1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-11-23 03:19:44 +01:00
Haskell bindings for TensorFlow
Find a file
Judah Jacobson 8bb0d2cf87 Add extra-lib-dirs back into .cabal for Mac builds. (#122)
Also bump the version to 0.1.0.2.

Originally we had `extra-lib-dirs: /usr/local/lib` in `stack.yaml`.
I removed it because it wasn't necessary on my Mac.  However,
it turns out that it is necessary for machines with the default installation
of XCode, which *doesn't* search that path by default.

(On my machine, it wasn't necessary because I had run `xcode-select --install`
which adds that path permanently to your search path.  For more context, see
https://github.com/Homebrew/brew/issues/556.)

I'm adding the setting back to `tensorflow.cabal` as well as `stack.yaml` so
that the Hackage release also contains this fix.  Changing `stack.yaml` is
still necessary in order to fix linkage in the `snappy` package (which
`tensorflow-records` depends on).  Hopefully that will go away once we remove
the dependency (#118).
2017-05-16 15:21:18 -07:00
ci_build Switched to lts-8.13, added custom-setup. (#106) 2017-05-09 20:49:51 -07:00
docker Update to 1.0 release and newest proto-lens (#77) 2017-02-22 15:24:45 -08:00
docs/haddock Regenerate the Haddock docs. (#95) 2017-04-08 07:14:47 -07:00
tensorflow Add extra-lib-dirs back into .cabal for Mac builds. (#122) 2017-05-16 15:21:18 -07:00
tensorflow-core-ops Fix 'sdist' for tensorflow-core-ops. (#113) 2017-05-10 16:29:31 -07:00
tensorflow-logging Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-mnist Consolidate some packages. (#111) 2017-05-10 15:26:03 -07:00
tensorflow-mnist-input-data Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-opgen Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-ops Consolidate some packages. (#111) 2017-05-10 15:26:03 -07:00
tensorflow-proto Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-records Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-records-conduit Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
tensorflow-test Fix .cabal files so 'stack check' passes. (#110) 2017-05-10 11:37:00 -07:00
third_party Uprev to TF 1.0rc1. (#69) 2017-02-09 14:20:43 -08:00
tools call sudo consistently within OSX build script (#91) 2017-04-03 20:27:22 -07:00
.gitignore Optimize fetching (#27) 2016-11-17 10:41:49 -08:00
.gitmodules Initial commit 2016-10-24 19:26:42 +00:00
CONTRIBUTING.md Initial commit 2016-10-24 19:26:42 +00:00
LICENSE Initial commit 2016-10-24 19:26:42 +00:00
README.md Distinguish between "rendered" and "unrendered" Tensors. (#88) 2017-04-06 15:10:33 -07:00
stack.yaml Add extra-lib-dirs back into .cabal for Mac builds. (#122) 2017-05-16 15:21:18 -07:00

Build Status

The tensorflow-haskell package provides Haskell bindings to TensorFlow.

This is not an official Google product.

Documentation

https://tensorflow.github.io/haskell/haddock/

TensorFlow.Core is a good place to start.

Examples

Neural network model for the MNIST dataset: code

Toy example of a linear regression model (full code):

import Control.Monad (replicateM, replicateM_, zipWithM)
import System.Random (randomIO)
import Test.HUnit (assertBool)

import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF

main :: IO ()
main = do
    -- Generate data where `y = x*3 + 8`.
    xData <- replicateM 100 randomIO
    let yData = [x*3 + 8 | x <- xData]
    -- Fit linear regression model.
    (w, b) <- fit xData yData
    assertBool "w == 3" (abs (3 - w) < 0.001)
    assertBool "b == 8" (abs (8 - b) < 0.001)

fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
    -- Create tensorflow constants for x and y.
    let x = TF.vector xData
        y = TF.vector yData
    -- Create scalar variables for slope and intercept.
    w <- TF.initializedVariable 0
    b <- TF.initializedVariable 0
    -- Define the loss function.
    let yHat = (x `TF.mul` w) `TF.add` b
        loss = TF.square (yHat `TF.sub` y)
    -- Optimize with gradient descent.
    trainStep <- gradientDescent 0.001 loss [w, b]
    replicateM_ 1000 (TF.run trainStep)
    -- Return the learned parameters.
    (TF.Scalar w', TF.Scalar b') <- TF.run (w, b)
    return (w', b')

gradientDescent :: Float
                -> TF.Tensor TF.Build Float
                -> [TF.Tensor TF.Ref Float]
                -> TF.Session TF.ControlNode
gradientDescent alpha loss params = do
    let applyGrad param grad =
            TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad))
    TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params

Installation Instructions

Build with Docker on Linux

As an expedient we use docker for building. Once you have docker working, the following commands will compile and run the tests.

git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
IMAGE_NAME=tensorflow/haskell:v0
docker build -t $IMAGE_NAME docker
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test

There is also a demo application:

cd tensorflow-mnist
stack --docker --docker-image=$IMAGE_NAME build --exec Main

Build on Mac OS X

Run the install_osx_dependencies.sh script in the tools/ directory. The script installs dependencies via Homebrew and then downloads and installs the TensorFlow library on your machine under /usr/local.

After running the script to install system dependencies, build the project with stack:

stack test