1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-12-24 18:49:46 +01:00
Haskell bindings for TensorFlow
Find a file
2017-07-25 09:38:00 -04:00
ci_build Switched to lts-8.13, added custom-setup. (#106) 2017-05-09 20:49:51 -07:00
docker Update to 1.0 release and newest proto-lens (#77) 2017-02-22 15:24:45 -08:00
docs/haddock Regenerate the Haddock docs. (#95) 2017-04-08 07:14:47 -07:00
tensorflow Add initializedValue function for Variable (#124) 2017-05-20 21:42:45 -07:00
tensorflow-core-ops Fix 'sdist' for tensorflow-core-ops. (#113) 2017-05-10 16:29:31 -07:00
tensorflow-logging Added logGraph for graph visualization in TensorBoard (#104) 2017-06-19 20:53:55 -07:00
tensorflow-mnist Moved reduceMean to Ops (#136) 2017-06-20 20:50:46 -07:00
tensorflow-mnist-input-data Modifying tensorflow-mnist-input-data's setup to download MNIST through http proxy if necessary (#127) 2017-05-28 22:56:15 -07:00
tensorflow-opgen Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-ops Delete inaccurate comments 2017-07-25 09:38:00 -04:00
tensorflow-proto Fill out the modules in tensorflow-proto. (#132) 2017-06-08 20:24:42 -07:00
tensorflow-records Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-records-conduit Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-test Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
third_party Uprev to TF 1.0rc1. (#69) 2017-02-09 14:20:43 -08:00
tools Change from OS X to macOS (#142) 2017-07-20 13:17:50 -07:00
.gitignore Optimize fetching (#27) 2016-11-17 10:41:49 -08:00
.gitmodules Initial commit 2016-10-24 19:26:42 +00:00
ChangeLog.md Add initializedValue function for Variable (#124) 2017-05-20 21:42:45 -07:00
CONTRIBUTING.md Initial commit 2016-10-24 19:26:42 +00:00
LICENSE Initial commit 2016-10-24 19:26:42 +00:00
README.md Change from OS X to macOS (#142) 2017-07-20 13:17:50 -07:00
stack.yaml Fill out the modules in tensorflow-proto. (#132) 2017-06-08 20:24:42 -07:00

Build Status

The tensorflow-haskell package provides Haskell bindings to TensorFlow.

This is not an official Google product.

Documentation

https://tensorflow.github.io/haskell/haddock/

TensorFlow.Core is a good place to start.

Examples

Neural network model for the MNIST dataset: code

Toy example of a linear regression model (full code):

import Control.Monad (replicateM, replicateM_)
import System.Random (randomIO)
import Test.HUnit (assertBool)

import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Minimize as TF
import qualified TensorFlow.Ops as TF hiding (initializedVariable)
import qualified TensorFlow.Variable as TF

main :: IO ()
main = do
    -- Generate data where `y = x*3 + 8`.
    xData <- replicateM 100 randomIO
    let yData = [x*3 + 8 | x <- xData]
    -- Fit linear regression model.
    (w, b) <- fit xData yData
    assertBool "w == 3" (abs (3 - w) < 0.001)
    assertBool "b == 8" (abs (8 - b) < 0.001)

fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
    -- Create tensorflow constants for x and y.
    let x = TF.vector xData
        y = TF.vector yData
    -- Create scalar variables for slope and intercept.
    w <- TF.initializedVariable 0
    b <- TF.initializedVariable 0
    -- Define the loss function.
    let yHat = (x `TF.mul` TF.readValue w) `TF.add` TF.readValue b
        loss = TF.square (yHat `TF.sub` y)
    -- Optimize with gradient descent.
    trainStep <- TF.minimizeWith (TF.gradientDescent 0.001) loss [w, b]
    replicateM_ 1000 (TF.run trainStep)
    -- Return the learned parameters.
    (TF.Scalar w', TF.Scalar b') <- TF.run (TF.readValue w, TF.readValue b)
    return (w', b')

Installation Instructions

Note: building this repository with stack requires version 1.4.0 or newer. Check your stack version with stack --version in a terminal.

Build with Docker on Linux

As an expedient we use docker for building. Once you have docker working, the following commands will compile and run the tests.

git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
IMAGE_NAME=tensorflow/haskell:v0
docker build -t $IMAGE_NAME docker
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test

There is also a demo application:

cd tensorflow-mnist
stack --docker --docker-image=$IMAGE_NAME build --exec Main

Build on macOS

Run the install_macos_dependencies.sh script in the tools/ directory. The script installs dependencies via Homebrew and then downloads and installs the TensorFlow library on your machine under /usr/local.

After running the script to install system dependencies, build the project with stack:

stack test

Build on NixOS

tools/userchroot.nix expression contains definitions to open chroot-environment containing necessary dependencies. Type

$ nix-shell tools/userchroot.nix
$ stack build --system-ghc

to enter the environment and build the project. Note, that it is an emulation of common Linux environment rather than full-featured Nix package expression. No exportable Nix package will appear, but local development is possible.