\begin{frame}%[label=this one] \frametitle{Système proies/prédateurs (système)} \framesubtitle{Description du système} \begin{columns} \column{.7\textwidth}\centering \includegraphics[width=.7\textwidth]{raster/system-predator-prey}\\ \mkCitation{S. S. Mader, Biology 6th edition, 1998} \bigskip \begin{itemize} \item Les proies se reproduisent spontanément \item Les prédateurs meurent spontanément \item Les prédateurs chassent les proies \begin{itemize} \item Les proies meurent (chassées) \item Les prédateurs peuvent se reproduire (efficacité de la chasse) \end{itemize} \end{itemize} \end{columns} \end{frame} \begin{frame}%[label=this one] \frametitle{Système proies/prédateurs (modèles)} \framesubtitle{Modèles et formalismes} \centering \begin{tikzpicture}[overlay,% node distance=13mm and 20mm, model/.style={draw,circle,on grid=true,fill=white,minimum size=24pt}, abstraction/.style={-Stealth,thick} ] \node[model, left=of current page.center] (m1) {$\model_1$}; \node[model,above=of current page.center] (m2) {$\model_2$}; \uncover<2->{ \node[model,below=of current page.center] (m3) {$\model_3$}; } \uncover<3>{ \node[model,right=of current page.center] (m4) {?}; } \uncover<4->{ \node[model,right=of current page.center] (m4) {$\model_4$}; } \draw[abstraction] (m1) to node[anchor=south,midway,sloped] {\tiny trajectoire moyenne} (m2); \uncover<2->{ \draw[abstraction] (m1) to node[anchor=north,midway,sloped,swap] {\tiny aggrégation de l'espace} (m3); } \uncover<3>{ \draw[abstraction,dashed] (m2) to (m4); \draw[abstraction,dashed] (m1) to (m4); \draw[abstraction,dashed] (m3) to (m4); } \uncover<4->{ \draw[abstraction] (m2) to node[anchor=south,midway,sloped,swap] {\tiny aggrégation de l'espace} (m4); \draw[abstraction] (m3) to node[anchor=north,midway,sloped] {\tiny trajectoire moyenne} (m4); } \end{tikzpicture} \begin{tikzpicture}[overlay] \uncover<1-2>{ \node[anchor=south east] (m1eq) at (m1.north west) {\tiny$ \left\{ \arraycolsep=1.4pt%\def\arraystretch{2.2} \begin{array}{rcl} \displaystyle\frac{dU_V}{dt} &=& r U_V (1 - \displaystyle\frac{U_V}{K}) - g U_P U_V\\[1.5ex] \displaystyle\frac{dU_P}{dt} &=& n U_V U_P - \mu U_P \end{array} \right.%} $}; \node[anchor=north] at (m1eq.south) {\includegraphics[height=2cm]{vector/lv-graph}}; \node[anchor=south east] (m2eq) at ($(m2.north west)+(0,7pt)$) {\tiny$ \arraycolsep=1.4pt%\def\arraystretch{0} \begin{array}{rl} V + E &\overset{b}{\longrightarrow} 2\,V \\ P + V &\overset{p_1}{\longrightarrow} 2\,P \\ P + V &\overset{p_2}{\longrightarrow} P + E \end{array} \quad \begin{array}{rl} V &\overset{d_V}{\longrightarrow} E \\ P &\overset{d_P}{\longrightarrow} E \end{array} $}; \node[anchor=west] at (m2eq.east) {\includegraphics[width=2cm]{vector/lv-gil-graph}}; } \uncover<2>{ \node[anchor=north] (m3eq) at (m3.south) {\tiny$ \left\{ \arraycolsep=1.4pt%\def\arraystretch{2.0} \begin{array}{rcll} \displaystyle\frac{du_V}{dt} &=& r u_V (1 - \displaystyle\frac{u_V}{K}) - g u_P u_V \\ &+& D_V (\nabla^2 u_V + u_V \nabla^2 u_P - u_P \nabla^2 u_V) \\[1.5ex] \displaystyle\frac{du_P}{dt} &=& n u_V u_P - \mu u_P \\ &+& D_P (\nabla^2 u_P + u_P \nabla^2 u_V - u_V \nabla^2 u_P) \end{array} \right.%} $}; } \uncover<4>{ \node[anchor=west] at (m4.east) {\structure{[Lugo et McKane 2008]}}; } \end{tikzpicture} \end{frame}