adventofcode-2020/day3/main.hs

82 lines
2.4 KiB
Haskell
Raw Normal View History

2020-12-03 13:57:18 +01:00
#! /usr/bin/env -S"ANSWER=42" nix-shell
#! nix-shell -p ghcid
#! nix-shell -p "haskellPackages.ghcWithPackages (p: with p; [])"
#! nix-shell -i "ghcid -c 'ghci -Wall' -T main"
{-# LANGUAGE OverloadedStrings #-}
2020-12-03 16:36:12 +01:00
import Data.List (intersperse)
2020-12-03 13:57:18 +01:00
testData :: [String]
testData = [ "..##......."
, "#...#...#.."
, ".#....#..#."
, "..#.#...#.#"
, ".#...##..#."
, "..#.##....."
, ".#.#.#....#"
, ".#........#"
, "#.##...#..."
, "#...##....#"
, ".#..#...#.#"
]
2020-12-03 16:36:12 +01:00
data Position = Position { x_::Int, y_::Int }
instance Show (Position)
where
show p = "("<>show (x_ p)<>","<>show (y_ p)<>")"
-- Returns a half-line starting on (0,0) and following the (x*a,x*b) eq:
line :: Int -> Int -> [Position]
line a b = Position 0 0 : [ Position (x*a) (x*b) | x <- [1..] ]
-- Starting at the top-left corner of your map and following a slope of right 3
-- and down 1, how many trees would you encounter?
-- Requirements for this first task:
-- - datastructure supporting random-access (or similar) interface (lists would work)
-- - function generating a list of (x,y) coordinate to check
-- - must have 2D datastructure, since it's infinite on 1D (x axis)
-- - in this version at least, there's no need to modify the datastructure, so
-- it can be read-only, or even just a function taking a position and returning
-- SquareSortEmpty or SquareSortTree
data SquareSort = SquareSortTree | SquareSortEmpty
instance Show SquareSort
where
show SquareSortTree = "#"
show SquareSortEmpty = "."
char2ss :: Char -> Maybe SquareSort
char2ss '#' = Just SquareSortTree
char2ss '.' = Just SquareSortEmpty
char2ss _ = Nothing
str2sss :: String -> Maybe [SquareSort]
str2sss = sequence . (map char2ss)
newtype Grid = Grid [[SquareSort]]
instance Show (Grid)
where
show (Grid x) = intersperse '\n' $ map show x
parseInput :: [String] -> Maybe Grid
parseInput x = Grid <$> sequence ( (map str2sss) x )
getSquareSortAtPosition :: Grid -> Position -> SquareSort
getSquareSortAtPosition (Grid grid) (Position x y) =
grid !! y !! (x `mod` n)
where
n = length (grid !! 0)
2020-12-03 13:57:18 +01:00
main :: IO ()
main = do
putStrLn "Day 3 - Part 1"
2020-12-03 16:36:12 +01:00
print $ take 5 $ line 3 1
let (Just parsedTestData) = parseInput testData
print parsedTestData
print $ getSquareSortAtPosition parsedTestData (Position 3 0)