adventofcode-2020/day13/main.hs
2020-12-21 15:34:56 +02:00

129 lines
5.6 KiB
Haskell
Executable file
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#! /usr/bin/env -S"GHCRTS=-N4" nix-shell
#! nix-shell -p ghcid
#! nix-shell -p "haskellPackages.ghcWithPackages (p: with p; [pretty-simple attoparsec arithmoi])"
#! nix-shell -i "ghcid -c 'ghci' -T main"
{-# OPTIONS_GHC -Wall -Wincomplete-uni-patterns #-}
{-# LANGUAGE OverloadedStrings #-}
import Control.Applicative
import Control.Monad (foldM)
import Data.Attoparsec.Text (Parser)
import Data.Euclidean (gcdExt)
import Data.List (find,sortOn)
import Data.Maybe (fromMaybe,catMaybes)
import Text.Pretty.Simple
import qualified Data.Attoparsec.Text as A
import qualified Data.Text as T
exampleData :: String
exampleData = "939\n7,13,x,x,59,x,31,19"
numOrXParser :: Parser (Maybe Int)
numOrXParser = (Just <$> A.decimal) <|> ("x" *> pure Nothing)
inputParser :: Parser (Int,[Int])
inputParser = do
n <- A.decimal
A.skipSpace
xs <- numOrXParser `A.sepBy` ","
pure (n,catMaybes $ xs)
parseInput :: String -> Either String (Int,[Int])
parseInput = (A.parseOnly inputParser) . T.pack
solvePart1 :: String -> Either String Int
solvePart1 str = do
(n,xs) <- parseInput str
let (bus, time) = head
$ sortOn (snd)
$ map (\x -> (x,fromMaybe (-1) $ find (> n) [0,x..])) xs
pure $ bus * (time - n)
inputParser2 :: Parser (Int,[Maybe Int])
inputParser2 = do
n <- A.decimal
A.skipSpace
xs <- numOrXParser `A.sepBy` ","
pure (n,xs)
parseInput2 :: String -> Either String (Int,[Maybe Int])
parseInput2 = (A.parseOnly inputParser2) . T.pack
-- -------------------------------------------------------------------------- --
-- Here I sneak around a bit, and realize the problem is well defined --
-- (and solved!) already: it's called the Chinese Remainder Theorem --
-- https://en.wikipedia.org/wiki/Chinese_remainder_theorem --
-- -------------------------------------------------------------------------- --
-- Apllying the theorem allows to reduce a system of equation on x: --
-- --
-- x ≡ a1 (mod n1) --
-- · --
-- · --
-- · --
-- x ≡ ak (mod nk) --
-- --
-- to a single equation: --
-- --
-- x ≡ as (mod ns) --
-- --
-- It relates to the buses schedules in the following way: t is x, the bus --
-- number is the modulo factor (since a bus comes *every* ni) and subsequent --
-- additions to t (for other buses) is (-ai), so, for a but coming at --
-- t+ai, one would write x ≡ -ai (mod ni) --
-- --
-- I chose to encode ai and ni as a tuple (ai,ni), named startAndIds --
-- --
-- Basically, we're creating a “chinese” function: --
-- --
-- chinese :: (Int,Int) -> (Int,Int) -> (Int,Int) --
-- --
-- Then, given a list [(Int, Int)] we can fold over it to obtain the solution --
-- --
chinese :: (Integer,Integer) -> (Integer,Integer) -> Maybe (Integer,Integer)
chinese (0,n1) (0,n2) = chinese (n1,n1) (n2,n2)
chinese v (0,n2) = chinese v (n2,n2)
chinese (0,n1) v = chinese (n1,n1) v
chinese (a1,n1) (a2,n2) = do
-- Computes a solution such that: n1×c1 + n2×c2 = g, for some c2
-- n1×c1 - g = - n2×c2, for some c2
-- 1/n2 (n1×c1 - g) = - c2, for some c2 (n2 is > 0)
-- - 1/n2 (n1×c1 - g) = c2, for some c2 (n2 is > 0)
-- n1 and n2 must be coprimes for this to work (g must be 1), fail otherwise
(m1,m2) <- case gcdExt n1 n2 of
(1,c1) -> Just ( c1, negate ((n1 * c1) - 1) `div` n2 )
_ -> Nothing
let x = a1 * m2 * n2 + a2 * m1 * n1
let a12 = x `mod` (n1 * n2)
pure $ (a12, n1 * n2)
e2m :: Either e a -> Maybe a
e2m (Right v) = Just v
e2m _ = Nothing
solvePart2 :: String -> Maybe (Integer,Integer)
solvePart2 str = do
(_,xs) <- e2m $ parseInput2 str
let startAndIds = catMaybes $ sequence <$> zip [0..] (map (fmap fromIntegral) xs)
let chineseEqs = fmap (\(a,n) -> ((-a) `mod` n, n)) startAndIds
foldM chinese (1,1) chineseEqs
main :: IO ()
main = do
putStrLn ":: Test"
pPrint $ A.parseOnly inputParser $ T.pack exampleData
pPrint $ take 3 ((\n -> [1,(n::Integer)..]) 59)
putStrLn ":: Day 13 - Part 1"
input <- readFile "day13/input"
pPrint $ solvePart1 exampleData
pPrint $ solvePart1 input
putStrLn ":: Test 2"
print $ solvePart2 exampleData
print $ solvePart2 "1\n17,x,13,19"
print $ solvePart2 "1\n67,7,59,61"
print $ solvePart2 "1\n67,x,7,59,61"
print $ solvePart2 "1\n67,7,x,59,61"
print $ solvePart2 "1\n1789,37,47,1889"
putStrLn ":: Day 13 - Part 2"
print $ solvePart2 input