0)!1! 61:(1,0) $)}{2}{1}{1};
\mybact{(0.4,0)}{($ (0,0)!1! 33:(1,0) $)}{2}{1}{2};
\coordinate (po) at ($ (b1)!(f2)!(f1) $);
\draw[dashed] (f2) -- (po);
%\draw[rotate=-9] (po) rectangle ++(1mm,-1mm);
\node[coord,red,label=$\perp_{21}$] at (po) {};
\coordinate (pp) at ($ (b2)!(b1)!(f2) $);
\draw[dashed] (b1) -- (pp);
\node[coord,red,label=$\perp_{12}$] at (pp) {};
\coordinate (pq) at ($ (b2)!(f1)!(f2) $);
\draw[dashed] (f1) -- (pq);
\node[coord,red,label=$\perp_{12}$] at (pq) {};
\coordinate (pr) at ($ (b1)!(b2)!(f1) $);
\draw[dashed] (b2) -- (pr);
\node[coord,red,label=$\perp_{21}$] at (pr) {};
\end{tikzpicture}
% scalar_t r1 = bact1->r;
% scalar_t r2 = bact2->r;
% scalar_t l1 = bact1->l;
% scalar_t l2 = bact2->l;
% scalar_t r = r1 + r2;
% scalar_t rr = r * r;
% vector_t b1 = p1 - l1 * d1;
% vector_t f1 = p1 + l1 * d1;
% vector_t b2 = p2 - l2 * d2;
% vector_t f2 = p2 + l2 * d2;
% scalar_t mu2_f1 = clamp (dot2D_2_2 (d2, f1 - p2), -l2, l2);
% scalar_t mu2_b1 = clamp (dot2D_2_2 (d2, b1 - p2), -l2, l2);
% scalar_t mu1_f2 = clamp (dot2D_2_2 (d1, f2 - p1), -l1, l1);
% scalar_t mu1_b2 = clamp (dot2D_2_2 (d1, b2 - p1), -l1, l1);
% vector_t h2_f1 = p2 + mu2_f1 * d2;
% vector_t h2_b1 = p2 + mu2_b1 * d2;
% vector_t h1_f2 = p1 + mu1_f2 * d1;
% vector_t h1_b2 = p1 + mu1_b2 * d1;
% vector_t nf1_2 = (h2_f1 - f1);
% vector_t nb1_2 = (h2_b1 - b1);
% vector_t n1_f2 = - (h1_f2 - f2);
% vector_t n1_b2 = - (h1_b2 - b2);
% scalar_t dist2_mu2_f1 = dot2D_2_2 (nf1_2, nf1_2);
% scalar_t dist2_mu2_b1 = dot2D_2_2 (nb1_2, nb1_2);
% scalar_t dist2_mu1_f2 = dot2D_2_2 (n1_f2, n1_f2);
% scalar_t dist2_mu1_b2 = dot2D_2_2 (n1_b2, n1_b2);
\begin{tikzpicture}
\mybact{(0 ,3)}{($ (0,0)!1! 0:(1,0) $)}{2}{1}{1};
\mybact{(1 ,0)}{($ (0,0)!1! 33:(1,0) $)}{2.2}{1.2}{2};
\node[coord,label=$p_2$] at (p2) {};
\draw[|->] (p2) -- ($ (b2)!(f1)!(f2) $);
\end{tikzpicture}
\end{document}
% \begin{document}
%
% \tikzset{cell color/.style={black!20}}
%
% \newcommand{\common}{%
% \coordinate (ll) at (0cm,-1cm);
% \coordinate (ur) at (5cm, 3cm);
% \draw (ll) rectangle (ur);
% \clip (ll)+(0.1cm,0.1cm) rectangle ([shift={(-0.1cm,-0.1cm)}]ur);
% }
%
% \begin{tikzpicture}[
% every node/.style={draw, inner sep=0cm,
% minimum width=10pt, minimum height=10pt},
% arrowed/.style={-Stealth, out=-90, in=90}]
% \common
%
% \node (h1) at (1,2) {};
% \node (h2) at (2,2) {};
% \node (h3) at (3,2) {};
% \node (h4) at (4,2) {};
%
% \node (m1) at (1,1) {};
% \node (m2) at (2,1) {};
% \node (m3) at (3,1) {};
% \node (m4) at (4,1) {};
%
% \node (b1) at (1,0) {};
% \node (b2) at (2,0) {};
% \node (b3) at (3,0) {};
% \node (b4) at (4,0) {};
%
% \draw[arrowed] (h1) to (m2.north) (h3) to (m2.north) (h2) to (m2.north);
% \draw[arrowed,dashed] (h2) to (m3.north) (h4) to (m3.north) (h3) to (m3.north);
%
% \draw[arrowed] (m1) to (b2.north) (m3) to (b2.north) (m2) to (b2.north);
% \draw[arrowed,dashed] (m2) to (b3.north) (m4) to (b3.north) (m3) to (b3.north);
% \end{tikzpicture}
%
% \begin{tikzpicture}[
% c/.style={draw, inner sep=0cm,
% minimum width=10pt, minimum height=10pt},
% arrowed/.style={-Stealth, out=-90, in=90},
% mix/.style={draw, circle, inner sep=1pt}]
% \common
%
% \node[c] (h1) at (1,2) {};
% \node[c] (h2) at (2,2) {};
% \node[c] (h3) at (3,2) {};
% \node[c] (h4) at (4,2) {};
%
% \node[mix] (q1) at (1.5,1.5) {};
% \node[mix] (q2) at (3.5,1.5) {};
%
% \node[c] (m1) at (1,1) {};
% \node[c] (m2) at (2,1) {};
% \node[c] (m3) at (3,1) {};
% \node[c] (m4) at (4,1) {};
%
% \node[mix] (q3) at (2.5,0.5) {};
%
% \node[c] (b1) at (1,0) {};
% \node[c] (b2) at (2,0) {};
% \node[c] (b3) at (3,0) {};
% \node[c] (b4) at (4,0) {};
%
% \draw[arrowed] (h1) to (q1) (q1) to (m1);
% \draw[arrowed] (h2) to (q1) (q1) to (m2);
% \draw[arrowed] (h3) to (q2) (q2) to (m3);
% \draw[arrowed] (h4) to (q2) (q2) to (m4);
%
% \draw[arrowed] (m2) to (q3) (q3) to (b2);
% \draw[arrowed] (m3) to (q3) (q3) to (b3);
% \end{tikzpicture}
% \end{document}

51
figures/bb-activity.tikz Normal file
View file

@ -0,0 +1,51 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\begin{document}
\begin{tikzpicture}[scale=0.4]
\foreach \n [count=\y] in {%
0000000100000000,%
0000001111110000,%
0000001111110000,%
0000001111100000,%
0000001110000000,%
0000011100000000,%
0001111110000000,%
0001111111110000,%
0001111111100000,%
0000011000000000,%
0000000000000000 }
{
\pgfmathtodigitlist{\digitlist}{\n};
\foreach \digit [count=\x, evaluate={\c=\digit*100}] in \digitlist {
\fill[fill=black!\c] (\x,-\y) rectangle ++(1,1);
}
}
\coordinate (ul) at (0,0);
\coordinate (lr) at (17,-11);
\coordinate (bbul) at ($(ul) + (-10pt,10pt)$);
\coordinate (bblr) at ($(lr) + (10pt,-10pt)$);
\draw[very thick] (bbul) rectangle (bblr);
\draw[black!50] (ul) grid ($(lr) + (0,-0.1pt)$);
% width indicator
\pgfmathtodigitlist{\digitlist}{0001111111110000};
\foreach \digit [count=\x, evaluate={\c=\digit*100}] in \digitlist {
\fill[fill=black!\c] (\x,1) rectangle ++(1,1);
}
\draw[black!50] (0,1) grid (17,2);
% height indicator
\pgfmathtodigitlist{\digitlist}{11111111110};
\foreach \digit [count=\x, evaluate={\c=\digit*100}] in \digitlist {
\fill[fill=black!\c] (18,-\x) rectangle ++(1,1);
}
\draw[black!50] (18,0) grid (19,-11);
\node[circle, fill=black, label=below left:{$(x,y)$}] at ($(ul) - (0,11) + (-10pt,-10pt)$) {};
\draw[|.<->.|] (0,-12) -- node[midway,fill=white]{$w$} (17,-12);
\draw[|.<->.|] (-1,-11) -- node[midway,fill=white]{$h$} (-1,0);
\end{tikzpicture}
\end{document}

BIN
figures/bench.pdf Normal file

Binary file not shown.

75
figures/ca-glider.tikz Normal file
View file

@ -0,0 +1,75 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\begin{document}
\newcommand{\common}{%
\coordinate (ll) at (-0.5cm,-0.5cm);
\coordinate (ur) at ( 3.5cm, 3.5cm);
\draw[thick] (ll) rectangle (ur);
\clip (ll)+(-0.1cm,-0.1cm) rectangle ([shift={(0.1cm,0.1cm)}]ur);
}
\begin{tikzpicture}[
cell/.style={fill=black!60, inner sep=0cm,
minimum width=1cm, minimum height=1cm}]
\common
\node[cell] at (0cm,1cm) {};
\node[cell] at (1cm,1cm) {};
\node[cell] at (1cm,3cm) {};
\node[cell] at (2cm,1cm) {};
\node[cell] at (2cm,2cm) {};
\draw[xshift=0.5cm,yshift=0.5cm] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}[
cell/.style={fill=black!60, inner sep=0cm,
minimum width=1cm, minimum height=1cm}]
\common
\node[cell] at (0cm,2cm) {};
\node[cell] at (1cm,0cm) {};
\node[cell] at (1cm,1cm) {};
\node[cell] at (2cm,1cm) {};
\node[cell] at (2cm,2cm) {};
\draw[xshift=0.5cm,yshift=0.5cm] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}[
cell/.style={fill=black!60, inner sep=0cm,
minimum width=1cm, minimum height=1cm}]
\common
\node[cell] at (0cm,1cm) {};
\node[cell] at (1cm,0cm) {};
\node[cell] at (2cm,0cm) {};
\node[cell] at (2cm,1cm) {};
\node[cell] at (2cm,2cm) {};
\draw[xshift=0.5cm,yshift=0.5cm] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}[
cell/.style={fill=black!60, inner sep=0cm,
minimum width=1cm, minimum height=1cm}]
\common
\node[cell] at (1cm,0cm) {};
\node[cell] at (1cm,2cm) {};
\node[cell] at (2cm,0cm) {};
\node[cell] at (2cm,1cm) {};
\node[cell] at (3cm,1cm) {};
\draw[xshift=0.5cm,yshift=0.5cm] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}[
cell/.style={fill=black!60, inner sep=0cm,
minimum width=1cm, minimum height=1cm}]
\common
\node[cell] at (1cm,0cm) {};
\node[cell] at (2cm,0cm) {};
\node[cell] at (2cm,2cm) {};
\node[cell] at (3cm,0cm) {};
\node[cell] at (3cm,1cm) {};
\draw[xshift=0.5cm,yshift=0.5cm] (ll) grid (ur);
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,93 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\begin{document}
\newcommand{\common}{%
\coordinate (ll) at (-1cm,-1cm);
\coordinate (ur) at (3cm, 3cm);
\draw (ll) rectangle (ur);
\clip (ll)+(0.1cm,0.1cm) rectangle ([shift={(-0.1cm,-0.1cm)}]ur);
}
\begin{tikzpicture}[
every node/.style={draw, black!30, inner sep=0cm,
minimum width=10pt, minimum height=10pt},
cell/.style={black,fill=black},
neig/.style={black}]
\common
\node (h1) at (0,2) {};
\node[neig] (h2) at (1,2) {};
\node (h3) at (2,2) {};
\node[neig] (m1) at (0,1) {};
\node[cell] (m2) at (1,1) {};
\node[neig] (m3) at (2,1) {};
\node (b1) at (0,0) {};
\node[neig] (b2) at (1,0) {};
\node (b3) at (2,0) {};
\draw (m2) -- (h2);
\draw (m2) -- (m1);
\draw (m2) -- (m3);
\draw (m2) -- (b2);
\end{tikzpicture}
\begin{tikzpicture}[
every node/.style={draw, black!30, inner sep=0cm,
minimum width=10pt, minimum height=10pt},
cell/.style={black,fill=black},
neig/.style={black}]
\common
\node (h1) at (0,2) {};
\node[neig] (h2) at (1,2) {};
\node[neig] (h3) at (2,2) {};
\node[neig] (m1) at (0,1) {};
\node[cell] (m2) at (1,1) {};
\node[neig] (m3) at (2,1) {};
\node[neig] (b1) at (0,0) {};
\node[neig] (b2) at (1,0) {};
\node (b3) at (2,0) {};
\draw (m2) -- (h2);
\draw (m2) -- (m1);
\draw (m2) -- (m3);
\draw (m2) -- (b2);
\draw (m2) -- (b1);
\draw (m2) -- (h3);
\end{tikzpicture}
\begin{tikzpicture}[
every node/.style={draw, black!30, inner sep=0cm,
minimum width=10pt, minimum height=10pt},
cell/.style={black,fill=black},
neig/.style={black}]
\common
\node[neig] (h1) at (0,2) {};
\node[neig] (h2) at (1,2) {};
\node[neig] (h3) at (2,2) {};
\node[neig] (m1) at (0,1) {};
\node[cell] (m2) at (1,1) {};
\node[neig] (m3) at (2,1) {};
\node[neig] (b1) at (0,0) {};
\node[neig] (b2) at (1,0) {};
\node[neig] (b3) at (2,0) {};
\draw (m2) -- (m1);
\draw (m2) -- (m3);
\draw (m2) -- (b1);
\draw (m2) -- (b2);
\draw (m2) -- (b3);
\draw (m2) -- (h1);
\draw (m2) -- (h2);
\draw (m2) -- (h3);
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,78 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\begin{document}
\tikzset{cell color/.style={black!20}}
\newcommand{\common}{%
\coordinate (ll) at (0cm,-1cm);
\coordinate (ur) at (5cm, 3cm);
\draw (ll) rectangle (ur);
\clip (ll)+(0.1cm,0.1cm) rectangle ([shift={(-0.1cm,-0.1cm)}]ur);
}
\begin{tikzpicture}[
every node/.style={draw, inner sep=0cm,
minimum width=10pt, minimum height=10pt},
arrowed/.style={-Stealth, out=-90, in=90}]
\common
\node (h1) at (1,2) {};
\node (h2) at (2,2) {};
\node (h3) at (3,2) {};
\node (h4) at (4,2) {};
\node (m1) at (1,1) {};
\node (m2) at (2,1) {};
\node (m3) at (3,1) {};
\node (m4) at (4,1) {};
\node (b1) at (1,0) {};
\node (b2) at (2,0) {};
\node (b3) at (3,0) {};
\node (b4) at (4,0) {};
\draw[arrowed] (h1) to (m2.north) (h3) to (m2.north) (h2) to (m2.north);
\draw[arrowed,dashed] (h2) to (m3.north) (h4) to (m3.north) (h3) to (m3.north);
\draw[arrowed] (m1) to (b2.north) (m3) to (b2.north) (m2) to (b2.north);
\draw[arrowed,dashed] (m2) to (b3.north) (m4) to (b3.north) (m3) to (b3.north);
\end{tikzpicture}
\begin{tikzpicture}[
c/.style={draw, inner sep=0cm,
minimum width=10pt, minimum height=10pt},
arrowed/.style={-Stealth, out=-90, in=90},
mix/.style={draw, circle, inner sep=1pt}]
\common
\node[c] (h1) at (1,2) {};
\node[c] (h2) at (2,2) {};
\node[c] (h3) at (3,2) {};
\node[c] (h4) at (4,2) {};
\node[mix] (q1) at (1.5,1.5) {};
\node[mix] (q2) at (3.5,1.5) {};
\node[c] (m1) at (1,1) {};
\node[c] (m2) at (2,1) {};
\node[c] (m3) at (3,1) {};
\node[c] (m4) at (4,1) {};
\node[mix] (q3) at (2.5,0.5) {};
\node[c] (b1) at (1,0) {};
\node[c] (b2) at (2,0) {};
\node[c] (b3) at (3,0) {};
\node[c] (b4) at (4,0) {};
\draw[arrowed] (h1) to (q1) (q1) to (m1);
\draw[arrowed] (h2) to (q1) (q1) to (m2);
\draw[arrowed] (h3) to (q2) (q2) to (m3);
\draw[arrowed] (h4) to (q2) (q2) to (m4);
\draw[arrowed] (m2) to (q3) (q3) to (b2);
\draw[arrowed] (m3) to (q3) (q3) to (b3);
\end{tikzpicture}
\end{document}

65
figures/cc.tikz Normal file
View file

@ -0,0 +1,65 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}[scale=0.9,
shf/.style={isosceles triangle, shape border rotate=90, minimum height=0.5cm,
minimum width=.7cm, fill=red!30!white, isosceles triangle stretches},
she/.style={fill=black, rectangle, inner xsep=0.3cm, inner ysep=0.06cm},
shc/.style={fill=black, circle, inner sep=0.1cm},
2cell/.style={fill=red!30!white},
1cell/.style={draw=black, ultra thick},
0cell/.style={shape=circle, fill=black, draw=white, ultra thick, inner sep=0.1cm}]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Figure on the left
\begin{scope}[xshift=-6cm, yshift=1.55cm,every node/.style={draw=white, ultra thick, inner sep=0}]
%nodes
\node[shf] (f) [label=above:$f$] {};
\node[she] (e2) [label=right:$e_2$,below=of f] {};
\node[she] (e1) [label=right:$e_1$,left=of e2] {};
\node[she] (e3) [label=right:$e_3$,right=of e2] {};
\node[shc] (c2) [label=below:$c_2$,below=of e1] {};
\node[shc] (c1) [label=below:$c_1$,below=of e2] {};
\node[shc] (c3) [label=below:$c_3$,below=of e3] {};
%incidence
\draw (f) -- (e1);\draw (f) -- (e2);\draw (f) -- (e3);
\draw (e1) -- (c1);\draw (e1) -- (c2);
\draw (e2) -- (c2);\draw (e2) -- (c3);
\draw (e3) -- (c1);\draw (e3) -- (c3);
\end{scope}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Figure on the center
\begin{scope}[scale=0.8]
\fill[2cell] (90:2cm) -- (210:2cm) -- (330:2cm);
\node at (0,0) {$f$};
\end{scope}
\draw[1cell] (90 :2cm) -- node[above left] {$e_1$} (210:2cm);
\draw[1cell] (210:2cm) -- node[below] {$e_2$} (330:2cm);
\draw[1cell] (330:2cm) -- node[above right] {$e_3$} ( 90:2cm);
\node[0cell,label=above:$c_1$] at ( 90:2cm) {};
\node[0cell,label=left:$c_2$] at (210:2cm) {};
\node[0cell,label=right:$c_3$] at (330:2cm) {};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Figure on the right
\begin{scope}[xshift=6cm]
\begin{scope}[scale=0.8]
\fill[2cell] (90:2cm) -- (210:2cm) -- (330:2cm);
\node at (0,0) {$12$};
\end{scope}
\draw[1cell] (90 :2cm) -- node[above left] {$5$} (210:2cm);
\draw[1cell] (210:2cm) -- node[below] {$6$} (330:2cm);
\draw[1cell] (330:2cm) -- node[above right] {$5$} ( 90:2cm);
\node[0cell,label=above:{$(0,4)$}] at ( 90:2cm) {};
\node[0cell,label=below:{$(-3,0)$}] at (210:2cm) {};
\node[0cell,label=below:{$(3,0)$}] at (330:2cm) {};
\end{scope}
\end{tikzpicture}
\end{document}

BIN
figures/cellcomplex2.pdf Normal file

Binary file not shown.

View file

@ -0,0 +1,55 @@
\begin{picture}(0,0)%
\includegraphics{cellcomplex2.pdf}%
\end{picture}%
\setlength{\unitlength}{4144sp}%
%
\begingroup\makeatletter\ifx\SetFigFont\undefined%
\gdef\SetFigFont#1#2#3#4#5{%
\reset@font\fontsize{#1}{#2pt}%
\fontfamily{#3}\fontseries{#4}\fontshape{#5}%
\selectfont}%
\fi\endgroup%
\begin{picture}(7181,1938)(-1708,-1030)
\put(2476,-961){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$c_2$}%
}}}}
\put(676,-961){\makebox(0,0)[rb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$c_3$}%
}}}}
\put(2521,614){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$f$}%
}}}}
\put(2071,-16){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$e_1$}%
}}}}
\put(1576,749){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$c_1$}%
}}}}
\put(1081,-16){\makebox(0,0)[rb]{\smash{{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$e_3$}%
}}}}
\put(1576,-961){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$e_2$}%
}}}}
\put(3601,-961){\makebox(0,0)[rb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$(-3,0)$}%
}}}}
\put(4501,749){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$(0,4)$}%
}}}}
\put(5446,614){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$12$}%
}}}}
\put(4501,-961){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$6$}%
}}}}
\put(4996,-16){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$5$}%
}}}}
\put(4006,-16){\makebox(0,0)[rb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$5$}%
}}}}
\put(5401,-961){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$(3,0)$}%
}}}}
\put(-899,749){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$f$}%
}}}}
\put(-224,-961){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$c_3$}%
}}}}
\put(-899,-961){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$c_1$}%
}}}}
\put(-1574,-961){\makebox(0,0)[b]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$c_2$}%
}}}}
\put(-764,-106){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\familydefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$e_2$}%
}}}}
\put(-89,-106){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$e_3$}%
}}}}
\put(-1439,-106){\makebox(0,0)[lb]{\smash{{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}$e_1$}%
}}}}
\end{picture}%

100
figures/cnn-synapses.tikz Normal file
View file

@ -0,0 +1,100 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\usetikzlibrary{circuits.logic.CDH}
\usetikzlibrary{decorations.markings}
\usepackage{ifthen}
\newcommand{\gimmelegs}[1]{%
\draw[black!50,densely dash dot] (#1.east) -- +( 4mm,0cm);
\draw (#1.input 1) -- +(-4mm,0cm);
\draw[black!50,densely dash dot] (#1.input 2) -- +(-4mm,0cm);
\ifthenelse{\equal{\detokenize{#1}}{\detokenize{cell}}}{}{%
\node[xshift=-3mm,fill,circle,inner sep=1pt] (in#1) at (#1.input 1) {};
}
}
\begin{document}
% Sum inputs
\begin{tikzpicture}[circuit logic CDH, node distance=20mm]
\node (cell) [and gate,fill=black!50] {}; \gimmelegs{cell}
\node (celle) [and gate,right=of cell] {}; \gimmelegs{celle}
\node (cellse) [and gate,below=of celle] {}; \gimmelegs{cellse}
\node (cells) [and gate,below=of cell] {}; \gimmelegs{cells}
\node (cellsw) [and gate,left=of cells] {}; \gimmelegs{cellsw}
\node (cellw) [and gate,left=of cell] {}; \gimmelegs{cellw}
\node (cellnw) [and gate,above=of cellw] {}; \gimmelegs{cellnw}
\node (celln) [and gate,above=of cell] {}; \gimmelegs{celln}
\node (cellne) [and gate,above=of celle] {}; \gimmelegs{cellne}
\node[white,fill=black,circle,inner sep=1pt]
(hub) at (barycentric cs:cell=1,cellnw=1) {$\sum$};
\begin{scope}[decoration={markings,mark=at position 0.5 with {\arrow{Stealth}}}]
% Let's go to the hub
\draw[postaction={decorate},out=-90,in=130] (incellnw) to (hub);
\draw[postaction={decorate},out=-90,in=90] (incelln) to (hub);
\draw[postaction={decorate},out=-90,in=40] (incellne) to (hub);
\draw[postaction={decorate},out=90 ,in=10,looseness=0.5] (incelle) to (hub);
\draw[postaction={decorate},out=90 ,in=-20] (incellse) to (hub);
\draw[postaction={decorate},out=90 ,in=160] (incellw) to (hub);
\draw[postaction={decorate},out=90 ,in=200,looseness=1.5] (incellsw) to (hub);
\draw[postaction={decorate},out=90 ,in=-120] (incells) to (hub);
% Then feedback my cell
\draw[postaction={decorate},thick,out=-70 ,in=90] (hub) to (cell.north);
\end{scope}
\begin{scope}[on background layer]
\draw[thin] ($ (cell.center) + (-4cm,-3.5cm) $)
rectangle ($ (cell.center) + ( 4cm, 3.5cm) $);
\end{scope}
\end{tikzpicture}
\renewcommand{\gimmelegs}[1]{%
\draw (#1.east) -- +(4mm,0cm);
\draw[black!50,densely dash dot] (#1.input 1) -- +(-4mm,0cm);
\draw[black!50,densely dash dot] (#1.input 2) -- +(-4mm,0cm);
\ifthenelse{\equal{\detokenize{#1}}{\detokenize{cell}}}{}{%
\node[xshift=2mm,fill,circle,inner sep=1pt] (out#1) at (#1.output) {};
}
}
% Sum outputs
\begin{tikzpicture}[circuit logic CDH, node distance=20mm]
\node (cell) [and gate,fill=black!50] {}; \gimmelegs{cell}
\node (celle) [and gate,right=of cell] {}; \gimmelegs{celle}
\node (cellse) [and gate,below=of celle] {}; \gimmelegs{cellse}
\node (cells) [and gate,below=of cell] {}; \gimmelegs{cells}
\node (cellsw) [and gate,left=of cells] {}; \gimmelegs{cellsw}
\node (cellw) [and gate,left=of cell] {}; \gimmelegs{cellw}
\node (cellnw) [and gate,above=of cellw] {}; \gimmelegs{cellnw}
\node (celln) [and gate,above=of cell] {}; \gimmelegs{celln}
\node (cellne) [and gate,above=of celle] {}; \gimmelegs{cellne}
\node[white,fill=black,circle,inner sep=1pt]
(hub) at (barycentric cs:cell=1,cellne=1) {$\sum$};
\begin{scope}[decoration={markings,mark=at position 0.5 with {\arrow{Stealth}}}]
% Let's go to the hub
\draw[postaction={decorate},out=-90,in=130] (outcellnw) to (hub);
\draw[postaction={decorate},out=-90,in=90] (outcelln) to (hub);
\draw[postaction={decorate},out=-90,in=40] (outcellne) to (hub);
\draw[postaction={decorate},out=90 ,in=10] (outcelle) to (hub);
\draw[postaction={decorate},out=90 ,in=-80,looseness=1.5] (outcellse) to (hub);
\draw[postaction={decorate},out=90 ,in=160] (outcellw) to (hub);
\draw[postaction={decorate},out=90 ,in=200,looseness=1.2] (outcellsw) to (hub);
\draw[postaction={decorate},out=90 ,in=-100] (outcells) to (hub);
% Then feedback my cell
\draw[postaction={decorate},thick,out=-120 ,in=90] (hub) to (cell.north);
\end{scope}
\begin{scope}[on background layer]
\draw[thin] ($ (cell.center) + (-4cm,-3.5cm) $)
rectangle ($ (cell.center) + ( 4cm, 3.5cm) $);
\end{scope}
\end{tikzpicture}
\end{document}

96
figures/collision.tikz Normal file
View file

@ -0,0 +1,96 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\newcounter{bacteria}
\tikzset{coord/.style={fill,inner sep=0.5mm, circle, black}}
\def \mybact#1#2#3#4#5{
\stepcounter{bacteria};
\coordinate (p#5) at #1; % position vector
\coordinate (d#5) at #2; % direction vector
\coordinate (n#5) at ($ (0,0)!1! 90:(d#5) $); % orthogonal vector
\coordinate (ft#5) at ($ (p#5) + { #3+#4 }*(d#5) + #4*(n#5) $);
\coordinate (fb#5) at ($ (p#5) + { #3+#4 }*(d#5) - #4*(n#5) $);
\coordinate (bt#5) at ($ (p#5) + {-(#3+#4)}*(d#5) + #4*(n#5) $);
\coordinate (bb#5) at ($ (p#5) + {-(#3+#4)}*(d#5) - #4*(n#5) $);
\draw[black,rounded corners=#4cm]
(bt#5) -- (bb#5) -- (fb#5) -- (ft#5) -- cycle;
%
\coordinate (f#5) at ($ (p#5) + #3*(d#5) $);
\coordinate (b#5) at ($ (p#5) - #3*(d#5) $);
% \node[coord,label=$p_{#5}$] at (p#5) {};
%
\coordinate (ff#5) at ($ (p#5) + {2*#3}*(d#5) $);
\coordinate (bb#5) at ($ (p#5) - {2*#3}*(d#5) $);
\draw[very thin] (ff#5) -- (bb#5);
}
% Usage:
% \mybact {|position vector|} {|direction vector|} {width}{height}{name};
\begin{tikzpicture}
\draw [help lines] (0,0) grid (6,2);
\mybact{(3,1)}{(1,0)}{2}{1}{\arabic{bacteria}};
\node[coord,label=above:$f_\arabic{bacteria}$] at (f1) {};
\node[coord,label=below:$b_\arabic{bacteria}$] at (b1) {};
\end{tikzpicture}
\newcommand{\bactsPosAndAngle}{%
\coordinate (PosA) at ( 0 ,3);
\coordinate (AngA) at ($ (0,0) !1! 28:(1,0) $);
\coordinate (PosB) at (-0.7,0);
\coordinate (AngB) at ($ (0,0) !1! -3:(1,0) $);
\mybact{(PosA)}{(AngA)}{2}{1}{1};
\mybact{(PosB)}{(AngB)}{2}{1}{2};
}
\begin{tikzpicture}
\bactsPosAndAngle
\node[coord,label=above:$f_1$] at (f1) {};
\node[coord,label=below:$f_2$] at (f2) {};
\node[coord,label=below:$b_2$] at (b2) {};
\coordinate (po) at ($ (b1)!(f2)!(f1) $);
\draw[dashed] (f2) -- (po);
% \draw[rotate=-9] (po) rectangle ++(1mm,-1mm);
\node[coord,red,label=above:$\perp_{f_2}$] at (po) {};
\coordinate (pp) at ($ (b2)!(b1)!(f2) $);
\draw[dashed,thick,red] (b1) -- (pp);
\node[coord,red,label=below:$\perp_{b_1}$] at (pp) {};
\coordinate (pq) at ($ (b2)!(f1)!(f2) $);
\draw[dashed] (f1) -- (pq);
\node[coord,label=$b_1$] at (b1) {};
\node[coord,red,label=right:$\perp_{f_1}$] at (pq) {};
\coordinate (pr) at ($ (b1)!(b2)!(f1) $);
\draw[dashed] (b2) -- (pr);
\node[coord,red,label=above:$\perp_{f_2}$] at (pr) {};
\end{tikzpicture}
\begin{tikzpicture}
\bactsPosAndAngle
\coordinate (col) at ($(b1)!.5!(pp)$);
\node[coord] at (f1) {};
\node[coord] at (f2) {};
\node[coord] at (b2) {};
\node[coord] at (b1) {};
\node[coord,red] at ($ (b2)!(b1)!(f2) $) {};
%\node[coord,label=left:$P$] at (col) {};
\node[coord,label=left:$p_1$] at (p1) {};
\node[coord,label=below:$p_2$] at (p2) {};
\draw[-Stealth] (p1) to node[auto] {$\orr{r_1}$} (col);
\draw[-Stealth] (p2) to node[auto,swap] {$\orr{r_2}$} (col);
\draw[-Stealth] (col) to node[auto] {$\orr{n}$} ($(col)!.4!(b1)$);
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,315 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\tikzset{%
neuron/.style={fill,black,circle,inner sep=0,minimum width=5pt},
family/.style={draw,fill=white,circle,inner sep=0,minimum width=2cm},
link/.style={-Stealth},
transition/.style={thick, double,-Stealth},
curly/.style={decorate,decoration={brace,amplitude=10pt}},
curlyM/.style={decorate,decoration={brace,amplitude=10pt,mirror}},
idq1/.style={magenta!60!white},
idq2/.style={orange!60!white},
idq3/.style={red!60!white},
idn1/.style={fill,violet!70!white},
idn2/.style={fill,blue!70!white},
idn3/.style={fill,cyan!70!white},
}
\begin{tikzpicture}
\draw (-1,1) rectangle (1,-2);
\node[neuron] (A1) at (0 ,0) {};
\node[neuron] (B1) at (0.5 ,-1) {};
\node[neuron] (C1) at (0.2 ,-1.5) {};
\node[neuron] (D1) at (-0.5,-1.1) {};
\draw[link] (A1) to (B1);
\draw[link] (A1) to (D1);
\draw[link] (C1) to (D1);
\draw[link] (B1) to (D1);
\draw[transition] (1.5,-0.5) to node[auto] {$k_{t\rightarrow t'}$} (2.5,-0.5);
\begin{scope}[xshift=4cm]
\draw (-1,1) rectangle (1,-2);
\node[neuron] (A2) at (0 ,0) {};
\node[neuron] (B2) at (0.5 ,-1) {};
\node[neuron] (C2) at (0.2 ,-1.5) {};
\node[neuron] (D2) at (-0.5,-1.1) {};
\draw[link] (A2) to (B2);
\draw[link] (A2) to (D2);
\draw[link] (C2) to (D2);
\draw[link] (B2) to (D2);
\draw[transition] (1.5,-0.5) to node[auto] {$k_{t'\rightarrow t''}$} (2.5,-0.5);
\end{scope}
\begin{scope}[xshift=8cm]
\draw (-1,1) rectangle (1,-2);
\node[neuron] (A3) at (0 ,0) {};
\node[neuron] (B3) at (0.5 ,-1) {};
\node[neuron] (C3) at (0.2 ,-1.5) {};
\draw[link] (A3) to (B3);
\end{scope}
\draw[dashed] (-2.5cm,-2.5cm) -- +(0.5cm,0cm);
\draw[dashed] ( 10cm,-2.5cm) -- +(0.5cm,0cm);
\draw ( -2cm,-2.5cm) --
( 10cm,-2.5cm);
\begin{scope}[yshift=-2.5cm]
\foreach \x/\t in {0/$t$,4/$t'$,8/$t''$}
\draw (\x,1pt) -- (\x,-3pt) node[anchor=north] {\t};
\end{scope}
\end{tikzpicture}
\begin{tikzpicture}
\node[neuron] (N1) at (0,0) {};
\node[neuron] (N2) at (90:0.7cm) {};
\node[neuron] (N3) at (10:0.5cm) {};
\coordinate (Center) at (barycentric cs:N1=1,N2=1,N3=1);
\draw[thin] (Center) circle (1cm);
\node at ($(Center) + (-0.8,0)$) {$P$};
\node[neuron] (N) at ($(Center) + ( 20:2.5cm)$) {};
\node at ($(N.east) + (0.2,0)$) {$n_1$};
\node[neuron] (D) at ($(Center) + (-20:2.5cm)$) {};
\node at ($(D.east) + (0.2,0)$) {$n_2$};
\draw[dashed] ($(Center) + (90:1cm)$) to (N);
\draw[dashed] ($(Center) + (-50:1cm)$) to (N);
\draw[link] (N1) to (N2);
\draw[link] (N1) to (N3);
\draw[link] (N) to node[auto] {$s_{12}$} (D);
\draw[link] (N1) to (D);
\draw[link] (N2) to (D);
\draw[link] (N3) to (D);
\end{tikzpicture}
\begin{tikzpicture}
\node[neuron] (N1) at (0,0) {};
\node[neuron] (N2) at (90:0.7cm) {};
\node[neuron] (N3) at (10:0.5cm) {};
\draw[link] (N1) to (N2);
\draw[link] (N1) to (N3);
\coordinate (Center) at (barycentric cs:N1=1,N2=1,N3=1);
\draw[thin] (Center) circle (1cm);
\node at ($(Center) + (-0.8,0)$) {$P$};
\node[neuron] (N) at ($(Center) + ( 20:2.5cm)$) {};
\node at ($(N.north) + (0,0.2)$) {$n$};
\draw[dashed] ($(Center) + (90:1cm)$) to (N);
\draw[dashed] ($(Center) + (-50:1cm)$) to (N);
\coordinate (Center2) at ($(N) + (-20:2.5cm)$);
\node[neuron] (N1') at ($(Center2) + (0,0) $) {};
\node[neuron] (N2') at ($(Center2) + (110:0.7cm)$) {};
\node[neuron] (N3') at ($(Center2) + (30:0.5cm)$) {};
\node[neuron] (N4') at ($(Center2) + (-130:0.5cm)$) {};
\draw[link] (N1') to (N2');
\draw[link] (N1') to (N3');
\draw[link] (N1') to (N4');
\draw[link] (N2') to (N3');
\draw[thin] (Center2) circle (1cm);
\node at ($(Center2) + (0.8,0)$) {$P'$};
\draw[dashed] ($(Center2) + ( 90:1cm)$) to (N);
\draw[dashed] ($(Center2) + (-130:1cm)$) to (N);
\end{tikzpicture}
\begin{tikzpicture}
\coordinate (cN1) at (0,0);
\coordinate (cN2) at (90:0.7cm);
\coordinate (cN3) at (10:0.5cm);
\coordinate (Center) at (barycentric cs:N1=1,N2=1,N3=1);
\coordinate (cN) at ($(Center) + ( 40:2.5cm)$);
\coordinate (cN') at ($(cN) + (4cm,0)$);
\coordinate (Center2) at ($(cN') + (-40:2.5cm)$);
%Cluster
\fill[black!20] ($(Center) + (0,1cm)$) rectangle ($(Center2) + (0,-1cm)$);
%Bindings
\filldraw[white,draw=black,dashed,opacity=0.6] ($(Center) + (110:1cm)$)
-- (cN)
-- ($(Center) + (-30:1cm)$)
-- cycle;
\filldraw[white,draw=black,dashed,opacity=0.6] ($(Center2) + ( 70:1cm)$)
-- (cN')
-- ($(Center2) + (-150:1cm)$)
-- cycle;
%Circles
\filldraw[white,draw=black,thin] (Center) circle (1cm);
\filldraw[white,draw=black,thin] (Center2) circle (1cm);
%IDs
\node at ($(Center) + (-0.8,0)$) {$P$};
\node at ($(Center2) + (0.8,0)$) {$P'$};
%Network P
\node[neuron] (N1) at (cN1) {};
\node[neuron] (N2) at (cN2) {};
\node[neuron] (N3) at (cN3) {};
\draw[link] (N1) to (N2);
\draw[link] (N1) to (N3);
%Network P'
\node[neuron] (N1') at ($(Center2) + (0,0) $) {};
\node[neuron] (N2') at ($(Center2) + (110:0.7cm)$) {};
\node[neuron] (N3') at ($(Center2) + (30:0.5cm)$) {};
\node[neuron] (N4') at ($(Center2) + (-130:0.5cm)$) {};
\draw[link] (N2') to (N1');
\draw[link] (N1') to (N3');
\draw[link] (N1') to (N4');
\draw[link] (N3') to (N2');
%Cat-neurons
\node[neuron,label=above:$n_1$] (N) at (cN) {};
\node[neuron,label=above:$n_2$] (N') at (cN') {};
\draw[link] (N) to node[auto]{\small{$(P,P')$}} (N');
\end{tikzpicture}
\begin{tikzpicture}
\coordinate (Center) at (0,0);
\coordinate (cN) at ($(Center) + ( 40:2.5cm)$);
\coordinate (cM) at ($(cN) + (4cm,0)$);
\coordinate (cN') at ($(cM) + (4cm,0)$);
\coordinate (Center2) at ($(Center) + (4cm,0)$);
\coordinate (Center3) at ($(cM) + (-40:2.5cm)$);
\coordinate (Center4) at ($(Center3) + (4cm,0)$);
%Cluster
\fill[black!20] ($(Center) + (0,1cm)$) rectangle ($(Center2) + (0,-1cm)$);
\fill[black!20] ($(Center3) + (0,1cm)$) rectangle ($(Center4) + (0,-1cm)$);
%Bindings
\filldraw[white,draw=black,dashed,opacity=0.6] ($(Center) + (110:1cm)$)
-- (cN)
-- ($(Center) + (-30:1cm)$)
-- cycle;
\filldraw[white,draw=black,dashed,opacity=0.6] ($(Center2) + (110:1cm)$)
-- (cM)
-- ($(Center2) + (-30:1cm)$)
-- cycle;
\filldraw[white,draw=black,dashed,opacity=0.6] ($(Center3) + ( 70:1cm)$)
-- (cM)
-- ($(Center3) + (-150:1cm)$)
-- cycle;
\filldraw[white,draw=black,dashed,opacity=0.6] ($(Center4) + ( 70:1cm)$)
-- (cN')
-- ($(Center4) + (-150:1cm)$)
-- cycle;
%Neuron nets
\node[family] at (Center) {$P$};
\node[family] at (Center2) {$Q$};
\node[family] at (Center3) {$Q'$};
\node[family] at (Center4) {$P'$};
%Cat-neurons
\node[neuron,label=above:$n_1$] (N) at (cN) {};
\node[neuron,label=above:$n_2$] (N') at (cN') {};
\node[neuron,label=above:$n_3$] (M) at (cM) {};
\draw[link] (N) to node[auto]{\small{$(P,Q)$}} (M);
\draw[link] (M) to node[auto]{\small{$(Q',P')$}} (N');
\draw[link,bend left] (N) to (N');
\end{tikzpicture}
\begin{tikzpicture}
\coordinate (Center) at (0,0);
\coordinate (cN) at ($(Center) + ( 55:3cm)$);
\coordinate (cM) at ($(cN) + (4cm,0)$);
\coordinate (cN') at ($(cM) + (4cm,0)$);
\coordinate (Center2) at ($(Center) + (4cm,0)$);
\coordinate (Center3) at ($(cM) + (-55:3cm)$);
\coordinate (Center4) at ($(Center3) + (4cm,0)$);
% Specific identity
\coordinate (silb1) at ($(cN) + (-1cm,2cm)$);
\coordinate (silb2) at ($(Center) + (-1.5cm,-2cm)$);
\coordinate (corner1) at ($(cN') + (1cm,-0.5cm)$);
\coordinate (corner2) at ($(Center4) + (1.5cm,1.5cm)$);
\coordinate (lalb1) at ($(corner1) + (0,2.5cm)$);
\coordinate (lalb2) at ($(corner2) + (0,-3.5cm)$);
\coordinate (IQde) at ($(corner2) + (-1cm,0.1cm)$);
\coordinate (IQa) at ($(corner1) + (0.1cm,1cm)$);
\coordinate (centerSep) at (barycentric cs:cM=4,Center2=1,Center3=1);
\coordinate (levelCue) at ($ (centerSep) + (-8cm,0cm) $);
\coordinate (curlyCue) at ($ (centerSep) + (7cm,0cm) $);
%\draw[thick] (silb1) rectangle (corner1);
%\draw[thick] (silb2) rectangle (corner2);
%\node at (silb1) [label=south east:{Identité spécifique}] {};
%\node at (silb2) [label=north east:{Identité spécifique}] {};
\node at (levelCue) [label=north east:{Niveau $n+1$},yshift=-1mm] {};
\node at (levelCue) [label=south east:{Niveau $n$},yshift=1mm] {};
\draw[double] (levelCue) -- (curlyCue) -- ($ (curlyCue) + (3.2cm,0cm) $);
% Curlies
\draw[curlyM] ($ (curlyCue) + (0cm,0.05cm) $) -- +(0cm,1.5cm)
node (idnh) [midway,anchor=west,xshift=0.4cm] {Identité spécifique};
\draw[curly ] ($ (curlyCue) + (0cm,-0.05cm) $) -- +(0cm,-3cm)
node (idnb) [midway,anchor=west,xshift=0.4cm] {Identité spécifique};
%\draw[-Stealth, thick] ([xshift=-1cm]idnb.north) -- ([xshift=-1cm]idnh.south)
%node [midway,auto,swap,text width={width("Identification")},align=center,
%fill=white] {Identification\\ qualitative};
%Cluster
\fill[black,opacity=0.4] ($(Center) + (0,1cm)$) rectangle ($(Center2) + (0,-1cm)$);
\fill[black,opacity=0.4] ($(Center3) + (0,1cm)$) rectangle ($(Center4) + (0,-1cm)$);
%Bindings
\filldraw[idq1,dashed,opacity=0.6] ($(Center) + (110:1cm)$)
-- (cN)
-- ($(Center) + (-30:1cm)$)
-- cycle;
\filldraw[idq2,dashed,opacity=0.6] ($(Center2) + (110:1cm)$)
-- (cM)
-- ($(Center2) + (-30:1cm)$)
-- cycle;
\filldraw[idq2,dashed,opacity=0.6] ($(Center3) + ( 70:1cm)$)
-- (cM)
-- ($(Center3) + (-150:1cm)$)
-- cycle;
\filldraw[idq3,dashed,opacity=0.6] ($(Center4) + ( 70:1cm)$)
-- (cN')
-- ($(Center4) + (-150:1cm)$)
-- cycle;
%Neuron nets
\node[family,idq1] at (Center) {$P$};
\node[family,idq2] at (Center2) {$Q$};
\node[family,idq2] at (Center3) {$Q'$};
\node[family,idq3] at (Center4) {$P'$};
%Cat-neurons
\node[neuron,idq1,label=above:$n_1$] (N) at (cN) {};
\node[neuron,idq2,label=above:$n_2$] (M) at (cM) {};
\node[neuron,idq3,label=above:$n_3$] (N') at (cN') {};
\draw[link] (N) to node[auto]{\small{$(P,Q)$}} (M);
\draw[link] (M) to node[auto]{\small{$(Q',P')$}} (N');
% Identité numérique
\begin{scope}[on background layer]
\node[fit=(N) (M) (N'),inner sep=5mm,idn1,rounded corners] {};
\node[fit=(Center) (Center2), inner sep=1.2cm,idn2,rounded corners] {};
\node[fit=(Center3) (Center4), inner sep=1.2cm,idn3,rounded corners] {};
\end{scope}
\end{tikzpicture}
\end{document}

BIN
figures/dla-active000.png Executable file

Binary file not shown.

After

(image error) Size: 163 B

BIN
figures/dla-active110.png Executable file

Binary file not shown.

After

(image error) Size: 407 B

BIN
figures/dla-active687.png Executable file

Binary file not shown.

After

(image error) Size: 172 B

BIN
figures/dla-normal000.png Executable file

Binary file not shown.

After

(image error) Size: 171 B

BIN
figures/dla-normal110.png Executable file

Binary file not shown.

After

(image error) Size: 465 B

BIN
figures/dla-normal687.png Executable file

Binary file not shown.

After

(image error) Size: 437 B

46
figures/ds2.tikz Normal file
View file

@ -0,0 +1,46 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}
\draw (0,-1.0) node {$S$};
\draw[thick,scale around={1.2:(1.5,1.5)}] (0,0) rectangle (3,3);
\begin{scope}[dashed]
\draw (1.1,1.1) rectangle (1.9,1.9);
\draw (0,0) rectangle (0.9,1.9);
\draw[rotate around={ 90:(1.5,1.5)}] (0,0) rectangle (0.9,1.9);
\draw[rotate around={180:(1.5,1.5)}] (0,0) rectangle (0.9,1.9);
\draw[rotate around={270:(1.5,1.5)}] (0,0) rectangle (0.9,1.9);
\end{scope}
\draw (1.5,-1.0) node {$s_1$};
% Middle S
\begin{scope}[xshift=4cm]
\draw[thick,scale around={1.2:(1.5,1.5)}] (0,0) rectangle (3,3);
\begin{scope}[dashed]
\draw (1.1,1.1) rectangle (1.9,1.9);
\draw (0,0) rectangle (1.9,0.9);
\draw[rotate around={ 90:(1.5,1.5)}] (0,0) rectangle (1.9,0.9);
\draw[rotate around={180:(1.5,1.5)}] (0,0) rectangle (1.9,0.9);
\draw[rotate around={270:(1.5,1.5)}] (0,0) rectangle (1.9,0.9);
\end{scope}
\draw (1.5,-1.0) node {$s_2$};
\end{scope}
\draw (8.5,1.5) node {$\cdots$};
% Right S
\begin{scope}[xshift=10cm]
\draw[thick,scale around={1.2:(1.5,1.5)}] (0,0) rectangle (3,3);
\begin{scope}[dashed]
\draw (1.1,1.1) rectangle (1.9,1.9);
\draw (0,0) rectangle (0.9,0.9);
\draw[rotate around={ 90:(1.5,1.5)}] (0,0) rectangle (0.9,0.9);
\draw[rotate around={180:(1.5,1.5)}] (0,0) rectangle (0.9,0.9);
\draw[rotate around={270:(1.5,1.5)}] (0,0) rectangle (0.9,0.9);
\draw (1.1,0) rectangle ++(0.8,0.9);
\draw[rotate around={ 90:(1.5,1.5)}] (1.1,0) rectangle ++(0.8,0.9);
\draw[rotate around={180:(1.5,1.5)}] (1.1,0) rectangle ++(0.8,0.9);
\draw[rotate around={270:(1.5,1.5)}] (1.1,0) rectangle ++(0.8,0.9);
\end{scope}
\draw (1.5,-1.0) node {$s_i$};
\end{scope}
\end{tikzpicture}
\end{document}

BIN
figures/evolution01.png Executable file

Binary file not shown.

After

(image error) Size: 3.2 KiB

BIN
figures/evolution02.png Executable file

Binary file not shown.

After

(image error) Size: 3.4 KiB

BIN
figures/evolution03.png Executable file

Binary file not shown.

After

(image error) Size: 3.7 KiB

BIN
figures/fire-active05.png Normal file

Binary file not shown.

After

(image error) Size: 176 B

BIN
figures/fire-active22.png Normal file

Binary file not shown.

After

(image error) Size: 216 B

BIN
figures/fire-active95.png Normal file

Binary file not shown.

After

(image error) Size: 187 B

BIN
figures/fire-normal05.png Normal file

Binary file not shown.

After

(image error) Size: 229 B

BIN
figures/fire-normal22.png Normal file

Binary file not shown.

After

(image error) Size: 639 B

BIN
figures/fire-normal95.png Normal file

Binary file not shown.

After

(image error) Size: 1.1 KiB

32
figures/fms.tikz Normal file
View file

@ -0,0 +1,32 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}[scale=2,
model/.style={draw},
system/.style={draw},
arrowed/.style={auto,-Stealth,shorten <=2pt,shorten >=2pt,bend angle=10},
darowed/.style={auto,double,Stealth-Stealth,shorten <=2pt,shorten >=2pt},
validate/.style={arrowed},
validate2/.style={arrowed,dashed},
annotation/.style={font=\scriptsize}]
\node[model] (F) at ( 1cm, 0) {Formalisme};
\node[model] (M) at ( -1cm, 0) {Modèle};
\draw[validate] (F) to node[annotation,swap] {permet d'exprimer} (M);
%\draw[validate,bend right] (M1) to node[annotation,swap] {validation} (W);
% Separation
\draw[dashed] (-1.5cm,-0.5cm) to ( 2.5cm,-0.5cm);
\coordinate (legend) at (2,-0.5cm);
\node at (legend) [label=north:{Abstrait}] {};
\node at (legend) [label=south:{Concret}] {};
\node[system] (S) at ( 0cm,-1cm) {Système};
\draw[darowed] (M) to node[annotation,yshift=2pt] {explique} (S);
\end{tikzpicture}
\end{document}

BIN
figures/ftl01.png Normal file

Binary file not shown.

After

(image error) Size: 33 KiB

BIN
figures/ftl02.png Normal file

Binary file not shown.

After

(image error) Size: 56 KiB

BIN
figures/ftl03.png Normal file

Binary file not shown.

After

(image error) Size: 93 KiB

BIN
figures/ftl04.png Normal file

Binary file not shown.

After

(image error) Size: 92 KiB

BIN
figures/ftl05.png Normal file

Binary file not shown.

After

(image error) Size: 139 KiB

35
figures/gbf.tikz Normal file
View file

@ -0,0 +1,35 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}
\clip(-2,-2) rectangle (2,2);
\begin{scope}[shift={(.5,.5)}]
\draw[densely dotted] (-3,-3) grid (3,3);
\end{scope}
\draw[fill] (1,0) circle (1.5pt) node[right]
{\GBF{e}};
\draw[fill] (0,1) circle (1.5pt) node[above]
{\GBF{n}};
\draw[fill] (1,1) circle (1.5pt) node[above right]
{\GBF{ne}};
\draw[fill] (1,-1) circle (1.5pt) node[below right]
{\GBF{se}};
\draw[thick,->] (0,0) -- (1,0);
\draw[thick,->] (0,0) -- (0,1);
\draw[thick,->] (0,0) -- (1,1);
\draw[thick,->] (0,0) -- (1,-1);
\draw[fill] (-1,0) circle (1.5pt) node[left]
{\GBF{w}};
\draw[fill] (0,-1) circle (1.5pt) node[below]
{\GBF{s}};
\draw[fill] (-1,-1) circle (1.5pt) node[below left]
{\GBF{sw}};
\draw[fill] (-1,1) circle (1.5pt) node[above left]
{\GBF{nw}};
\draw[dashed,->] (0,0) -- (-1,-0);
\draw[dashed,->] (0,0) -- (-0,-1);
\draw[dashed,->] (0,0) -- (-1,-1);
\draw[dashed,->] (0,0) -- (-1, 1);
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,6 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
%stub
\end{document}

33
figures/link.tikz Normal file
View file

@ -0,0 +1,33 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}[auto,
mout/.style={->,shorten >=1pt, >=Stealth, semithick},
leg/.style={inner sep=1pt,font=\scriptsize,yshift=-1pt}
]
\node (S) at (0cm, 0cm) {\includegraphics[width=2.5cm]{figures/operateursS} };
\node (fS) at (3cm, 1.5cm) {\includegraphics[width=2.5cm]{figures/operateursfS} };
\node (StfS) at (6cm, 1.5cm) {\includegraphics[width=2.5cm]{figures/operateursStfS}};
\node (StS) at (3cm,-1.5cm) {\includegraphics[width=2.5cm]{figures/operateursStS} };
\node (fStS) at (6cm,-1.5cm) {\includegraphics[width=2.5cm]{figures/operateursfStS}};
\node (LkS) at (9cm, 0cm) {\includegraphics[width=2.5cm]{figures/operateursLkS} };
\node[leg] at (S.south) {$S$};
\node[leg] at (fS.south) {$\fermeture{S}$};
\node[leg] at (StS.south) {$\etoile{S}$};
\node[leg] at (StfS.south) {$\etoile{\fermeture{S}}$};
\node[leg] at (fStS.south) {$\fermeture{\etoile{S}}$};
\node[leg] at (LkS.south) {$\liaison{S}$};
\draw [mout] (S) to [out = -60, in = 180] node [swap] {$\etoile{\textvisiblespace}$} (StS);
\draw [mout] (S) to [out = 60, in = 180] node {$\fermeture{\textvisiblespace}$} (fS);
\draw [mout] (fS) to [out = 60, in = 120] node [swap] {$\etoile{\textvisiblespace}$} (StfS);
\draw [mout] (StS) to [out = -60, in =-120] node {$\fermeture{\textvisiblespace}$} (fStS);
\draw [semithick] (StfS.east) to [out = 0, in = 180] (LkS.west);
\draw [semithick] (fStS.east) to [out = 0, in = 180] (LkS.west);
\node (LkSt) at (7cm,0cm) {$\textvisiblespace - \textvisiblespace$};
\end{tikzpicture}
\end{document}

BIN
figures/lks.png Executable file

Binary file not shown.

After

(image error) Size: 13 KiB

Binary file not shown.

After

(image error) Size: 2.1 MiB

273
figures/margolus.tikz Normal file
View file

@ -0,0 +1,273 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\begin{document}
\tikzset{cell color/.style={black!20}}
\newcommand{\common}{%
\coordinate (ll) at (-2.5cm,-2.5cm);
\coordinate (ur) at (2.5cm,2.5cm);
\draw (ll) rectangle (ur);
\clip (ll)+(0.1cm,0.1cm) rectangle ([shift={(-0.1cm,-0.1cm)}]ur);
\fill[cell color] (ll) rectangle (ur);
\draw[very thick, white] (ll) grid (ur);
}
\begin{tikzpicture}
\coordinate (ll) at (-2.5cm,-2.5cm);
\coordinate (ur) at (2.5cm,2.5cm);
\draw (ll) rectangle (ur);
\clip (ll)+(0.1cm,0.1cm) rectangle ([shift={(-0.1cm,-0.1cm)}]ur);
\fill[cell color] (ll) rectangle (ur);
\draw[very thick, white, step=2cm] (ll) grid (ur);
\begin{scope}[xshift=-2.5cm,yshift=-2.5cm]
\node at (1,1) {a1};
\node at (1,2) {$\strut$a2};
\node at (2,2) {$\strut$\underline{a3}};
\node at (2,1) {a4};
\draw[step=1cm, xshift=0.5cm, yshift=0.5cm] (0.1,0.1) grid (1.9,1.9);
\node[opacity=0.5] at (1.5,1.5) {\Huge{A}};
\end{scope}
\begin{scope}[xshift=-2.5cm,yshift=-0.5cm]
\node at (1,1) {$\strut$b1};
\node at (1,2) {b2};
\node at (2,2) {b3};
\node at (2,1) {$\strut$\underline{b4}};
\draw[step=1cm, xshift=0.5cm, yshift=0.5cm] (0.1,0.1) grid (1.9,1.9);
\node[opacity=0.5] at (1.5,1.5) {\Huge{B}};
\end{scope}
\begin{scope}[xshift=-0.5cm,yshift=-0.5cm]
\node at (1,1) {$\strut$\underline{c1}};
\node at (1,2) {c2};
\node at (2,2) {c3};
\node at (2,1) {$\strut$c4};
\draw[step=1cm, xshift=0.5cm, yshift=0.5cm] (0.1,0.1) grid (1.9,1.9);
\node[opacity=0.5] at (1.5,1.5) {\Huge{C}};
\end{scope}
\begin{scope}[xshift=-0.5cm,yshift=-2.5cm]
\node at (1,1) {d1};
\node at (1,2) {$\strut$\underline{d2}};
\node at (2,2) {$\strut$d3};
\node at (2,1) {d4};
\draw[step=1cm, xshift=0.5cm, yshift=0.5cm] (0.1,0.1) grid (1.9,1.9);
\node[opacity=0.5] at (1.5,1.5) {\Huge{D}};
\end{scope}
\draw[very thick, step=4cm, xshift=2cm, yshift=2cm ] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}
\common
\draw[very thick, step=2cm] (ll) grid (ur);
\begin{scope}[xshift=-2.5cm,yshift=-2.5cm]
\node at (1,1) {A};
\node at (1,2) {B};
\node at (2,2) {C};
\node at (2,1) {D};
\end{scope}
\end{tikzpicture}
\begin{tikzpicture}
\common
\begin{scope}[xshift=-2.5cm,yshift=-2.5cm]
\node (oG) at (0,0) {};
\node (oH) at (0,1) {};
\node (oI) at (0,2) {};
\node (oJ) at (0,3) {};
\node (oK) at (1,3) {};
\node (oL) at (2,3) {};
\node (oM) at (3,3) {};
\node (oN) at (3,2) {};
\node (oO) at (3,1) {};
\node (oP) at (3,0) {};
\node (oE) at (2,0) {};
\node (oF) at (1,0) {};
\end{scope}
\begin{scope}[xshift=-1cm,yshift=-1cm, scale=0.5,
every node/.style={fill=black,inner sep=0, minimum size=0.5cm}]
\clip (-2,-2) rectangle (2,2);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm] (ll) grid (ur);
\begin{scope}[scale=0.5, white]
\node at (-1,-1) {A};
\node at (-1, 1) {B};
\node at ( 1, 1) {C};
\node at ( 1,-1) {D};
\end{scope}
\draw[white] (-0.90,-0.90) grid (0.90,0.90);
\begin{scope}[shift={(-1.5,-1.5)},
every node/.style={inner sep=0, minimum size=2pt}]
\node (0) at ( 0, 0) {};
\node (1) at ( 0, 3) {};
\node (2) at ( 3, 3) {};
\node (3) at ( 3, 0) {};
\node (4) at ( 0, 1) {};
\node (5) at ( 0, 2) {};
\node (6) at ( 1, 3) {};
\node (7) at ( 2, 3) {};
\node (8) at ( 3, 2) {};
\node (9) at ( 3, 1) {};
\node (10) at ( 2, 0) {};
\node (11) at ( 1, 0) {};
\end{scope}
\end{scope}
\draw[very thick, step=2cm, black!50] (ll) grid (ur);
\draw[very thick] (-2,-2) rectangle (0,0);
\draw[-stealth, thick] (oG.center) to (0.center);
\draw[-stealth, thick] (oJ.center) to (1.center);
\draw[-stealth, thick] (oM.center) to (2.center);
\draw[-stealth, thick] (oP.center) to (3.center);
\draw[-stealth, thick] [bend right] (oH.center) to (4.center);
\draw[-stealth, thick] [bend left] (oI.center) to (5.center);
\draw[-stealth, thick] [bend right] (oK.center) to (6.center);
\draw[-stealth, thick] [bend left] (oL.center) to (7.center);
\draw[-stealth, thick] [bend right] (oN.center) to (8.center);
\draw[-stealth, thick] [bend left] (oO.center) to (9.center);
\draw[-stealth, thick] [bend right] (oE.center) to (10.center);
\draw[-stealth, thick] [bend left] (oF.center) to (11.center);
\end{tikzpicture}
\begin{tikzpicture}
\common
\begin{scope}[xshift=-1cm,yshift=-1cm, scale=0.5,
every node/.style={fill=black!50,inner sep=0, minimum size=0.5cm}]
\clip (-2,-2) rectangle (2,2);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm, black!50] (ll) grid (ur);
\begin{scope}[scale=0.5, white]
\node at (-1,-1) {A'};
\node at (-1, 1) {B'};
\node at ( 1, 1) {C'};
\node at ( 1,-1) {D'};
\end{scope}
\end{scope}
\begin{scope}[xshift=1cm,yshift=1cm, scale=0.5,
every node/.style={fill=black!50,inner sep=0, minimum size=0.5cm}]
\clip (-2,-2) rectangle (2,2);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm, black!50] (ll) grid ([shift={(-4,-4)}]ur);
\begin{scope}[scale=0.5, white]
\node at (-1,-1) {};
\end{scope}
\end{scope}
\begin{scope}[black!50]
\draw[very thick] (-2,-2) rectangle (0,0);
\draw[very thick] (0,0) rectangle (2,2);
\end{scope}
\draw[very thick, step=2cm, xshift=1cm, yshift=1cm] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}
\common
\begin{scope}[xshift=-1cm,yshift=-1cm, scale=0.5,
every node/.style={fill=black!50,inner sep=0, minimum size=0.5cm}]
\clip (-2,-2) rectangle (2,2);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm, black!50] (ll) grid (ur);
\begin{scope}[scale=0.5, white]
\node (A') at (-1,-1) {A'};
\node (B') at (-1, 1) {B'};
\node at ( 1, 1) {C'};
\node (D') at ( 1,-1) {D'};
\end{scope}
\end{scope}
\begin{scope}[xshift=0cm,yshift=0cm, scale=0.5,
every node/.style={fill=black!50,inner sep=0, minimum size=0.5cm}]
\clip (-2,-2) rectangle (0,0);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm, black!50] (ll) grid (ur);
\begin{scope}[scale=0.5, white]
\node at (-1,-1) {C'};
\end{scope}
\end{scope}
\begin{scope}[xshift=0cm,yshift=0cm, scale=0.5,
every node/.style={fill=black!50,inner sep=0, minimum size=0.5cm}]
\clip (0,0) rectangle (2,2);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm, black!50] (ll) grid (ur);
\begin{scope}[scale=0.5, white]
\node at (1,1) {};
\end{scope}
\end{scope}
\begin{scope}[black!50]
\draw[very thick] (-2,-2) rectangle (0,0);
\draw[very thick] (0,0) rectangle (2,2);
\end{scope}
\begin{scope}[scale=0.25,xshift=-2cm,yshift=-2cm,
every node/.style={circle, inner sep=0, minimum size=2pt}]
\node (A) at (-1,-1) {};
\node (B) at (-1, 1) {};
\node (D) at ( 1,-1) {};
\draw[stealth-, thick] (A.center) to +( 225:2cm);
\draw[stealth-, thick] (B.center) to [bend right] ([shift={(0,0.5)}]B'.center);
\draw[stealth-, thick] (D.center) to [bend left ] ([shift={(0.5,0)}]D'.center);
\end{scope}
\draw[very thick, step=2cm, xshift=1cm,yshift=1cm] (ll) grid (ur);
\end{tikzpicture}
\begin{tikzpicture}
\common
\begin{scope}[xshift=-1cm,yshift=-1cm, scale=0.5,
every node/.style={black!50, inner sep=0, minimum size=0.5cm},
important/.style={white, fill=black!50}]
\clip (-2,-2) rectangle (2,2);
\fill[cell color] (-2,-2) rectangle (2,2);
\draw[step=1cm, black!50] (ll) grid (ur);
\begin{scope}[scale=0.5]
\begin{scope}[shift={(-2,-2)}]
\node[important] at (-1,-1) {A'};
\node at (-1, 1) {B'};
\node at ( 1, 1) {C'};
\node at ( 1,-1) {D'};
\end{scope}
\begin{scope}[shift={(-2, 2)}]
\node at (-1,-1) {A'};
\node[important] at (-1, 1) {B'};
\node at ( 1, 1) {C'};
\node at ( 1,-1) {D'};
\end{scope}
\begin{scope}[shift={( 2, 2)}]
\node at (-1,-1) {A'};
\node at (-1, 1) {B'};
\node[important] at ( 1, 1) {C'};
\node at ( 1,-1) {D'};
\end{scope}
\begin{scope}[shift={( 2,-2)}]
\node at (-1,-1) {A'};
\node at (-1, 1) {B'};
\node at ( 1, 1) {C'};
\node[important] at ( 1,-1) {D'};
\end{scope}
\end{scope}
\end{scope}
\draw[very thick, white] (ll) grid (ur);
\draw[very thick, step=2cm, xshift=1cm,yshift=1cm] (ll) grid (ur);
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,297 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
%1
\begin{tikzpicture}
\node (A) at (0,0) {$\cat{A}$};
\node (B) at (4,0) {$\cat{B}$};
\node (C) at (2,0) {$\cat{C}$};
\draw[-Stealth] (A) to node[auto] {$S$} (C);
\draw[-Stealth] (B) to node[auto,swap] {$T$} (C);
\end{tikzpicture}
%2
\begin{tikzpicture}
\node (sa1) at (0,2) {$S(\alpha)$};
\node (sa2) at (2,2) {$S(\alpha')$};
\node (tb2) at (2,0) {$T(\beta')$};
\node (tb1) at (0,0) {$T(\beta)$};
\draw[-Stealth] (sa1) to node[auto] {$S(g)$} (sa2);
\draw[-Stealth] (sa1) to node[auto,swap] {$f$} (tb1);
\draw[-Stealth] (sa2) to node[auto] {$f'$} (tb2);
\draw[-Stealth] (tb1) to node[auto,swap] {$T(h)$} (tb2);
\end{tikzpicture}
%3
\begin{tikzpicture}
\node (M0) at (2,0) {$M_0$};
\node (M1) at (1,2) {$M$};
\node (M2) at (3,2) {$M'$};
\draw[-Stealth] (M1) to node[auto,swap] {$v_{M}$} (M0);
\draw[-Stealth] (M2) to node[auto] {$v_{M'}$} (M0);
\draw[-Stealth] (M1) to node[auto] {$a$} (M2);
\end{tikzpicture}
%4: Produit
\begin{tikzpicture}[node distance=1cm and 2cm]
\node (P) at (0,0) {$P$};
\node (X) [left=of P] {$X$};
\node (Y) [right=of P] {$Y$};
\node (Q) [above=of P] {$Q$};
\draw[-Stealth] (P) to node[auto] {$p_1$} (X);
\draw[-Stealth] (P) to node[auto,swap] {$p_2$} (Y);
\draw[-Stealth] (Q) to node[auto,swap] {$p'_1$} (X);
\draw[-Stealth] (Q) to node[auto] {$p'_2$} (Y);
\draw[-Stealth,dashed] (Q) to node[auto] {$\exists ! u$} (P);
\end{tikzpicture}
%5 Coproduit
\begin{tikzpicture}[node distance=1cm and 2cm]
\node (P) at (0,0) {$P$};
\node (X) [left=of P] {$X$};
\node (Y) [right=of P] {$Y$};
\node (Q) [above=of P] {$Q$};
\draw[-Stealth] (X) to node[auto,swap] {$i_1$} (P);
\draw[-Stealth] (Y) to node[auto] {$i_2$} (P);
\draw[-Stealth] (X) to node[auto] {$i'_1$} (Q);
\draw[-Stealth] (Y) to node[auto,swap] {$i'_2$} (Q);
\draw[-Stealth,dashed] (P) to node[auto,swap] {$\exists ! u$} (Q);
\end{tikzpicture}
%6 Produit fibré (1) aka Pullback
\begin{tikzpicture}
\node (X) at ( 0,0) {$X$};
\node (Y) at ( 2,2) {$Y$};
\node (Z) at ( 2,0) {$Z$};
\node (P) at ( 0,2) {$P$};
\draw[-Stealth] (X) to node[auto,swap] {$f$} (Z);
\draw[-Stealth] (Y) to node[auto] {$g$} (Z);
\draw[-Stealth] (P) to node[auto,swap] {$p_1$} (X);
\draw[-Stealth] (P) to node[auto] {$p_2$} (Y);
\end{tikzpicture}
%7 Produit fibré (2) Pullback
\begin{tikzpicture}
\node (X) at ( 0,0) {$X$};
\node (Y) at ( 2,2) {$Y$};
\node (Z) at ( 2,0) {$Z$};
\node (P) at ( 0,2) {$P$};
\node (Q) at (-1,3) {$Q$};
\draw[-Stealth] (X) to node[auto,swap] {$f$} (Z);
\draw[-Stealth] (Y) to node[auto] {$g$} (Z);
\draw[-Stealth] (P) to node[auto,swap] {$p_1$} (X);
\draw[-Stealth] (P) to node[auto] {$p_2$} (Y);
\draw[-Stealth,bend right] (Q) to node[auto,swap] {$p'_1$} (X);
\draw[-Stealth,bend left] (Q) to node[auto] {$p'_2$} (Y);
\draw[-Stealth,dashed] (Q) to node[auto] {$\exists ! u$} (P);
\end{tikzpicture}
%8 Somme amalgamée (1) aka Pushout
\begin{tikzpicture}
\node (X) at ( 0,0) {$X$};
\node (Y) at ( 2,2) {$Y$};
\node (Z) at ( 2,0) {$Z$};
\node (P) at ( 0,2) {$P$};
\draw[-Stealth] (Z) to node[auto] {$f$} (X);
\draw[-Stealth] (Z) to node[auto,swap] {$g$} (Y);
\draw[-Stealth] (X) to node[auto] {$i_1$} (P);
\draw[-Stealth] (Y) to node[auto,swap] {$i_2$} (P);
\end{tikzpicture}
%9 Somme amalgamée (2) aka Pushout
\begin{tikzpicture}
\node (X) at ( 0,0) {$X$};
\node (Y) at ( 2,2) {$Y$};
\node (Z) at ( 2,0) {$Z$};
\node (P) at ( 0,2) {$P$};
\node (Q) at (-1,3) {$Q$};
\draw[-Stealth] (Z) to node[auto] {$f$} (X);
\draw[-Stealth] (Z) to node[auto,swap] {$g$} (Y);
\draw[-Stealth] (X) to node[auto] {$i_1$} (P);
\draw[-Stealth] (Y) to node[auto,swap] {$i_2$} (P);
\draw[-Stealth,bend left] (X) to node[auto] {$i'_1$} (Q);
\draw[-Stealth,bend right] (Y) to node[auto,swap] {$i'_2$} (Q);
\draw[-Stealth,dashed] (P) to node[auto,swap] {$\exists ! u$} (Q);
\end{tikzpicture}
%10 Slice catégorie
\begin{tikzpicture}[node distance=1.2cm and 1cm]
\node (X) at (0,0) {$X$};
\node (Y1) [above left =of X] {$Y1$};
\node (Y2) [above right=of X] {$Y2$};
\draw[-Stealth] (Y1) to node[auto] {$g$} (Y2);
\draw[-Stealth] (Y1) to node[auto,swap] {$f_1$} (X);
\draw[-Stealth] (Y2) to node[auto] {$f_2$} (X);
\end{tikzpicture}
%11
\begin{tikzpicture}
\node (M1) at (-5,0) {$\model{M}{1}$};
\node (M12) at (-3,0) {$\model{M}{12}$};
\node (M2) at (-1,0) {$\model{M}{2}$};
\node (M) at (-3,2) {$\modelM'$};
\node (equiv) at (0,0) {$\Leftrightarrow$};
\node (E1) at (1,0) {$E_{\model{M}{1}}$};
\node (E12) at (3,0) {$E_{\model{M}{12}}$};
\node (E2) at (5,0) {$E_{\model{M}{2}}$};
\node (ER) at (3,-2) {$E_{\model{M}{S}}$};
\node (EM) at (3,2) {$E_{\modelM'}$};
\draw[-Stealth] (M12) to node[auto,swap] {$\absA_1$} (M1);
\draw[-Stealth] (M12) to node[auto] {$\absA_2$} (M2);
\draw[-Stealth,dashed] (M) to node[auto] {$\absA'$} (M12);
\draw[-Stealth] (M) to node[auto,swap] {$\absA'_1$} (M1);
\draw[-Stealth] (M) to node[auto] {$\absA'_2$} (M2);
\draw[-Stealth] (E1) to node[auto] {$f_{\absA_1}$} (E12);
\draw[-Stealth] (E2) to node[auto,swap] {$f_{\absA_2}$} (E12);
\draw[-Stealth,dashed] (E12) to node[auto,swap] {$f_{\absA'}$} (EM);
\draw[-Stealth] (E1) to node[auto] {$f_{\absA'_1}$} (EM);
\draw[-Stealth] (E2) to node[auto,swap] {$f_{\absA'_2}$} (EM);
\draw[-Stealth] (ER) to node[auto] {$\sigma_{\model{M}{1}}$} (E1);
\draw[-Stealth] (ER) to node[auto,swap] {$\sigma_{\model{M}{2}}$} (E2);
\end{tikzpicture}
%12
\begin{tikzpicture}
\node (M1) at (-5,0) {$\model{M}{1}$};
\node (M12) at (-3,2) {$\model{M}{12}^0$};
\node (M2) at (-1,0) {$\model{M}{2}$};
\node (M0) at (-3,0) {$\modelM_0$};
\node (equiv) at (0,0) {$\Leftrightarrow$};
\node (E1) at (1,0) {$E_{\model{M}{1}}$};
\node (E12) at (3,2) {$E_{\model{M}{12}^0}$};
\node (E2) at (5,0) {$E_{\model{M}{2}}$};
\node (ER) at (3,-2) {$E_{\model{M}{S}}$};
\node (EM) at (3,0) {$E_{\modelM_0}$};
\draw[-Stealth] (M12) to node[auto,swap] {$\absA_1$} (M1);
\draw[-Stealth] (M12) to node[auto] {$\absA_2$} (M2);
\draw[-Stealth] (M1) to node[auto] {$\absA^0_1$} (M0);
\draw[-Stealth] (M2) to node[auto,swap] {$\absA^0_2$} (M0);
\draw[-Stealth] (E1) to node[auto] {$f_{\absA_1}$} (E12);
\draw[-Stealth] (E2) to node[auto,swap] {$f_{\absA_2}$} (E12);
\draw[-Stealth] (EM) to node[auto,swap] {$f_{\absA^0_1}$} (E1);
\draw[-Stealth] (EM) to node[auto] {$f_{\absA^0_2}$} (E2);
\draw[-Stealth] (ER) to node[auto] {$\sigma_{\model{M}{1}}$} (E1);
\draw[-Stealth] (ER) to node[auto,swap] {$\sigma_{\model{M}{2}}$} (E2);
\draw[-Stealth] (ER) to node[auto,swap] {$\sigma_{\model{M}{0}}$} (EM);
\end{tikzpicture}
%13
\begin{tikzpicture}
\node (Mp) at (-3,1) {$\model{M}{+}$};
\node (Mm) at (-1,1) {$\model{M}{-}$};
\node (eq) at (0,1) {$\Leftrightarrow$};
\node (Er) at (2,0) {$E_{\model{M}{S}}$};
\node (Ep) at (1,2) {$E_{\model{M}{+}}$};
\node (Em) at (3,2) {$E_{\model{M}{-}}$};
\draw[-Stealth] (Mp) to node[auto] {$\absA$} (Mm);
\draw[-Stealth] (Er) to node[auto] {$\sigma_{\model{M}{+}}$} (Ep);
\draw[-Stealth] (Er) to node[auto,swap] {$\sigma_{\model{M}{-}}$} (Em);
\draw[-Stealth] (Em) to node[auto,swap] {$f_\absA$} (Ep);
\end{tikzpicture}
%14
\begin{tikzpicture}
\node (Mp) at (-3,2) {$\model{M}{+}$};
\node (Mm) at (-1,2) {$\model{M}{-}$};
\node (eq) at (0,2) {$\Leftrightarrow$};
\node (Er) at (2,0) {$E_{\model{M}{S}}$};
\node (Ep) at (1,2) {$E_{\model{M}{+}}$};
\node (Em) at (3,2) {$E_{\model{M}{-}}$};
\node (eq) at (4,2) {$\stackrel{\ftr{U}_\cat{AMon}}\mapsfrom$};
\node (ap) at (5,2) {$\Phi_+$};
\node (am) at (7,2) {$\Phi_-$};
\draw[-Stealth] (Mp) to node[auto] {$\absA$} (Mm);
\draw[-Stealth] (Er) to node[auto] {$\sigma_{\model{M}{+}}$} (Ep);
\draw[-Stealth] (Er) to node[auto,swap] {$\sigma_{\model{M}{-}}$} (Em);
\draw[-Stealth] (Em) to node[auto,swap] {$f_\absA$} (Ep);
\draw[-Stealth] (am) to node[auto,swap] {$h$} (ap);
\end{tikzpicture}
%15
\begin{tikzpicture}
\node (M1) at (-2,0) {$\model{M}{1}$};
\node (M12) at (0,0) {$\model{M}{12}$};
\node (M2) at (2,0) {$\model{M}{2}$};
\node (M) at (0,2) {$\modelM'$};
\draw[-Stealth] (M1) to node[auto] {$\absA_1$} (M12);
\draw[-Stealth] (M2) to node[auto,swap] {$\absA_2$} (M12);
\draw[-Stealth,dashed] (M12) to node[auto,swap] {$\absA'$} (M);
\draw[-Stealth] (M1) to node[auto] {$\absA'_1$} (M);
\draw[-Stealth] (M2) to node[auto,swap] {$\absA'_2$} (M);
\end{tikzpicture}
%16
\begin{tikzpicture}
\node (M1) at (-2,0) {$E_{\model{M}{1}}$};
\node (M12) at (0,0) {$E_{\model{M}{12}}$};
\node (M2) at (2,0) {$E_{\model{M}{2}}$};
\node (M) at (0,2) {$E_{\modelM'}$};
\node (R) at (0,-2) {$E_{\model{M}{S}}$};
\draw[-Stealth] (M12) to node[auto,swap] {$f_{\absA_1}$} (M1);
\draw[-Stealth] (M12) to node[auto] {$f_{\absA_2}$} (M2);
\draw[-Stealth,dashed] (R) to node[auto,swap] {$\sigma_{\model{M}{12}}$} (M12);
\draw[-Stealth] (R) to node[auto] {$\sigma_{\model{M}{1}}$} (M1);
\draw[-Stealth] (R) to node[auto,swap] {$\sigma_{\model{M}{2}}$} (M2);
\draw[-Stealth] (M) to node[auto,swap] {$f_{\absA'_1}$} (M1);
\draw[-Stealth] (M) to node[auto] {$f_{\absA'_2}$} (M2);
\draw[-Stealth,dashed] (M) to node[auto] {$f_{\absA'}$} (M12);
\end{tikzpicture}
%17
\begin{tikzpicture}
\node (M1) at (-5,0) {$\model{M}{1}$};
\node (M12) at (-3,0) {$\model{M}{12}^0$};
\node (M2) at (-1,0) {$\model{M}{2}$};
\node (M0) at (-3,2) {$\model{M}{0}$};
\node (equiv) at (0,0) {$\Leftrightarrow$};
\node (E1) at (1,0) {$E_{\model{M}{1}}$};
\node (E12) at (3,0) {$E_{\model{M}{12}^0}$};
\node (E2) at (5,0) {$E_{\model{M}{2}}$};
\node (ER) at (3,-2) {$E_{\model{M}{S}}$};
\node (EM) at (3,2) {$E_{\model{M}{0}}$};
\draw[-Stealth] (M1) to node[auto] {$\absA_1$} (M12);
\draw[-Stealth] (M2) to node[auto,swap] {$\absA_2$} (M12);
%%\draw[-Stealth,dashed] (M0) to node[auto] {$\absA'$} (M12);
\draw[-Stealth] (M0) to node[auto,swap] {$\absA^0_1$} (M1);
\draw[-Stealth] (M0) to node[auto] {$\absA^0_2$} (M2);
\draw[-Stealth] (E12) to node[auto,swap] {$f_{\absA_1}$} (E1);
\draw[-Stealth] (E12) to node[auto] {$f_{\absA_2}$} (E2);
%\draw[-Stealth,dashed] (E12) to node[auto,swap] {$f_{\absA'}$} (EM);
\draw[-Stealth] (E1) to node[auto] {$f_{\absA^0_1}$} (EM);
\draw[-Stealth] (E2) to node[auto,swap] {$f_{\absA^0_2}$} (EM);
\draw[-Stealth] (ER) to node[auto] {$\sigma_{\model{M}{1}}$} (E1);
\draw[-Stealth] (ER) to node[auto,swap] {$\sigma_{\model{M}{2}}$} (E2);
\draw[-Stealth,dashed] (ER) to node[auto,swap] {$\sigma_{\model{M}{12}^0}$} (E12);
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,66 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}[scale=2,
model/.style={draw},
system/.style={draw,circle},
arrowed/.style={auto,-Stealth,shorten <=2pt,shorten >=2pt,bend angle=10},
darowed/.style={auto,double,Stealth-Stealth,shorten <=2pt,shorten >=2pt},
validate/.style={arrowed},
validate2/.style={arrowed,dashed},
annotation/.style={font=\scriptsize}]
\node[model] (M1) at ( 0, 0.7) {$\modelM$};
\node[model] (W) at ( 0, 0) {$\model{M}{S}$};
\draw[validate] (M1) to node[annotation,swap] {validation $\sigma_{\modelM}$} (W);
%\draw[validate,bend right] (M1) to node[annotation,swap] {validation} (W);
% Returning diagram
%\draw[validate2,bend right] (W) to (M1);
% Separation
\draw[dashed] (-1,-1) to [bend left=70] ( 1,-1);
\node[system] (S) at ( 0,-0.8) {$S$};
\draw[darowed] (W) to node[annotation,yshift=2pt] {expériences/mesures} (S);
\end{tikzpicture}
\begin{tikzpicture}[scale=2,
model/.style={draw},
system/.style={draw,circle},
arrowed/.style={auto,-Stealth,shorten <=2pt,shorten >=2pt,bend angle=10},
darowed/.style={auto,double,Stealth-Stealth,shorten <=2pt,shorten >=2pt},
validate/.style={arrowed},
validate2/.style={arrowed,dashed},
abstract/.style={arrowed,thick},
abstract2/.style={arrowed,dashed,thick},
annotation/.style={font=\scriptsize}]
\node[model] (M1) at (-1, 1) {$E_{\model{M}{1}}$};
%\node[model] (M2) at ( 0, 1) {$M_2$};
\node[model] (M3) at ( 1, 1) {$E_{\model{M}{2}}$};
\node[model] (W) at ( 0, 0) {$E_{\model{M}{S}}$};
\draw[validate,bend left] (W.west) to node[annotation,swap] {$\sigma_{\model{M}{1}}$} (M1.south);
%\draw[validate] (M2) to node[annotation] {validation} (W.north);
\draw[validate,bend right] (W.east) to node[annotation] {$\sigma_{\model{M}{2}}$} (M3.south);
\draw[abstract,bend left] (M1) to node[annotation,swap] {$a$} (M3);
%\draw[abstract,bend left] (M2) to node[annotation] {abstraction} (M3);
% Returning diagram
%\draw[abstract2,bend left] (M2) to (M1);
%\draw[abstract2,bend left] (M3) to (M2);
%\draw[validate2,bend right] (W.north west) to (M1);
%\draw[validate2,bend left] (W.north east) to (M2);
\end{tikzpicture}
\begin{tikzpicture}[scale=2]
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,31 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\begin{document}
\begin{tikzpicture}[%
shader/.style={draw,fill=white,nearly opaque, minimum size=1.5cm,%
align=center, node distance=5mm},
prgrbl/.style={shader,opaque,thick,font=\bfseries},
prgrbo/.style={prgrbl,dashed},
f/.tip={Fast Triangle[cap angle=120]},
>/.tip={Triangle Cap[cap angle=120] . f f}, % Normal tips
>-</.tip={>[reversed]} % Reversed tips
]
\node[shader] (S1) at (0,0) {Vertex\\ Specification};
\node[prgrbl,right=of S1] (S2) {Vertex\\ Shader};
\node[prgrbo,right=of S2] (S3) {Tessellation};
\node[prgrbo,right=of S3] (S4) {Geometry\\ Shader};
\node[shader,right=of S4] (S5) {Vertex\\ Post-Processing};
\node[shader,below=of S5] (S6) {Primitive\\ Assembly};
\node[shader,left =of S6] (S7) {Rasterization};
\node[prgrbo,left =of S7] (S8) {Fragment\\ Shader};
\node[shader,left =of S8] (S9) {Per-Sample\\ Operations};
\begin{scope}[on background layer]
\draw[line width=1cm, >->,black!40,rounded corners]
($(S1.center) + (-3cm,0)$) to (S5.center)%
to (S6.center) to ($(S9.center) + (-3cm,0)$);
\end{scope}
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,49 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
% Link de S
\begin{tikzpicture}
\input{operateurs}
\draw[1cell] (D.corner 1) -- (D.corner 2);
\draw[1cell] (D.corner 2) -- (D.corner 3);
\draw[1cell] (D.corner 3) -- (D.corner 4);
\draw[1cell] (E.corner 2) -- (E.corner 3);
\draw[1cell] (E.corner 3) -- (E.corner 4);
\draw[1cell] (E.corner 4) -- (E.corner 5);
\draw[1cell] (F.corner 3) -- (F.corner 4);
\draw[1cell] (F.corner 4) -- (F.corner 5);
\draw[1cell] (F.corner 5) -- (F.corner 6);
\draw[1cell] (G.corner 4) -- (G.corner 5);
\draw[1cell] (G.corner 5) -- (G.corner 6);
\draw[1cell] (G.corner 6) -- (G.corner 1);
\draw[1cell] (B.corner 5) -- (B.corner 6);
\draw[1cell] (B.corner 6) -- (B.corner 1);
\draw[1cell] (B.corner 1) -- (B.corner 2);
\draw[1cell] (C.corner 6) -- (C.corner 1);
\draw[1cell] (C.corner 1) -- (C.corner 2);
\draw[1cell] (C.corner 2) -- (C.corner 3);
\node[0cell] (g1) at (G.corner 1) {};
\node[0cell] (b2) at (B.corner 2) {};
\node[0cell] (c3) at (C.corner 3) {};
\node[0cell] (d4) at (D.corner 4) {};
\node[0cell] (e5) at (E.corner 5) {};
\node[0cell] (f6) at (F.corner 6) {};
\node[0cell] (c1) at (C.corner 1) {};
\node[0cell] (c2) at (C.corner 2) {};
\node[0cell] (d2) at (D.corner 2) {};
\node[0cell] (d3) at (D.corner 3) {};
\node[0cell] (e3) at (E.corner 3) {};
\node[0cell] (e4) at (E.corner 4) {};
\node[0cell] (f4) at (F.corner 4) {};
\node[0cell] (f5) at (F.corner 5) {};
\node[0cell] (g5) at (G.corner 5) {};
\node[0cell] (g6) at (G.corner 6) {};
\node[0cell] (b6) at (B.corner 6) {};
\node[0cell] (b1) at (B.corner 1) {};
\end{scope}
\end{tikzpicture}
\end{document}

26
figures/operateursS.tikz Normal file
View file

@ -0,0 +1,26 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}
\input{operateurs}
\draw[1cell] (A.corner 1) -- (A.corner 2);
\draw[1cell] (A.corner 2) -- (A.corner 3);
\draw[1cell] (A.corner 3) -- (A.corner 4);
\draw[1cell] (A.corner 4) -- (A.corner 5);
\draw[1cell] (A.corner 5) -- (A.corner 6);
\draw[1cell] (A.corner 6) -- (A.corner 1);
\begin{scope}[0cell/.style={circle, inner sep=0, minimum width=5pt,
fill = black!20, draw = white, thick}]
\node[0cell] (a1) at (A.corner 1) {};
\node[0cell] (a2) at (A.corner 2) {};
\node[0cell] (a3) at (A.corner 3) {};
\node[0cell] (a4) at (A.corner 4) {};
\node[0cell] (a5) at (A.corner 5) {};
\node[0cell] (a6) at (A.corner 6) {};
\end{scope}
\end{scope}
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,35 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
% étoile de S
\begin{tikzpicture}
\input{operateurs}
\node[2cell] (a) at (A) {};
\node[2cell] (b) at (B) {};
\node[2cell] (c) at (C) {};
\node[2cell] (d) at (D) {};
\node[2cell] (e) at (E) {};
\node[2cell] (f) at (F) {};
\node[2cell] (g) at (G) {};
\draw[1cell] (A.corner 1) -- (A.corner 2);
\draw[1cell] (A.corner 2) -- (A.corner 3);
\draw[1cell] (A.corner 3) -- (A.corner 4);
\draw[1cell] (A.corner 4) -- (A.corner 5);
\draw[1cell] (A.corner 5) -- (A.corner 6);
\draw[1cell] (A.corner 6) -- (A.corner 1);
\begin{scope}[0cell/.style={circle, inner sep=0, minimum width=5pt,
fill = black!20, draw = white, thick}]
\node[0cell] (a1) at (A.corner 1) {};
\node[0cell] (a2) at (A.corner 2) {};
\node[0cell] (a3) at (A.corner 3) {};
\node[0cell] (a4) at (A.corner 4) {};
\node[0cell] (a5) at (A.corner 5) {};
\node[0cell] (a6) at (A.corner 6) {};
\end{scope}
\end{scope}
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,49 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
% Étoile fermeture de S
\begin{tikzpicture}
\input{operateurs}
\node[2cell] (a) at (A) {};
\node[2cell] (b) at (B) {};
\node[2cell] (c) at (C) {};
\node[2cell] (d) at (D) {};
\node[2cell] (e) at (E) {};
\node[2cell] (f) at (F) {};
\node[2cell] (g) at (G) {};
\draw[1cell] (A.corner 1) -- (A.corner 2);
\draw[1cell] (A.corner 2) -- (A.corner 3);
\draw[1cell] (A.corner 3) -- (A.corner 4);
\draw[1cell] (A.corner 4) -- (A.corner 5);
\draw[1cell] (A.corner 5) -- (A.corner 6);
\draw[1cell] (A.corner 6) -- (A.corner 1);
\draw[1cell] (A.corner 1) -- (B.corner 2);
\draw[1cell] (A.corner 2) -- (C.corner 3);
\draw[1cell] (A.corner 3) -- (D.corner 4);
\draw[1cell] (A.corner 4) -- (E.corner 5);
\draw[1cell] (A.corner 5) -- (F.corner 6);
\draw[1cell] (A.corner 6) -- (G.corner 1);
\node[0cell] (a1) at (A.corner 1) {};
\node[0cell] (a2) at (A.corner 2) {};
\node[0cell] (a3) at (A.corner 3) {};
\node[0cell] (a4) at (A.corner 4) {};
\node[0cell] (a5) at (A.corner 5) {};
\node[0cell] (a6) at (A.corner 6) {};
\begin{scope}[0cell/.style={circle, inner sep=0, minimum width=5pt,
fill = black!20, draw = white, thick}]
\node[0cell] (g1) at (G.corner 1) {};
\node[0cell] (b2) at (B.corner 2) {};
\node[0cell] (c3) at (C.corner 3) {};
\node[0cell] (d4) at (D.corner 4) {};
\node[0cell] (e5) at (E.corner 5) {};
\node[0cell] (f6) at (F.corner 6) {};
\end{scope}
\end{scope}
\end{tikzpicture}
\end{document}

24
figures/operateursfS.tikz Normal file
View file

@ -0,0 +1,24 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
% Fermeture de S (pareil)
\begin{tikzpicture}
\input{operateurs}
\draw[1cell] (A.corner 1) -- (A.corner 2);
\draw[1cell] (A.corner 2) -- (A.corner 3);
\draw[1cell] (A.corner 3) -- (A.corner 4);
\draw[1cell] (A.corner 4) -- (A.corner 5);
\draw[1cell] (A.corner 5) -- (A.corner 6);
\draw[1cell] (A.corner 6) -- (A.corner 1);
\node[0cell] (a1) at (A.corner 1) {};
\node[0cell] (a2) at (A.corner 2) {};
\node[0cell] (a3) at (A.corner 3) {};
\node[0cell] (a4) at (A.corner 4) {};
\node[0cell] (a5) at (A.corner 5) {};
\node[0cell] (a6) at (A.corner 6) {};
\end{scope}
\end{tikzpicture}
\end{document}

View file

@ -0,0 +1,78 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
% fermeture de étoile S
\begin{tikzpicture}
\input{operateurs}
\node[2cell] (a) at (A) {};
\node[2cell] (b) at (B) {};
\node[2cell] (c) at (C) {};
\node[2cell] (d) at (D) {};
\node[2cell] (e) at (E) {};
\node[2cell] (f) at (F) {};
\node[2cell] (g) at (G) {};
\draw[1cell] (A.corner 1) -- (A.corner 2);
\draw[1cell] (A.corner 2) -- (A.corner 3);
\draw[1cell] (A.corner 3) -- (A.corner 4);
\draw[1cell] (A.corner 4) -- (A.corner 5);
\draw[1cell] (A.corner 5) -- (A.corner 6);
\draw[1cell] (A.corner 6) -- (A.corner 1);
\draw[1cell] (A.corner 1) -- (B.corner 2);
\draw[1cell] (A.corner 2) -- (C.corner 3);
\draw[1cell] (A.corner 3) -- (D.corner 4);
\draw[1cell] (A.corner 4) -- (E.corner 5);
\draw[1cell] (A.corner 5) -- (F.corner 6);
\draw[1cell] (A.corner 6) -- (G.corner 1);
\draw[1cell] (D.corner 1) -- (D.corner 2);
\draw[1cell] (D.corner 2) -- (D.corner 3);
\draw[1cell] (D.corner 3) -- (D.corner 4);
\draw[1cell] (E.corner 2) -- (E.corner 3);
\draw[1cell] (E.corner 3) -- (E.corner 4);
\draw[1cell] (E.corner 4) -- (E.corner 5);
\draw[1cell] (F.corner 3) -- (F.corner 4);
\draw[1cell] (F.corner 4) -- (F.corner 5);
\draw[1cell] (F.corner 5) -- (F.corner 6);
\draw[1cell] (G.corner 4) -- (G.corner 5);
\draw[1cell] (G.corner 5) -- (G.corner 6);
\draw[1cell] (G.corner 6) -- (G.corner 1);
\draw[1cell] (B.corner 5) -- (B.corner 6);
\draw[1cell] (B.corner 6) -- (B.corner 1);
\draw[1cell] (B.corner 1) -- (B.corner 2);
\draw[1cell] (C.corner 6) -- (C.corner 1);
\draw[1cell] (C.corner 1) -- (C.corner 2);
\draw[1cell] (C.corner 2) -- (C.corner 3);
\node[0cell] (a1) at (A.corner 1) {};
\node[0cell] (a2) at (A.corner 2) {};
\node[0cell] (a3) at (A.corner 3) {};
\node[0cell] (a4) at (A.corner 4) {};
\node[0cell] (a5) at (A.corner 5) {};
\node[0cell] (a6) at (A.corner 6) {};
\node[0cell] (g1) at (G.corner 1) {};
\node[0cell] (b2) at (B.corner 2) {};
\node[0cell] (c3) at (C.corner 3) {};
\node[0cell] (d4) at (D.corner 4) {};
\node[0cell] (e5) at (E.corner 5) {};
\node[0cell] (f6) at (F.corner 6) {};
\node[0cell] (c1) at (C.corner 1) {};
\node[0cell] (c2) at (C.corner 2) {};
\node[0cell] (d2) at (D.corner 2) {};
\node[0cell] (d3) at (D.corner 3) {};
\node[0cell] (e3) at (E.corner 3) {};
\node[0cell] (e4) at (E.corner 4) {};
\node[0cell] (f4) at (F.corner 4) {};
\node[0cell] (f5) at (F.corner 5) {};
\node[0cell] (g5) at (G.corner 5) {};
\node[0cell] (g6) at (G.corner 6) {};
\node[0cell] (b6) at (B.corner 6) {};
\node[0cell] (b1) at (B.corner 1) {};
\end{scope}
\end{tikzpicture}
\end{document}

Binary file not shown.

After

(image error) Size: 414 KiB

Binary file not shown.

After

(image error) Size: 183 KiB

Binary file not shown.

After

(image error) Size: 247 KiB

BIN
figures/otb-multi-view.pdf Normal file

Binary file not shown.

BIN
figures/otb2-display.png Normal file

Binary file not shown.

After

(image error) Size: 1.5 MiB

49
figures/otbModules.tikz Normal file
View file

@ -0,0 +1,49 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}[node distance=4cm,
normalNodes/.style={inner sep=10pt,outer sep=2pt,minimum width=2.5cm},
main/.style={normalNodes,draw=black},
high/.style={normalNodes,draw=black,fill=black!20},
low/.style= {normalNodes,draw=black,fill=black!40},
regTo/.style={-Stealth,thick},
mainTo/.style={-Stealth,thick}]
\node (Main) [main] {\texttt{Main}};
\node (Morphogen) [high,below of=Main, xshift=-2cm] {\texttt{Morphogen}};
\node (Bacterium) [high,left of=Morphogen] {\texttt{Bacterium}};
\node (Zone) [high,right of=Morphogen] {\texttt{Zone}};
\node (Coupling) [high,right of=Zone] {\texttt{Coupling}};
\node (BoundingBox) [low,below of=Zone] {\texttt{BoundingBox}};
\node (OpenCL) [low,below of=Coupling] {\texttt{OpenCL}};
\node (SBGP) [low,right of=OpenCL] {\texttt{SBGP}};
\node (Packfile) [low,below of=Morphogen] {\texttt{Packfile}};
\node (Viewer) [low,below of=Bacterium] {\texttt{Viewer}};
\coordinate (MZ) %
at (barycentric cs:Morphogen=1,Zone=1) {};
\draw [mainTo] (Main) to [out=-90,in=90] (Bacterium);
\draw [mainTo] (Main) to [out=-90,in=90] (Morphogen);
\draw [mainTo] (Main) to [out=-90,in=90] (Zone);
\draw [mainTo] (Main) to [out=-90,in=90] (Coupling);
\draw [mainTo] (Main) to [out=-90,in=120] (BoundingBox);
\draw [mainTo] (Main) to [out=0,in=90] (SBGP);
\draw [mainTo] (Main) to [out=-90,in=90] (MZ) to [out=-90,in=45] (Viewer);
\node (BM) [inner sep=1pt, fill=black, draw=black, yshift=-10pt, circle]%
at (barycentric cs:Morphogen=1,Bacterium=1) {};
\draw [thick] (Bacterium) to [out=0,in=135] (BM);
\draw [thick] (Morphogen) to [out=180,in=45] (BM);
\draw [regTo] (BM) to [out=-90,in=90] (Viewer);
\draw [regTo] (BM) to [out=-85,in=90] (Packfile);
\draw [regTo] (BM) to [out=-70,in=145] (BoundingBox);
\draw [regTo] (BM) to [out=-55,in=155] (OpenCL);
\draw [regTo] (Zone) to (BoundingBox);
\draw [regTo] (Zone) to [out=-70,in=135] (OpenCL);
\draw [regTo] (Coupling) to (OpenCL);
\draw [regTo] (Coupling) to [out=-70,in=135] (SBGP);
%
\end{tikzpicture}
\end{document}

22
figures/plot-ff.tikz Normal file
View file

@ -0,0 +1,22 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}
\pgfplotsset{width=.6\textwidth}
\begin{axis}[%
xlabel=Itérations
,scale only axis
,ylabel=Quantité normalisée
,ymin=0,ymax=1.1
,xmin=0,xmax=1000
,no markers
,legend style={draw=none,at={(0.98,0.5)},anchor=east}
,legend cell align=left]
\addplot+[blue!50] table[x=ITER,y=NONITERNORM] {data/speedup2.data};
\addplot+[black] table[x=ITER,y=OPTITERNORM] {data/speedup2.data};
\addplot+[black,dashed] table[x=ITER,y=ACTIVENORM] {data/speedup2.data};
\legend{Simulation normale, Simulation optimisée, Cellules actives}
\end{axis}
\end{tikzpicture}
\end{document}

BIN
figures/s.png Executable file

Binary file not shown.

After

(image error) Size: 13 KiB

23
figures/schema-lv.tikz Normal file
View file

@ -0,0 +1,23 @@
\documentclass[crop,tikz]{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}[%
follow/.style={midway,sloped,above}]
\node (mv) at (0,0) {\model{M}{V}};
\node (msv) at (2,1) {\model{M}{SV}};
\node (ml) at (2,-1) {\model{M}{L}};
\node (msvl) at (4,0) {?};
\node (msl) at (6,0) {\model{M}{SL}};
\draw[-Stealth] (mv) to node[follow] {\scriptsize abstraction} (msv);
\draw[-Stealth] (mv) to node[follow] {\scriptsize abstraction} (ml);
\draw[-Stealth, dashed] (msv) to node[follow] {?} (msvl);
\draw[-Stealth, dashed] (ml) to node[follow] {?} (msvl);
\draw[-Stealth, dashed] (msvl) to node[follow] {?} (msl);
\end{tikzpicture}
\end{document}

Binary file not shown.

After

(image error) Size: 673 KiB

BIN
figures/sectors.png Normal file

Binary file not shown.

After

(image error) Size: 589 KiB

View file

@ -0,0 +1,17 @@
\documentclass{standalone}
\input{common-headers}
\input{sigles}
\begin{document}
\begin{tikzpicture}
\pgfplotsset{width=14cm,height=6cm}
\begin{axis}[%
xlabel=Itérations
% ,scale only axis
,ylabel=Nombre de bactéries
% ,ymin=0,ymax=1.1
% ,xmin=0,xmax=1000
]
\addplot[black] table {data/stablePopulation.data};
\end{axis}
\end{tikzpicture}
\end{document}

BIN
figures/system-bounce.png Normal file

Binary file not shown.

After

(image error) Size: 11 KiB

139
figures/system-bounce.svg Normal file
View file

@ -0,0 +1,139 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="453.57144"
height="262.85715"
id="svg2"
version="1.1"
inkscape:version="0.48.4 r9939"
sodipodi:docname="system-bounce.svg"
inkscape:export-filename="/home/eeva/work/prez-2014-ICCSA/illustrations/system-bounce.png"
inkscape:export-xdpi="158.74016"
inkscape:export-ydpi="158.74016">
<defs
id="defs4">
<marker
inkscape:stockid="Arrow2Mend"
orient="auto"
refY="0"
refX="0"
id="Arrow2Mend"
style="overflow:visible">
<path
id="path3798"
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round"
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
transform="scale(-0.6,-0.6)"
inkscape:connector-curvature="0" />
</marker>
<clipPath
clipPathUnits="userSpaceOnUse"
id="clipPath4268">
<rect
y="482.36218"
x="134.28572"
height="242.85715"
width="433.57144"
id="rect4270"
style="fill:#ff0000;fill-opacity:1;stroke:none" />
</clipPath>
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="1.4"
inkscape:cx="219.64285"
inkscape:cy="87.360807"
inkscape:document-units="px"
inkscape:current-layer="layer1"
showgrid="false"
fit-margin-top="10"
fit-margin-left="10"
fit-margin-right="10"
fit-margin-bottom="10"
inkscape:window-width="1920"
inkscape:window-height="1056"
inkscape:window-x="0"
inkscape:window-y="24"
inkscape:window-maximized="0" />
<metadata
id="metadata7">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Calque 1"
inkscape:groupmode="layer"
id="layer1"
transform="translate(-124.28572,-472.36218)">
<g
id="g4259"
clip-path="url(#clipPath4268)">
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path3765"
d="m 31.527108,646.82329 52.857138,0"
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-end:url(#Arrow2Mend)" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path2985"
d="m 147.14286,326.07647 0,479.85714"
style="fill:#ff0000;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 687.64287,705.1479 -654.28572,0"
id="path2987"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="ccccc"
inkscape:connector-curvature="0"
id="path3759"
d="m 147.14286,500.93361 c 61.4567,0 151.42857,87.38036 151.42857,202.85714 0,-76.61484 107.14286,-65.74402 107.14286,2.14286 C 406.13471,660.92048 505,672.33949 505,704.50504 c 0,-20.66064 74.28571,-15.86088 74.28571,-2.14286"
style="fill:none;stroke:#000000;stroke-width:2;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:2,8;stroke-dashoffset:0" />
<path
transform="translate(33.214289,-1.4285718)"
d="m 210,539.14789 a 17.5,17.5 0 1 1 -35,0 17.5,17.5 0 1 1 35,0 z"
sodipodi:ry="17.5"
sodipodi:rx="17.5"
sodipodi:cy="539.14789"
sodipodi:cx="192.5"
id="path2989"
style="fill:#ffffff;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
sodipodi:type="arc" />
<path
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-end:url(#Arrow2Mend)"
d="m 225.09854,537.53758 52.85713,0"
id="path4211"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
<path
style="fill:none;stroke:#000000;stroke-width:3;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-end:url(#Arrow2Mend)"
d="m 226.48484,536.09362 0,52.85714"
id="path4213"
inkscape:connector-curvature="0"
sodipodi:nodetypes="cc" />
</g>
</g>
</svg>

After

(image error) Size: 5.3 KiB

Binary file not shown.

After

(image error) Size: 8.1 KiB

BIN
figures/time-discrete.png Normal file

Binary file not shown.

After

(image error) Size: 7.8 KiB

316
figures/time-discrete.svg Normal file
View file

@ -0,0 +1,316 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="370.57144"
height="144.57143"
id="svg47053"
version="1.1"
inkscape:version="0.48.4 r9939"
sodipodi:docname="time-notime.svg"
inkscape:export-filename="/home/eeva/work/prez-2014-ICCSA/illustrations/time-notime.png"
inkscape:export-xdpi="194"
inkscape:export-ydpi="194">
<defs
id="defs47055">
<marker
inkscape:stockid="DotM"
orient="auto"
refY="0.0"
refX="0.0"
id="DotM"
style="overflow:visible">
<path
id="path8339"
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
transform="scale(0.4) translate(7.4, 1)" />
</marker>
<marker
inkscape:stockid="DotL"
orient="auto"
refY="0.0"
refX="0.0"
id="DotL"
style="overflow:visible">
<path
id="path8336"
d="M -2.5,-1.0 C -2.5,1.7600000 -4.7400000,4.0 -7.5,4.0 C -10.260000,4.0 -12.5,1.7600000 -12.5,-1.0 C -12.5,-3.7600000 -10.260000,-6.0 -7.5,-6.0 C -4.7400000,-6.0 -2.5,-3.7600000 -2.5,-1.0 z "
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
transform="scale(0.8) translate(7.4, 1)" />
</marker>
<marker
inkscape:stockid="StopM"
orient="auto"
refY="0.0"
refX="0.0"
id="StopM"
style="overflow:visible">
<path
id="path8447"
d="M 0.0,5.65 L 0.0,-5.65"
style="fill:none;fill-opacity:0.75000000;fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
transform="scale(0.4)" />
</marker>
<marker
inkscape:stockid="Arrow2Mend"
orient="auto"
refY="0.0"
refX="0.0"
id="Arrow2Mend"
style="overflow:visible;">
<path
id="path8302"
style="fill-rule:evenodd;stroke-width:0.62500000;stroke-linejoin:round;"
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
transform="scale(0.6) rotate(180) translate(0,0)" />
</marker>
<marker
inkscape:stockid="Arrow2Mstart"
orient="auto"
refY="0.0"
refX="0.0"
id="Arrow2Mstart"
style="overflow:visible">
<path
id="path8299"
style="fill-rule:evenodd;stroke-width:0.62500000;stroke-linejoin:round"
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
transform="scale(0.6) translate(0,0)" />
</marker>
<marker
inkscape:stockid="Arrow1Mend"
orient="auto"
refY="0.0"
refX="0.0"
id="Arrow1Mend"
style="overflow:visible;">
<path
id="path8284"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt;"
transform="scale(0.4) rotate(180) translate(10,0)" />
</marker>
<marker
inkscape:stockid="Arrow1Mstart"
orient="auto"
refY="0.0"
refX="0.0"
id="Arrow1Mstart"
style="overflow:visible">
<path
id="path8281"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
transform="scale(0.4) translate(10,0)" />
</marker>
<marker
inkscape:stockid="Arrow1Lstart"
orient="auto"
refY="0.0"
refX="0.0"
id="Arrow1Lstart"
style="overflow:visible">
<path
id="path8275"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
transform="scale(0.8) translate(12.5,0)" />
</marker>
<clipPath
clipPathUnits="userSpaceOnUse"
id="clipPath53339">
<rect
style="fill:#ff0000;stroke:none"
id="rect53341"
width="57.455952"
height="57.455952"
x="280.01126"
y="120.37136" />
</clipPath>
<clipPath
clipPathUnits="userSpaceOnUse"
id="clipPath53699">
<rect
style="fill:#ff0000;fill-opacity:1;stroke:none"
id="rect53701"
width="119.28571"
height="119.64286"
x="236.28571"
y="85.362175" />
</clipPath>
<clipPath
clipPathUnits="userSpaceOnUse"
id="clipPath55190">
<rect
style="fill:#ff0000;fill-opacity:1;stroke:none"
id="rect55192"
width="120.20815"
height="120.20815"
x="9.8361168"
y="84.922516" />
</clipPath>
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="2.8"
inkscape:cx="171.32428"
inkscape:cy="68.469187"
inkscape:document-units="px"
inkscape:current-layer="layer1"
showgrid="false"
fit-margin-top="10"
fit-margin-left="10"
fit-margin-right="10"
fit-margin-bottom="10"
inkscape:window-width="1920"
inkscape:window-height="1056"
inkscape:window-x="0"
inkscape:window-y="24"
inkscape:window-maximized="0" />
<metadata
id="metadata47058">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Calque 1"
inkscape:groupmode="layer"
id="layer1"
transform="translate(2.2857141,-72.933609)">
<rect
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;opacity:1"
id="rect48129"
width="123.57143"
height="123.57143"
x="8.2142859"
y="83.433609" />
<rect
y="83.433609"
x="234.21429"
height="123.57143"
width="123.57143"
id="rect48131"
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0" />
<path
style="fill:none;stroke:#000000;stroke-width:0.95024008px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-start:url(#Arrow1Mstart);marker-end:url(#Arrow1Mend)"
d="m 140.10713,145.21932 85.21431,0"
id="path48133"
inkscape:connector-curvature="0" />
<g
id="g53693"
clip-path="url(#clipPath53699)">
<path
sodipodi:nodetypes="cccc"
inkscape:connector-curvature="0"
id="path53689"
d="m 231.56458,145.32549 c 16.91169,0 14.53683,-36.98631 38.04306,-36.98631 25.86238,0 40.15133,68.68885 61.29158,68.68885 18.20457,0 32.56657,-53.89433 43.67906,-53.89433"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none" />
<path
inkscape:connector-curvature="0"
id="path53691"
d="m 227.35715,145.21932 140.35714,0"
style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
</g>
<g
id="g55115"
clip-path="url(#clipPath55190)">
<path
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
d="m 1.35715,145.21932 140.35714,0"
id="path53707"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none"
d="m 14.972699,139.58488 0,5.60817"
id="path53713"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path53715"
d="m 24.925714,121.01345 0,24.1796"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none"
d="m 34.878731,110.47773 0,34.71532"
id="path53717"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path53719"
d="m 44.831746,108.69202 0,36.50103"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none"
d="m 54.784762,112.62059 0,32.57246"
id="path53721"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path53723"
d="m 64.737778,123.33488 0,21.85817"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#DotM);marker-end:none"
d="m 74.690794,140.12059 0,5.07246"
id="path53725"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path53727"
d="m 84.64381,145.13845 0,12.50103"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:none;marker-end:url(#DotM)" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:none;marker-end:url(#DotM)"
d="m 94.596826,145.13845 0,26.25103"
id="path53729"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path53731"
d="m 104.54984,145.13845 0,31.96532"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:none;marker-end:url(#DotM)" />
<path
sodipodi:nodetypes="cc"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:none;marker-end:url(#DotM)"
d="m 114.50287,145.13845 0,27.14389"
id="path53733"
inkscape:connector-curvature="0" />
<path
sodipodi:nodetypes="cc"
inkscape:connector-curvature="0"
id="path53735"
d="m 124.45588,145.13845 0,13.9296"
style="fill:none;stroke:#000000;stroke-width:0.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:none;marker-end:url(#DotM)" />
</g>
</g>
</svg>

After

(image error) Size: 12 KiB

BIN
figures/time-leibniz.png Normal file

Binary file not shown.

After

(image error) Size: 23 KiB

Some files were not shown because too many files have changed in this diff Show more