adventofcode-2020/day3/main.hs
2020-12-03 22:23:26 +02:00

121 lines
3.7 KiB
Haskell
Executable file

#! /usr/bin/env -S"ANSWER=42" nix-shell
#! nix-shell -p ghcid
#! nix-shell -p "haskellPackages.ghcWithPackages (p: with p; [])"
#! nix-shell -i "ghcid -c 'ghci -Wall' -T main"
{-# LANGUAGE OverloadedStrings #-}
import Data.List (intersperse)
testData :: [String]
testData = [ "..##......."
, "#...#...#.."
, ".#....#..#."
, "..#.#...#.#"
, ".#...##..#."
, "..#.##....."
, ".#.#.#....#"
, ".#........#"
, "#.##...#..."
, "#...##....#"
, ".#..#...#.#"
]
data Position = Position { x_::Int, y_::Int }
instance Show (Position)
where
show p = "("<>show (x_ p)<>","<>show (y_ p)<>")"
-- Returns a half-line starting on (0,0) and following the (x*a,x*b) eq:
line :: Int -> Int -> [Position]
line a b = Position 0 0 : [ Position (x*a) (x*b) | x <- [1..] ]
-- Starting at the top-left corner of your map and following a slope of right 3
-- and down 1, how many trees would you encounter?
-- Requirements for this first task:
-- - datastructure supporting random-access (or similar) interface (lists would work)
-- - function generating a list of (x,y) coordinate to check
-- - must have 2D datastructure, since it's infinite on 1D (x axis)
-- - in this version at least, there's no need to modify the datastructure, so
-- it can be read-only, or even just a function taking a position and returning
-- SquareSortEmpty or SquareSortTree
data SquareSort = SquareSortTree | SquareSortEmpty
deriving Eq
instance Show SquareSort
where
show SquareSortTree = "#"
show SquareSortEmpty = "_"
char2ss :: Char -> Maybe SquareSort
char2ss '#' = Just SquareSortTree
char2ss '.' = Just SquareSortEmpty
char2ss _ = Nothing
str2sss :: String -> Maybe [SquareSort]
str2sss = sequence . (map char2ss)
newtype Grid = Grid [[SquareSort]]
instance Show (Grid)
where
show (Grid x) = concat $ intersperse "\n" $ map show x
parseInput :: [String] -> Maybe Grid
parseInput x = Grid <$> sequence ( (map str2sss) x )
getSquareSortAtPosition :: Grid -> Position -> SquareSort
getSquareSortAtPosition (Grid grid) (Position x y) =
grid !! y !! (x `mod` n)
where
n = length (grid !! 0)
solveDay3Part1 :: Grid -> (Int,Int) -> Int
solveDay3Part1 grid@(Grid lx) (x',y')=
length $ filter (== SquareSortTree) $ map (getSquareSortAtPosition grid) px
where
px = take n' $ line x' y'
n' = if y' > 1 then n + 1 else n
n = (length lx) `div` y'
-- Determine the number of trees you would encounter if, for each of the
-- following slopes, you start at the top-left corner and traverse the map all
-- the way to the bottom:
--
-- - Right 1, down 1.
-- - Right 3, down 1. (This is the slope you already checked.)
-- - Right 5, down 1.
-- - Right 7, down 1.
-- - Right 1, down 2.
--
-- What do you get if you multiply together the number of trees encountered on
-- each of the listed slopes?
solveDay3Part2 :: Grid -> Int
solveDay3Part2 grid =
foldl (*) 1 [ solveDay3Part1 grid (1,1)
, solveDay3Part1 grid (3,1)
, solveDay3Part1 grid (5,1)
, solveDay3Part1 grid (7,1)
, solveDay3Part1 grid (1,2)
]
main :: IO ()
main = do
putStrLn "Day 3 - Part 1"
inputData <- readFile "day3/input"
print $ take 5 $ line 3 1
print $ take 6 $ line 1 2
let (Just parsedTestData) = parseInput testData
print parsedTestData
print $ getSquareSortAtPosition parsedTestData (Position 5 10)
let (Just parsedInputData) = parseInput (lines inputData)
putStrLn "Part 1:"
print $ solveDay3Part1 parsedTestData (3,1)
print $ solveDay3Part1 parsedInputData (3,1)
putStrLn "Part 2:"
print $ solveDay3Part2 parsedTestData
print $ solveDay3Part2 parsedInputData